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A note on picture insertion systems

Kaoru Fujioka *

1 Introduction picture $p$ in $\tau**,$ $|p|=(m, n)$ denotes the size of
the picture $p$ with $m.=\ell_{1}(p)$ and $n=\ell_{2}(p)$ .

Insertion and deletion systems are computing The row and column concatenations are denoted
models based on the field of molecular biology. Sev-

$p\ominus q$ and $p$, respectively, and defined if $p$ and
eral proposals have been made for generating two-

$q$ have the same number of columns (resp. lows).
dimensional languages based on insertion and dele-

$p^{k\ominus}$ (resp. $p^{k\fcircle}$ ) is the vertical (horizontal) juxta-
tion with replicative transposition operation. position of $k’ sp.$

In this paper, we focus on insertion operations A tiling system [3] is a tuple $\mathcal{T}=(\Sigma, \Gamma, \theta, \pi)$ ,
and extend an insertion system from one dimen- where $\Sigma$ and $\Gamma$ are alphabets, $\theta$ is a finite set of tiles
sion ( $ID$ ) to $2D$ then introduce a picture insertion over the alphabet $\Gamma$ , and $\pi$ : $\Gammaarrow\Sigma$ is a projection.
system to generate picture languages. The picture Let $TS$ be the class of picture languages generated
insertion operation introduced in this paper relates by tiling systems.
to the insertion operations in one dimensions of the
form $(u, x, v)$ to produce a string $auxv\beta$ from a
given string $\alpha uv\beta$ with context $uv$ by inserting a3 Picture insertion systems
string $x[2]$ . We also present some examples and
results concerning picture insertion systems. Definition 1 $A$ picture insertion system is a tuple

$\gamma=(T, P, A)$ , where $T$ is an alphabet, $P$ is a finite
set of picture insertion rules, and $A$ is a finite set

2 Preliminaries of pictures over $T.$ $P$ may contain the following
three types of picture insertion rules:

In this section, we introduce notation and basic
definitions that are necessary for this paper. The . $R$-type: $(u, w, v)$ , where $\ell_{1}(u)=l_{1}(v)=P_{1}(w)$ .
basic notions and definitions in formal language
theory are found in [4]. $\cdot$ $C$-type: $[Matrix]$ where $l_{2}(u)=\ell_{2}(v)=\ell_{2}(w)$ .

For an alphabet $T$ , a picture $p$ is a two-
dimensional rectangular array of elements of $T.$

$T^{**}$ is the set of all pictures over $T.$ $A$ picture . $RC$-type: $[Matrix]$ , where
language over $T$ is a subset of $T^{**}.$

For a picture $p\in\tau**$ , let $\ell_{1}(p)$ (resp. $\ell_{2}(p)$ ) be $\ell_{1}(u)=l_{1}(w_{1})=l_{1}(v), \ell_{1}(w_{2})=l_{1}(w_{3})=$

the number of rows (resp. columns) of $p$ . For a $\ell_{1}(w_{4}), \ell_{1}(x)=\ell_{1}(w_{5})=\ell_{1}(y)$ ,
$\ell_{2}(u)=\ell_{2}(w_{2})=\ell_{2}(x), \ell_{2}(w_{1})=\ell_{2}(w_{3})=$

$\ell_{2}(w_{5}), \ell_{2}(v)=\ell_{2}(w_{4})=P_{2}(y)$ ,
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Intuitively, $R$-type (resp. $C$-type) rule means an
insertion rule in row (resp. column), that is, the
picture $w$ is inserted in between the pictures $u$ and
$v$ . An $RC$-type rule is intend to insert the pic-
tures $w_{i}(1\leq i\leq 5)$ into the picture consisting of
$u,v,x$ , and $y$ . We break up the rectangle into sub-
pictures $u,v,x$ , and $y$ and secure the cross-shaped
space, then insert those pictures.

We show how to apply insertion rules in the fol-
lowing definition.

Definition 2 For pictures $p_{1},$ $p_{2}$ in $\tau**$ , we say
that $p_{1}$ denves $p_{2}$ in one step if. there is an $R$-type rule $(u, w, v)$ with $u,$ $v,$ $w\in$

$T^{m*}$ for $m\geq 1$ such that $p_{1}=\alpha$
and $p_{2}=\alpha$ with $\alpha,$ $\beta\in T^{m*}.$

We write $p_{1}arrow Rp_{2}$ . In a graphical represen-
tation, it means

$arrow R$

. there $u$ a C- Type rule $(\begin{array}{l}uwv\end{array})$ with $u,$ $v,$ $w\in$

$T^{*n}$ for $n\geq 1$ such that $p_{1}=\alpha\ominus u\ominus v\ominus\beta$ and
$p_{2}=\alpha\ominus u\ominus w\ominus v\ominus\beta$ with $\alpha,$ $\beta\in T^{*n}$ . We
write $p_{1}arrow cp_{2}$ . In a graphical representation,

We write $p_{1}arrow RCp_{2}$ . In a graphical repre-
sentation, it means

el $\Rightarrow$

If there is no confusion, we write $arrow$ instead of
$arrow R,$ $arrow c$ , and $arrow RC$ . The reflexive and transitive
closure of $arrow$ $(resp. arrow R, arrow c)$ is defined as $arrow*$

$(resp. arrow*R, arrow^{*}c)$ . The transitive closure of $arrow$ (resp.
$arrow R,$ $arrow c)$ is denoted by $arrow+(resp. arrow+R, arrow+c)$ .

With $arrow R,$ $arrow c$ , and $arrow RC$ we introduce a stan-
dard derivation denoted by $\Rightarrow$ in the following def-
tnition.

Definition 3 For pictures $p_{1}$ and $p_{2},$ $p_{1}\Rightarrow p_{2}$ is

defined in the following three cases:
1. lUsing $R$-type rulesl. pictures $p_{1}$ and $p_{2}$ satisfy

$p_{1}=(\alpha_{1}$ and $p_{2}=$

$(\alpha_{1}$ , where for
each $1\leq i\leq n,$

- there is a derivation $\alpha_{i}$ $arrow*R$

$\alpha_{i}$

- there are $l_{a},$ $l_{b},$ $l_{w}\geq 0$ such that $\ell_{2}(\alpha_{i})=$

$l_{a}, l_{2}(\beta_{i})=l_{b}, \ell_{2}(w_{i})=l_{w},$

. there is no picture $p’$ in $T^{**}$ such that $p_{1}arrow+R$

$p’arrow+_{p_{2}}R.$

In a graphical representation, it means

$\Rightarrow$

. there is an $RC$-Type rule $(\begin{array}{lll}u w_{1} vw_{2} w_{3} w_{4}x w_{5} y\end{array})$

such that $p_{1}=(u(Dv)\ominus(x$ and $p_{2}=$$(u$.

2. [Using $C$-type rulesl. pictures $p_{1}$ and $p_{2}$ satisfy
$p_{1}=(\alpha_{1}\ominus\beta_{1})$ and
$p_{2}=(\alpha_{1}\ominus w_{1}\ominus\beta_{1})$ $CD(\alpha_{n}\ominus w_{n}\ominus\beta_{n})$ ,

where for each $1\leq i\leq n,$
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- there is a $der^{v}\iota$vation $\alpha_{i}\ominus\beta_{i}arrow*c^{\alpha_{i}}\ominus w_{i}\ominus$

$\beta_{i},$

- there are $1_{a},$ $l_{b},$ $l_{w}\geq 0$ such that $\ell_{1}(\alpha_{i})=$

$l_{a}, \ell_{1}(\beta_{i})=l_{b}, l_{1}(w_{i})=l_{w},$

. there is no picture $p’$ in $T^{**}$ such that $p_{1}arrow+c$

$p’arrow+c^{p_{2}}.$

In a graphical representation, it means

$\Rightarrow$

3. lUsing an $RC$-type rule]

. there is an $RC$-type rule $(\begin{array}{lll}u w_{1} vw_{2} w_{3} w_{4}x w_{5} y\end{array}),$

$\circ$ pictures $p_{1}$ and $p_{2}$ satisfy $p_{1}=(q_{1}$
$(q_{3}$ and $p_{2}$ $=$ $(q_{1}$$(z_{2}$ ,. the lower nght comer (resp. lower left, upper
mght, upper left) of $q_{1}$ $(resp. q_{2}, q_{3}, q_{4})$ is $u$

$(resp. v, x, y)$ ,. $z_{1}$ $(resp. z_{2}, z_{3}, z_{4})$ is inserted by $R$ -type (resp.
$C$-type, $C$-type, $R$-type) rules.

In a graphical representation, it means

$\Rightarrow$

Intuitively, the standard derivation $\Rightarrow$ is the
smallest unit to applied to a picture by applying

picture insertion rules. The reflexive and transitive
closure of $\Rightarrow$ is defined as $\Rightarrow^{*}.$

A picture language generated by $\gamma=(T, P, A)$

is defined as $L(\gamma)$ $=$ $\{w$ $\in$ $\tau**$ $s$ $\Rightarrow^{*}$

$w$ , for some $s\in A$ }.

A picture insertion system $\gamma=(T, P, A)$ is said to
be of weight $(i,j;k, l)$ if the number of rows (resp.
columns) for context checking picture is not more
than $i$ (resp. $j$ ), and the number of rows (resp.
columns) for inserted picture is not more than $k$

(resp. $l$ ).
For $i,j,$ $k,$ $l\geq 0$ , let $INS_{k,l}^{ij}$ be the class of picture

languages generated by picture insertion systems of
weight $(i’,j’;k’, l’)$ with $i’\leq i,$ $j’\leq j,$ $k’\leq k$ , and
$l’\leq l$ . If some of the parameters $i,$ $j,$ $k,$ $l$ are not
bounded, we $use*$ in place of the symbols for those
parameters.

Example 1 Consider a picture insertion system
$\gamma=(T, P, A)$ , where $T=\{a, b\},$ $P=\{(\lambda, ab, \lambda)\},$

$A=\{\lambda\}$ . The picture language generated by $\gamma$ is
viewed as a Dyck’s string language.

As shown in Example 1, picture insertion systems
are $2D$ generalizations of insertion systems in $1D$

cases. We slightly note that Dyck language is not
regular (in $1D$ sense).

Example 2 Consider a picture insertion system

$\gamma=(T, P, A)$ , where $T=\{a, b\},$ $P=\{(\lambda, \S_{a}^{b} , \lambda)$ ,

$(\begin{array}{l}\lambda_{)}\theta_{a}^{b}\lambda\end{array})\},$ $A=\{\lambda\}.$

The followings are some of the pictures gener-

ated by $\gamma;\lambda,$ $\theta_{a}^{b}$ $\theta_{a}^{b}\theta_{a}^{b}$ $8k_{a}^{bb}$ $8_{a} \oint^{b}\#$ $\beta_{a}^{\mathfrak{g}}aa$

$\theta_{a}^{b}\theta_{a}^{b}\theta_{a}^{b}$ $\theta\%_{aaa}^{abbb}$ $\theta k_{a}^{bb}\theta_{a}^{b}$

For example, the picture $ccaad\#_{\mathcal{C}}^{a}{\}$ is derived in

two ways as follows: $\lambda\Rightarrow$ $\ ^{b}$ $\Rightarrow$ $\theta_{a}^{b}\theta_{a}^{b}$ $\Rightarrow$

$\theta k_{a}^{bb}\theta_{a}^{b},$ $\lambda\Rightarrow$ $g_{a}^{b}$ $\Rightarrow$ $\oint g_{aa}^{bb}$ $\Rightarrow$ $\theta k_{a}^{bb}\theta_{a}^{b}$

Example 3 Consider a picture insertion system
$\gamma=(T, P, A)$ , where $T=\{a, b\},$ $P=\{(b, b, \lambda)$ ,
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$(\begin{array}{l}bb\lambda\end{array})$ $(\begin{array}{lll}a b bb a bb b a\end{array})\},$ $A=\{\theta_{a}^{b} \}.$

A derivation in $\gamma$ proceeds as follows:

$\theta_{a}^{b}$ $\Rightarrow$ $q_{8_{a}}^{b}\mathfrak{g}$ $\Rightarrow$ $\Vert_{\theta_{\theta_{a}}^{\mathfrak{g}\S}}^{b}$ $\Rightarrow\cdots.$

The derivation proceeds deterministically using
the $RC$-type rule. $A$ language generated by $\gamma$ is a
set of squares whose positions in the main diagonal
are covered by $a$ and the remaining ones are covered
by $b.$

Lemma 1 There is a picture language which can-
not be generated by any picture insertion systems.

Proof Consider a picture language defined by
$(a^{2n+1})^{n\ominus}\ominus(a^{n}ba^{n})\ominus(a^{2n+1})^{n\ominus}$ for $n\geq 1.$

The claim can be proved by contradiction. $\square$

Lemma 2 There is a picture insertion system $\gamma$

such that $L(\gamma)w$ not generated by a tiling system.

Proof Consider a picture insertion system $\gamma=$

$(T, \{(\lambda, aa\S \lambda)\}, \{\lambda\})$ with $T=\{a, b\}$ . Fkom the

definition of $\gamma$ , a picture $p$ in $L(\gamma)$ satisfies that the
number of $a$ in $p$ is equivalent to that of $b.$

Suppose that there is a tiling system $\mathcal{T}$ $=$

$(T, \Gamma, \theta, \pi)$ such that $L(\gamma)=L(\mathcal{T})$ , where $\Gamma$ is a
finite alphabet, $\theta$ is a finite set of tiles over $\Gamma$ , and
$\pi$ : $\Gammaarrow T$ is a projection. Then we can generate a
contradiction. $\square$

Lemma 3 For any $i,$ $j\geq 0,$ $INS_{**}^{i,j}$ is incompara-
ble with $TS.$

Proof As an example, for the class of picture in-
sertion systems, we consider $INS_{**}^{0,0}.$

From Lemma 2, we can prove that there is a pic-
ture language $L(\gamma)$ in $INS_{**}^{0,0}$ but not in $TS.$

Consider a tiling system $\mathcal{T}=(\{a, b\}, \{a, b\}, \theta, \pi)$ ,

where $\theta=$ $\{ 8_{a}^{b} ab\# \},$ $\pi$ : $\{a, b\}arrow\{a, b\}$ is

an identity projection such that $\pi(x)=x$ with
$x\in\{a, b\}$ . The followings are some examples of

pictures in $L(\mathcal{T})$ ; $\theta_{a}^{b}$ $8_{a}^{b}\#$ $\oint_{a}^{b}(\#$ $a\S^{b}\# 8_{a},$ $\cdots$

Suppose that there is a picture insertion system
$\gamma$ such that $L(\gamma)=L(\mathcal{T})$ , then we can generate a
contradiction.

Similarly, for the case of $INS_{**}^{i,j}$ with $i,$ $j\geq 0,$

the claim can be proved. $\square$

4 Concluding Remarks

In this paper, we introduced picture insertion
systems which generate two-dimensional languages.

As considered in $1D$ case, picture insertion-
deletion systems can be defined in which we can
use not only picture insertion operations but also
deletion operations.

Using insertion systems together with some mor-
phisms, representation theorems are shown in $1D$

case [1]. Those representation might be possible
in $2D$ case. Furthermore, to compare with cellular
automaton is also our future work.
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