Majorization, Operator inequality and Operator mean

島根大学 内山 充 (Mitsuru Uchiyama)

Department of Mathematics

Interdischiplinary Faculty of Science and Eigineering Shimane University

1 Majorization

Let I be an interval in the real axis. We denote by $\mathbf{P}(I)$ the set of all operator monotone functions on I. A constant function is here admitted to be an operator monotone function.

Definition 1.1 Let I = [a, b) or I = (a, b) with $-\infty \le a < b \le \infty$.

$$\mathbf{LP}_{+}(I) := \{ h \text{ on } I | h(t) > 0 \text{ on } (a, b), \log h \in \mathbf{P}(a, b) \},$$

If $-\infty < a$, identifying $h \in \mathbf{LP}_+(a,b)$ as its natural extension to [a,b) gives

$$\mathbf{LP}_{+}(a,b) = \mathbf{LP}_{+}[a,b)$$

Example 1.1 $t^r \in \mathbf{LP}_+[0,\infty)$ for r > 0.

Definition 1.2

$$\mathbf{P}_{+}^{-1}(a,b): = \{h | h \text{ is increasing on } (a,b), \text{ the range is } (0,\infty)$$
$$h^{-1} \in \mathbf{P}(0,\infty)\}.$$
$$\mathbf{P}_{+}^{-1}[a,b): = \{h | h \text{ is increasing on } [a,b), \text{ the range is } [0,\infty)$$

$$h^{-1} \in \mathbf{P}(0, \infty)\}.$$

If $-\infty < a$,

$$\mathbf{P}_{+}^{-1}[a,b) = \mathbf{P}_{+}^{-1}(a,b).$$

Example 1.2 $t^r \in \mathbf{P}_{+}^{-1}[0,\infty) \ for \ r \geq 1.$

$$e^t \in \mathbf{P}_+^{-1}(-\infty,\infty)$$
.

$$t \log t \in \mathbf{P}_{+}^{-1}(1, \infty) = \mathbf{P}_{+}^{-1}[1, \infty)$$

Definition 1.3 ([8, 9]) Let h(t) and k(t) be non-decreasing functions on I, and, further, suppose k(t) is increasing. Then h is said to be *majorized* by k, in symbol

$$h \leq k$$
 on I

if the composite $h \circ k^{-1}$ of h and k^{-1} belongs to $\mathbf{P}(k(I))$.

This definition is equivalent with

$$\sigma(A), \sigma(B) \subset I, \ k(A) \leq k(B) \Longrightarrow h(A) \leq h(B).$$

Example 1.3 $f(t) \leq t$ on $I \Leftrightarrow f \in \mathbf{P}(I)$.

$$t \leq e^t$$
 on $(-\infty, \infty)$.

 $u(t)^{\alpha} \leq u(t)^{\beta}$ on I if 0 < u(t) is increasing on I and $0 < \alpha < \beta$.

Lemma 1.1 Product Lemma

Let I = [a, b) or I = (a, b) with $-\infty \le a < b \le \infty$, and let h, g be non-negative functions defined on I. Suppose the product hg is increasing, (hg)(a+0) = 0 and $(hg)(b-0) = \infty$. Then

$$g \leq hg$$
 on $I \iff h \leq hg$ on I .

Moreover for every ψ_1 , ψ_2 in $\mathbf{P}_+[0,\infty)$

$$g \leq hg$$
 on $I \Longrightarrow \psi_1(h)\psi_2(g) \leq hg$ on I .

We remark that the hypothesis

$$g(t) \leq h(t)g(t)$$

is not necessarily valid even if $h, g \in \mathbf{P}_{+}[0, \infty)$; for instance, $t^{1/2}, t+1 \in \mathbf{P}_{+}[0, \infty)$, but

$$t^{1/2}4 \not \leq t^{1/2}(t+1).$$

Indeed, by putting $t^{1/2} = s$, it is equivalent to

$$s \not\preceq s(s^2+1),$$

which was shown in Example 2.1 of [6].

Theorem 1.2 Product theorem [8, 9]For every right open interval I,

$$\mathbf{P}_{+}^{-1}(I) \cdot \mathbf{P}_{+}^{-1}(I) \subset \mathbf{P}_{+}^{-1}(I), \quad \mathbf{LP}_{+}(I) \cdot \mathbf{P}_{+}^{-1}(I) \subset \mathbf{P}_{+}^{-1}(I).$$

Further, let $g_i(t) \in \mathbf{LP}_+(I)$ for $1 \leq i \leq m$ and $h_j(t) \in \mathbf{P}_+^{-1}(I)$ for $1 \leq j \leq n$. Then for every $\psi_i, \phi_j \in \mathbf{P}_+[0, \infty)$

$$\prod_{i=1}^{m} \psi_i(g_i) \prod_{j=1}^{n} \phi_j(h_j) \leq \prod_{i=1}^{m} g_i \prod_{j=1}^{n} h_j \in \mathbf{P}_{+}^{-1}(I).$$

Definition 1.4 A real function g(t) is called an operator convex function on I if

$$g(sA + (1 - s)B) \le sg(A) + (1 - s)g(B)$$

for every 0 < s < 1 and for every pair of bounded selfadjoint operators A and B whose spectra are both in I.

Proposition 1.3 Let $f_i(t) \in \mathbf{P}_+(0,\infty)$ for $i = 1, 2, \cdots$. Then there are operator convex functions $h_i(t) > 0$ on $0 < t < \infty$ satisfying

$$tf_1(t)f_2(t)\cdots f_n(t) = (h_n \circ \cdots \circ h_2 \circ h_1)(t) \quad (0 < t < \infty)$$

for every n.

2 Operator Inequality

There is a function η in $\mathbf{P}_{+}(I) \cap \mathbf{P}_{+}^{-1}(I)$ except for $I = (-\infty, \infty)$; for instance,

- $\eta(t) = t$ if $I = (0, \infty)$,
- $\eta(t) = t a$ if $I = (a, \infty)$,
- $\eta(t) = \frac{t-a}{b-t}$ if I = (a, b) with $-\infty < a < b < \infty$,
- $\eta(t) = \frac{1}{b-t}$ if $I = (-\infty, b)$.

Theorem 2.1 General operator inequality Let I be a right open interval, and let $f \in \mathbf{P}_+(I)$ and $g(t) \in \mathbf{LP}_+(I)$. Put k(t) = f(t)g(t). Let h(t) be increasing function on I such that $f(t)h(t) \in \mathbf{P}_+^{-1}(I)$. Then the following holds.

(i) If $I \neq (-\infty, \infty)$ and $\eta \in \mathbf{P}_+(I) \cap \mathbf{P}_+^{-1}(I)$, then the function ϕ on $(0, \infty)$ defined by

$$\phi(k(t)h(t)) = k(t)\frac{\eta(t)}{f(t)} \quad (t \in I)$$
(1)

belongs to $\mathbf{P}_{+}(0,\infty)$.

(ii) If $I = (-\infty, \infty)$ and f(t) = 1, then the function ϕ on $(0, \infty)$ defined by

$$\phi(k(t)h(t)) = k(t) \quad (t \in I)$$
 (2)

belongs to $\mathbf{P}_{+}(0,\infty)$.

(iii) Let ϕ be a function given in (i) or (ii). Then for every $\varphi \in \mathbf{P}_{+}(0, \infty)$ such that

$$\varphi \preceq \phi \quad (0, \infty),$$

 $A \leq C \leq B$ implies

$$\varphi(k(C)^{\frac{1}{2}}h(B)k(C)^{\frac{1}{2}})$$

$$\geq \varphi(k(C)^{\frac{1}{2}}h(C)k(C)^{\frac{1}{2}})$$

$$\geq \varphi(k(C)^{\frac{1}{2}}h(A)k(C)^{\frac{1}{2}}).$$

$$(3)$$

Corollary 2.2 Let $f_i, g_j \in \mathbf{P}_+[a, \infty)$ for $1 \leq i \leq m$, $1 \leq j \leq n$, and put $k(t) = (t-a)^{r_0} f_1(t)^{r_1} \cdots f_m(t)^{r_m}$ and $h(t) = (t-a)^{p_0} g_1(t)^{p_1} \cdots g_n(t)^{p_n}$ for $r_i, p_j \geq 0$. Suppose $p_0 + r_0 \geq 1$. If $a \leq A \leq C \leq B$, for α such that

$$0 < \alpha \le \frac{\min(1, p_0) + r_0}{p + r_0} \quad (p := p_0 + \dots + p_n),$$

$$(k(C)^{\frac{1}{2}}h(B)k(C)^{\frac{1}{2}})^{\alpha} \ge (k(C)^{\frac{1}{2}}h(C)k(C)^{\frac{1}{2}})^{\alpha} \ge (k(C)^{\frac{1}{2}}h(A)k(C)^{\frac{1}{2}})^{\alpha}.$$

Corollary 2.3 Let $h \in \mathbf{LP}_+[0,\infty)$ and $g \in \mathbf{LP}_+[0,\infty)$, and put k(t) = tg(t). Suppose $0 \le A \le C \le B$ and A is invertible. Then

$$\log(k(C)^{\frac{1}{2}}h(B)k(C)^{\frac{1}{2}}) \ge \log(k(C)^{\frac{1}{2}}h(C)k(C)^{\frac{1}{2}}) \ge \log(k(C)^{\frac{1}{2}}h(A)k(C)^{\frac{1}{2}}). \tag{4}$$

In particular, for every $r \ge 1$ and p > 0

$$\log(C^{\frac{r}{2}}e^{pB}C^{\frac{r}{2}}) \ge \log(C^{\frac{r}{2}}e^{pC}C^{\frac{r}{2}}) \ge \log(C^{\frac{r}{2}}e^{pA}C^{\frac{r}{2}}).$$

Example 2.1 Let $k(t) \in \mathbf{LP}_{+}[0,1)$. Suppose $0 \le A \le C \le B \le 1$ and 1-B is invertible. Then for $p \ge 1$ and for $0 < \alpha \le \frac{1}{p}$,

$$\left(k(C)^{\frac{1}{2}}(B(1-B)^{-1})^{p}k(C)^{\frac{1}{2}}\right)^{\alpha} \ge \left(k(C)^{\frac{1}{2}}(C(1-C)^{-1})^{p}k(C)^{\frac{1}{2}}\right)^{\alpha} \\
\ge \left(k(C)^{\frac{1}{2}}(A(1-A)^{-1})^{p}k(C)^{\frac{1}{2}}\right)^{\alpha}.$$

3 Operator Mean

From now on we assume $A, B \ge 0$ and A is invertible if A^{-1} appears.

Lemma 3.1 (i) If $A^{-1} \# B \le 1$, then for every operator convex function $h(t) \ge 0$ on $[0, \infty)$ with h(0) = 0,

$$1 \ge A^{-1} \# B \ge h(A)^{-1} \# h(B).$$

Moreover, for $f_i(t) \in \mathbf{P}_+[0,\infty)$ $(i=1,2,\cdots)$ put $k_0(t)=1$, $k_n(t)=f_1(t)\cdots f_n(t)$; then

$$(Ak_{n-1}(A))^{-1} \# Bk_{n-1}(B) \ge (Ak_n(A))^{-1} \# Bk_n(B) \quad (n = 1, 2, \cdots).$$

(ii) If $A^{-1} \# B \ge 1$, then the reverse assertion holds.

Theorem 3.2 (i) If $A^{-1}\#B \leq 1$, then for $a \geq 1$ and for $k(t) \in \mathbf{LP}_{+}[0,\infty)$

$$A^{-a}h(A)^{-1} \# B^a h(B) \le 1.$$

Moreover, $A^{-s}h(A)^{-t}\#B^{s}h(B)^{t}$ is non-increasing for $1 \leq s < \infty$ and for $0 \leq t < \infty$.

(ii) If $A^{-1} \# B \ge 1$, the reverse assertion holds.

Example 3.1 (i) If $A^{-1} \# B \le 1$, then for $s \ge 1$, t > 0

$$A^{-s}e^{-tA} \# B^s e^{tB} < 1.$$

Moreover, $A^{-s}e^{-tA}\#B^se^{tB}$ is non-increasing for $1 \le s < \infty$ and for $0 \le t < \infty$.

(ii) If $A^{-1} \# B \ge 1$, the reverse assertion holds.

参考文献

[1] T. Ando, Comparison of norms |||f(A) - f(B)||| and |||f(|A - B|)||| . Math. Z. 197 (1988), no. 3, 403–409.

- [2] M. Uchiyama, Some exponential operator inequalities. Math. Inequal. Appl. 2 (1999), no. 3, 469–471.
- [3] M. Uchiyama, Operator monotone functions which are defined implicitly and operator inequalities, J. Funct. Anal. 175(2000), 330–347.
- [4] M. Uchiyama, M. Hasumi, On some operator monotone functions. Integral Equations Operator Theory 42 (2002), no. 2, 243–251.
- [5] M. Uchiyama, Criteria for monotonicity of operator means, J. Math. Soc. Japan, **55** (2003), 197–207.
- [6] M. Uchiyama, Inverse functions of polynomials and orthogonal polynomials as operator monotone functions, Trans. Amer. Math. Soc. **355**(2003) 4111–4123
- [7] M. Uchiyama, Operator monotone functions and operator inequalities [translation of Sugaku 54 (2002), no. 3]. Sugaku Expositions 18 (2005), no. 1, 39–52.
- [8] M. Uchiyama, A new majorization between functions, polynomials, and operator inequalities, J. Funct. Anal. 231 (2006) no. 1, 221–244.
- [9] M. Uchiyama, A new majorization between functions, polynomials, and operator inequalities II, J. Math. Soc. Japan 60(2008) no. 1, 291–310
- [10] M. Uchiyama, Operator monotone functions, positive definite kernel and majorization. Proc. Amer. Math. Soc. 138 (2010), no. 11, 3985–3996.
- [11] M. Uchiyama, The principal inverse of the gamma function, Proc. Amer. Math. Soc. 140(2012) 1343–1348
- [12] M. Uchiyama, Operator monotone functions, Jacobi operators and orthogonal polynomials. J. Math. Anal. Appl. 401 (2013), no. 2, 501–509.