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Abstract. We present a variation of the proof in [2] of Con $(\mathfrak{b}<\mathfrak{a})$ , which in
particular removes some of the obstacles to generalising the argument to cardinals
$\kappa>\omega.$

\S 1. Introduction. The generalisations of cardinal characteristics
of the continuum to cardinals $\kappa$ greater than $\omega$ has generated sig-
nificant interest recently. $A$ particular result that has so far resisted
attempts at generalisation is the statement that $\mathfrak{b}<\mathfrak{a}$ is consistent.
Blass, Hyttinen and Zhang [1, Section 5] briefly survey the different
approaches known for proving $Con(\mathfrak{b}<\mathfrak{a})$ , highlighting the difficul-
ties each presents for a generalisation.

We present here a variation on the proof of $Con(\mathfrak{b}<\mathfrak{a})$ given
in [2], which we hope will be more amenable to generalisation. In
particular, the proof in [2] relies on a rank argument, which of course
cannot be naively generalised to uncountable $\kappa$ . We show here that
it may be replaced by a suitable formulation in terms of games,
which does generalise to higher $\kappa$ . Indeed, with this observation, the
question of forcing $\mathfrak{b}_{\kappa}>\mathfrak{a}_{\kappa}$ for some suitable large cardinal $\kappa$ seems
to boil down to interesting questions about the existence of suitable
filters on $\kappa.$

\S 2. Preliminaries. Let $\kappa$ be an infinite cardinal. $A$ family $\mathcal{A}\subseteq$

$[\kappa]^{\kappa}$ is called almost disjoint if $|A\cap B|<\kappa$ for any two distinct
members $A$ and $B$ of $\mathcal{A}.$ $\mathcal{A}$ is a maximal almost disjoint family
(mad family, for short) if $\mathcal{A}$ is almost disjoint and maximal with this
property. This means that for every $C\in[\kappa]^{\kappa}$ there is $A\in \mathcal{A}$ such
that $|A\cap C|=\kappa$ . The almost disjointness number $\mathfrak{a}_{\kappa}$ is the least
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size of a mad family on $\kappa$ of size at least $cf(\kappa)$ (equivalently, of size
$>cf(\kappa))$ . In case $\kappa=\omega$ write $\mathfrak{a}$ for $\mathfrak{a}_{\omega}.$

Now assume $\kappa$ is a regular cardinal. For functions $f,g\in\kappa^{\kappa}$ , say
that $g$ eventually dominates $f$ ( $f\leq^{*}g$ in symbols) if $f(\alpha)\leq g(\alpha)$

holds for all $\alpha$ beyond some $\alpha_{0}<\kappa$ . The unbounding number $\mathfrak{b}_{\kappa}$ is
the least size of an unbounded family $\mathcal{F}$ in the order $(\kappa^{\kappa}, \leq^{*})$ . That
is, for all $g\in\kappa^{\kappa}$ there is $f\in \mathcal{F}$ with $f(\alpha)>g(\alpha)$ for cofinally many
$\alpha’ s$ . Again we write $\mathfrak{b}$ instead of $\mathfrak{b}_{\omega}.$

Let $\mathcal{F}$ be a filter on $\omega$ . Mathias forcing $\mathbb{M}(\mathcal{F})$ with $\mathcal{F}$ consists of
conditions $(s, F)$ such that $s\in[\omega]^{<\omega},$ $F\in \mathcal{F}$ , and $\max(s)<\min(F)$ .
$\mathbb{M}(\mathcal{F})$ is ordered by $(t, G)\leq(s, F)$ if $s\subseteq t\subseteq s\cup F$ and $G\subseteq F$ . It is
well-known and easy to see that $\mathbb{M}(\mathcal{F})$ is a $\sigma$-centered forcing which
introduces a pseudointersection $Z$ of the filter $\mathcal{F}$ . This means that
$Z\subseteq^{*}F$ for all $F\in \mathcal{F}$ , where $\subseteq^{*}$ denotes almost inclusion: $A\subseteq^{*}B$

iff $A\backslash B$ is finite.
In [2], the notion of pseudocontinuity is used. This notion and

the corresponding basic lemma can be nicely phrased in terms of
continuity with respect to an appropriate topology.

DEFINITION 1. The initial segment topology on $\omega$ is the topology
which has the (von Neumann) ordinals as open $\mathcal{S}et_{\mathcal{S}}$ . We denote $\omega$

endowed with this topology by $\omega_{i}.$

DEFINITION 2. $A$ function to $\omega$ or $\omega^{\omega}$ is pseudocontinuous if it is
continuous as a function to $\omega_{i}$ or $\omega_{i}^{\omega}$ respectively.

Thus, a pseudocontinuous function $F$ : $Xarrow\omega$ is one such that for
every $n\in\omega$ , the set of $x$ in $X$ with image at most $n$ is open.

LEMMA 3. Compact sets in $\omega_{i}$ and $\omega_{i}^{\omega}$ are bounded. In particular,
any pseudocontinuous image in $\omega$ or $\omega^{\omega}$ of a compact set must be
bounded.

PROOF. The Lemma is clear for $\omega_{i}$ . Similarly, compact $K\subset\omega_{i}^{\omega}$

are in fact bounded in the strict (not just $\leq^{*}$ ) sense. Otherwise,
there would be some $m$ in $\omega$ such that $f(m)$ is unbounded in $\omega$ for
$f\in K$ , and then the open sets $\mathcal{O}_{m,n}=\{f\in\omega_{i}^{\omega} f(m)\leq n\}$ for
$n<\omega$ would form an open cover of $K$ with no finite subcover. $\dashv$

As usual we may identify $\mathcal{P}(\omega)$ with $2^{\omega}$ by way of the map taking
sets to their characteristic functions, $\chi$ : $X\mapsto\chi_{X}$ . We give $\mathcal{P}(\omega)$

the corresponding topology, making $\chi$ a homeomorphism from $\mathcal{P}(\omega)$

to the Cantor space $2^{\omega}$
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DEFINITION 4. For any cardinal $\lambda$ , we call a filter $\mathcal{G}\subseteq \mathcal{P}(\omega)$ a $K_{\lambda^{-}}$

filter if it is generated by the union of fewer than $\lambda$ many compact
subsets of $\mathcal{P}(\omega)$ . We write $K_{\sigma}$ for $K_{N_{1}}.$

LEMMA 5. If $K_{0},$
$\ldots,$

$K_{n-1}$ are (finitely many) compact subsets of
$\mathcal{P}(\omega)$ , then the pointwise intersection

$\bigwedge_{i<n}K_{i}=\{\bigcap_{i<n}G_{i}|(G_{0}, \ldots, G_{n-1})\in\prod_{i<n}K_{i}\}$

and the pointwise union

$i<nK_{i}= \{\bigcup_{i<n}G_{i}|(G_{0}, \ldots, G_{n-1})\in\prod_{i<n}K_{i}\}$

are compact. Furthermore, for any compact set $K\subseteq \mathcal{P}(\omega)$ , the
upward closure

$\overline{K}=\{A\in \mathcal{P}(\kappa)|\exists B\in K(A\supseteq B)\}$

is also compact.

PROOF. The product $\prod_{i<n}K_{i}$ is compact by the Tychonoff theo-
rem, and the functions $\mathcal{P}(\omega)^{n}arrow \mathcal{P}(\omega)$ given by $(G_{0}, \ldots, G_{n-1})\mapsto$

$\bigcap_{i<n}G_{i}$ and $(G_{0}, \ldots, G_{n-1})\mapsto\bigcup_{i<n}G_{i}$ are clearly continuous, so
$\bigwedge_{i<n}K_{i}$ and $_{i<n}K_{i}$ are compact. Finally, for compact

$K\subseteq \mathcal{P}(\omega)\dashv$

$\overline{K}$ is just $K\vee \mathcal{P}(\omega)$ .

\S 3. The proof. We work in a model $V$ of ZFC in which $\lambda=c^{V}$

is a regular cardinal satisfying $2^{\lambda}=\lambda^{+}$ , and there is an unbounded,
$<^{*}$-well-ordered sequence $\langle f_{\alpha}$ : $\alpha<\lambda\rangle$ of strictly increasing functions
from $\omega$ to $\omega$ . For example, any model of GCH will suffice as a ground
model, and these properties will be preserved in intermediate stages
of our forcing iteration.

Let $\mathcal{A}$ be an infinite maximal almost disjoint family in $V$ of subsets
of $\omega.$

THEOREM 6, There is a $ccc$ forcing $\mathbb{P}(\mathcal{A})$ such that
$|\vdash_{\mathbb{P}(\mathcal{A})}\mathcal{A}$ is not mad and $\langle f_{\alpha}$ : $\alpha<\lambda\rangle$ is still unbounded.

PROOF. Let $\mathcal{F}=\mathcal{F}(\mathcal{A})$ be the dual filter of $\mathcal{A}$ , that is, the filter
generated by the sets whose complements are finite or in $\mathcal{A}$ . Note
that this filter is proper: if for some $k<\omega$ there were $\{A_{i}|i<k\}\subset$

$\mathcal{A}$ such that $| \bigcap_{i<k}\omega\backslash A_{i}|<\omega$ , any other element of $\mathcal{A}$ would have
infinite intersection with one of the $A_{i}$ , violating almost disjointness.
Note that the generic subset of $\omega$ introduced by Mathias forcing with
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$\mathcal{F}$ , or any filter extending $\mathcal{F}$ , will end the madness of $\mathcal{A}$ , as it will
be almost contained in $\omega\backslash A$ for every $A\in \mathcal{A}.$

First we add $\lambda$ many Cohen reals. It is well-known that the un-
boundedness of $\langle f_{\alpha}$ : $\alpha<\lambda\rangle$ is preserved in this intermediate ex-
tension. In case $\mathcal{A}$ is not mad anymore in this extension we are
done. Also, if $\mathcal{F}$ is contained in a $K_{\lambda}$ filter $\mathcal{G}$ in the intermediate
extension, we may simply force with $\mathbb{M}(\mathcal{G})$ for it is well-known, and
easy to see [2, 3.2], that Mathias forcing with a $K_{\lambda}$-filter does not
destroy the unboundedness of $\langle f_{\alpha}$ : $\alpha<\lambda\rangle$ . So assume that $\mathcal{F}$ is not
contained in any $K_{\lambda^{-}}fi1ter.$

We shall recursively construct a filter $\mathcal{G}\supseteq \mathcal{F}$ such that furthermore
$(*)$ $|\vdash_{\mathbb{M}(\mathcal{G})}\langle f_{\alpha}$ : $\alpha<\lambda\rangle$ is unbounded.

Along the construction we shall take $c$are of every potential $\mathbb{M}(\mathcal{G})-$

name for a function in $\omega^{\omega}$ , either “killing it” or “sealing it off’
To be precise: let us refer to partial functions $\tau$ : $[\omega]^{<\omega}\cross\omega--\star\omega$

as preterms, and let $\mathcal{T}=\{\tau_{\beta} : \beta<\lambda\}$ be an enumeration of the set
of all preterms. Note in particular that if $\mathcal{G}\supseteq \mathcal{F}$ is a filter and $\dot{g}$ is
an $\mathbb{M}(\mathcal{G})$ -name for a function in $\omega^{\omega}$ , then $\tau=\tau_{\dot{g}}$ given by

$\tau(s, m)=n$ iff $\exists G\in \mathcal{G}((s, G)|\vdash\dot{g}(m)=n)$

is a preterm, the preterm associated with $\dot{g}$ . We shall constrain at-
tention to names $\dot{g}$ such that 1 $|\vdash_{\mathbb{M}(\mathcal{G})}\dot{g}\in\omega^{\omega}$ , since every function
from $\omega$ to $\omega$ in the generic extension has such a name; we call such
names total names.

We construct filters $\mathcal{G}_{\beta}$ for $0\leq\beta\leq\lambda$ , starting from $\mathcal{G}_{0}=\mathcal{F}$ , such
that

$\bullet$ for each $\beta<\lambda,$ $\mathcal{G}_{\beta+1}$ is generated by $\mathcal{G}_{\beta}$ and a $K_{\sigma}$ filter $\mathcal{H}_{\beta},$

$\bullet$
$\mathcal{G}_{\delta}=\bigcup_{\beta<\delta}\mathcal{G}_{\beta}$ for each limit ordinal $\delta\leq\lambda,$

and either
(KILL): for all filters $\mathcal{H}\supseteq \mathcal{G}_{\beta+1},$

$\tau_{\beta}$ is not associated with any
total $\mathbb{M}(\mathcal{H})$ -name, or

(SEAL): there is an $\alpha<\lambda$ such that for all filters $\mathcal{H}\supseteq \mathcal{G}_{\beta+1}$ and
all $\mathbb{M}(\mathcal{H})$ -names $\dot{g}$ , if $\tau_{\dot{g}}=\tau_{\beta}$ then $|\vdash_{\mathbb{M}(\mathcal{H})}\dot{g}\not\geq^{*}\check{f}_{\alpha}.$

Clearly any filter $\mathcal{G}\supseteq \mathcal{G}_{\lambda}$ will then satisfy $(*)$ .
So suppose $\mathcal{G}_{\beta}$ has been defined for some $\beta<\lambda$ ; we wish to find an

appropriate $K_{\sigma}$ filter $\mathcal{H}_{\beta}$ . Note that $\mathcal{G}_{\beta}$ is generated by $\mathcal{F}$ and a $K_{\lambda}$

filter $\mathcal{G}_{\beta}’$ ; without loss of generality we may assume that $\mathcal{F}$ contains
all cofinite subsets of $\omega$ . Let $\mathcal{K}_{\beta}$ be a family of fewer than $\lambda$ many
compact subsets of $2^{\omega}$ generating $\mathcal{G}_{\beta}’$ . By Lemma 5, we may assume
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that $\mathcal{K}_{\beta}$ is closed under finite pointwise intersections, and that for
all $K\in \mathcal{K}_{\beta},$ $K$ is upwards-closed under $\subseteq$ , so that $\mathcal{G}_{\beta}’=\cup \mathcal{K}_{\beta}.$

Everything that has come so far can actually be considered to
have occurred in a partial extension model, between the original
model and the full extension with $\lambda$-many Cohens. More explicitly,
all (codes of) elements of $\mathcal{K}_{\beta}$ belong to this intermediate model.

Let $\subset_{ee}$ denote the strict end-extension relation on $[\omega]^{<\omega}$ : that is,
$s\subset_{ee}s’$ if and only if $s\subset s’$ and $\max(s)<\min(s’\backslash s)$ ; define $\subseteq_{ee},$

$\supset_{ee}$ and $\supseteq_{ee}$ accordingly.
In [2], a rank function was used. For our generalisation, we take

a different approach using games, but use these games to much the
same end as the rank function is used in [2]. It should be noted
that our games are very closely related to the games independently
introduced by Guzm\’an, Hru\v{s}\’ak, and Martinez [3], also in the context
of a proof of Con $(\mathfrak{b}<\mathfrak{a})$ .

Let $\tau=\tau_{\beta}.$

DEFINITION 7. Given $\tau\in \mathcal{T}$ , the $\tau$ nominalisation exercise is the
following game. There are two players, Sensei and Student. On turn
$0$, Sensei chooses an $m\in\omega$ and $t_{0}\in[\omega]^{<\omega}$ At odd stages $2d+1,$

Student plays a filter set $F(d)\in \mathcal{F}$ and a compact set $K(d)\in \mathcal{K}_{\beta}.$

At even stages $2d+2$ , Sensei plays an element $t_{d+1}$ of $[\omega]^{<\omega}$ such
that

$\bullet$ $t_{d+1}$ end-extends $t_{d}$

$\bullet t_{d+1}\backslash t_{d}\subseteq F(d)$

$\bullet$ $t_{d+1}\backslash t_{d}$ meets every member of $K(d)$ .

If there is $s\subseteq t_{d+1}$ end extending $t_{0}$ such that $(s, m)\in$ dom $(\tau)$ ,
Sensei declares Student to have passed and the game ends. If the
game continues for infinitely many stages, then (clearly) Student has
failed.

Note that, since $\mathcal{G}_{\beta}$ is a filter, and by compactness of $K(d)$ , a $t_{d+1}$

satisfying the requirements always exists. Also notice that if Student
wins, he wins after finitely many steps. Hence the game is open and,
by the classical Gale-Stewart Theorem, determined.

As in [2], we now distinguish two cases (in [2] they are Subcases),
corresponding to options (KILL) and (SEAL) above.

3.1. Case $a$ . There are $m\in\omega$ and $t_{0}\in[\omega]^{<\omega}$ such that Sensei has
a winning strategy in the $\tau$ nominalisation exercise with Oth move
$(m, t_{0})$ : play will continue for infinitely many steps. In this case we
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shall choose $\mathcal{H}_{\beta}$ in such a way that (KILL) holds: $\tau$ will not corre-
spond to a name for a function $\omegaarrow\omega$ in the generic extension. The
reader may wish to remember which case is which by the mnemonic
“the $\tau$ that can be named is not the eternal $\tau.$

”

We shall actually work in the extension of such the intermediate
model by one further Cohen function $c:\omegaarrow\omega.$

Consider the tree $T$ of all possible sequences of plays $(t_{0}, t_{1}, t_{2}, \ldots)$

for Sensei according to his strategy, corresponding to all possible
plays of Student. Note that $T$ is infinitely branching since $\mathcal{F}$ extends
the Frechet filter. Use the Cohen function $c$ to choose a branch
through $T$ , and denote the union of the $t_{i}$ of this branch by $G.$

There is no $(s, m)$ with $m$ from Sensei’s first move and $t_{0}\subseteq_{ee}s\subseteq G$

such that $(s, m)\in$ dom $(\tau_{\beta})$ . Indeed otherwise, the $\tau_{\beta}$ nominalisation
exercise would have ended once Sensei played $t_{d}$ sufficiently long to
cover $s$ . Thus, for any filter $\mathcal{H}\ni G,$ $\tau\neq\tau_{\dot{g}}$ for any total $\mathbb{M}(\mathcal{H})$

name $\dot{g}$ . We may therefore simply take $\mathcal{H}_{\beta}=\{G\}$ in order to satisfy
(KILL). To check that $\{G\}\cup \mathcal{G}_{\beta}$ generates a filter, consider any $F\in \mathcal{F}$

and $G’\in \mathcal{G}_{\beta}’$ , say $G’$ is in the compact set $K\in \mathcal{K}_{\beta}$ . For every $t_{d}\in T,$

there is a successor node $t_{d+1}$ in the tree $T$ that is Sensei’s response,
according to his strategy, to Student playing $F$ and $K$ , and so in
particular this $t_{d+1}$ meets the intersection of $F$ and every member
of $K$ . Thus, by Cohen genericity we have that $|G\cap F\cap G’|=\omega,$

completing Case $a$ . (Note that $G’$ may not belong to the intermediate
model; this, however, is irrelevant for it is sufficient that $K$ does. By
genericity the Cohen real $c$ will produce infinitely many $d$ such that
$t_{d+1}\backslash t_{d}$ is contained in $F$ and meets every $G”\in K$ , and this is
clearly absolute and thus also holds for $G’.$ )

3.2. Case $b$ . The negation of Case a: for every Oth move $(m, t_{0})$

by Sensei, Student has a winning strategy in the $\tau_{\beta}$ nominalisation
exercise. In this case we wish to choose $\mathcal{H}_{\beta}$ in such a way that
(SEAL) holds.

Since Sensei chooses his moves from a countable set, there are
clearly only countable many filter sets $F_{\ell}\in \mathcal{F},$ $\ell\in\omega$ , which appear
as $F(d)$ in some $2d+1st$ move of Student playing according to his
strategy.

Suppose that for all but less than $\lambda$ many members $A$ of $\mathcal{A}$ , there is
$G\in \mathcal{G}_{\beta}’$ such that $A\cap G$ is finite. Then, adding less than $\lambda$ many sets
of the form $\omega\backslash A,$ $A\in \mathcal{A}$ , to $\mathcal{G}_{\beta}’$ results in a $K_{\lambda}$ filter containing $\mathcal{F}.$

This contradicts our initial assumption. Hence, for $\lambda$ many $A\in \mathcal{A},$

$A\cap G$ is infinite for all $G\in \mathcal{G}_{\beta}’$ . Let $A_{j},$ $j\in\omega$ , be countably many
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such $A$ ’s such that for each $j$ and $\ell,$ $A_{j}$ is almost contained in $F_{\ell}$ :
this is possible because $\mathcal{F}$ is the dual filter of the mad family $\mathcal{A}.$

For each $G’\in \mathcal{G}_{\beta}’,$ $k\in\omega,$ $j\in\omega$ , and finite subset $T$ of $[\omega]^{<\omega}$ , we
define a function $f_{G’,k,j,T}:\omegaarrow\omega$ as follows.

$f_{G’,k,j,T}(m)= \min\{n|$ for any partition
$A_{j}= \bigcup_{i<k}B_{i}$

there is $i<k$ s.t.

$\forall t\in T\exists s\supset_{ee}t(s\backslash t\subseteq B_{i}\cap G’\wedge\tau_{\beta}(s, m)\leq n)\}.$

LEMMA 8. For every $G’\in \mathcal{G}_{\beta}’,$ $k,$ $j\in\omega$ , and $T\in[[\omega]^{<\omega}]^{<\omega},$

$f_{G’,k,j,T}$ is well-defined.
PROOF. Fix $m\in\omega$ . Given a partition $\{B_{i}|i<k\}$ of $A_{j}$ , let $n$

suffices for $\{B_{i}|i<k\}$ ” mean the natural thing in the context of
the definition of $f_{G’,k,j,T}$ , namely, that there is $i<k$ such that for
every $t\in T$ there is $s\supset_{ee}t$ with $s\backslash t\subseteq B_{i}\cap G’$ and $\tau_{\beta}(s, m)\leq n$ . So
now fix a partition $\{B_{i}|i<k\}$ of $A_{j}$ ; we shall show that there is a
$n\in\omega$ that suffices for it. Let $i<k$ be such that $|B_{i}\cap G’\cap G|=\omega$ for
every $G\in \mathcal{G}_{\beta}’$ : such an $i$ must exist, since $A_{j}$ has infinite intersection
with every member of the filter $\mathcal{G}_{\beta}’$ . Finally, fix $t\in T.$

Consider a play of the $\tau_{\beta}$ naming exercise in which Student follows
his strategy, Sensei’s Oth move is $(m, t_{0})$ with $t_{0}=t$ , and his later
moves always satisfy the additional requirement $t_{d+1}\backslash t_{d}\subseteq B_{i}\cap G’.$

Since $B_{i}$ is almost contained in all $F(d)$ played by Student according
to his strategy and since $B_{i}$ has infinite intersection with all $G\in \mathcal{G}_{\beta}’,$

Sensei always has a valid such move.
So we have that eventually Sensei plays a $t_{d}$ such that

$\exists n_{t}\in\omega\exists s\subseteq t_{d}(s\supset_{ee}t\wedge\tau_{\beta}(s, m)=n_{t})$ .

Of course, by the construction of the game, $s\backslash t_{0}\subseteq B_{i}\cap G’$ . Taking
such an $n_{t}$ for each $t\in T$ and setting $n= \max_{t\in T}(n_{t})$ , we have that
$n$ suffices for $\{B_{i}|i<k\}.$

Now, with $k$ still fixed but allowing the partition $\{B_{i}|i<k\}$ to
vary, let us denote by $n(\{B_{i}|i<k\})$ the least $n$ that suffices for $\{B_{i}|$

$i<k\}$ . The space of partitions of $A_{j}$ int$ok$ pieces can be identified
with $k^{A_{j}}$ and thus when endowed with the product topology is a
compact topological space. Moreover, with this topology on the
space of partitions, the function $n$ sending $\{B_{i}|i<k\}$ to $n(\{B_{i}|$

$i<k\})$ is clearly pseudocontinuous, since $n$ being sufficient for $\{B_{i}|$

$i<k\}$ is witnessed by finitely many finite tuples $s\backslash t$ from $B_{i}$ , which
of course define an open set in $k^{A_{j}}$ . Thus by Lemma 3 the image of
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the function $n$ is bounded below $\omega$ . The least such upper bound will
be $f_{G’,k,j,T}(m)$ , and it follows that $f_{G’,k,j,T}$ is well-defined. $\dashv$

LEMMA 9. There exists an $\alpha<\lambda$ such that for all $G’\in \mathcal{G}_{\beta}’,$ $k,j\in$

$\omega$ and $T\in[[\omega]^{<\omega}]^{<\omega},$ $f_{\alpha}\not\leq^{*}f_{G’,k,j,T}.$

PROOF. We first note that, given $k,$ $j,$ $T$ , and compact $K\in \mathcal{K}_{\beta},$

the function $f_{k,j,T}$ sending $G’$ to $f_{G’,k,j,T}$ is pseudocontinuous from
$K$ to $\omega^{\omega}$ , by much the same argument as in the proof of Lemma 8.
Indeed, fixing $m$ and $n,$ $\{G’|f_{G’,k,j,T}(m)\leq n\}$ is open in $K.$

We thus have from Lemma 3 that for each $K\in \mathcal{K}_{\beta},$ $f_{k,j,T}K$ is
bounded in $\omega^{\omega}$ , say by $h_{K}$ . Since $\mathcal{K}_{\beta}$ has fewer than $\lambda$ many elements,
there is an $\alpha<\lambda$ such that $f_{\alpha}$ is not eventually dominated by any
of the $h_{K}$ , and hence not by any $f_{G’,k,j,T}.$ $\dashv$

We now show that $\alpha$ as given by Lemma 9 will make (SEAL) hold
for an appropriate choice of $\mathcal{H}_{\beta}$ . Given $t\in[\omega]^{<\omega},$ $G\in \mathcal{P}(\omega)$ , and
$m\in\omega$ , let

$g_{t,G}^{\beta}(m)= \min\{n|\exists s\supseteq_{ee}t(s\backslash t\subseteq G\wedge\tau_{\beta}(s, m)=n)\}$

if the set on the right hand side is non-empty, and otherwise put
$g_{t,G}^{\beta}(m)=\omega$ . Thus, $g_{t,G}^{\beta}$ is a function in $(\omega+1)^{\omega}$ Let $\alpha<\lambda$ be such
that $f_{\alpha}$ is not dominated by any $f_{G’,k,j,T}$ , as given by Lemma 9, and
define

$\mathcal{H}_{\beta}=\{H\subseteq\omega|\exists t\in[\omega]^{<\omega}(g_{t,\omega\backslash H}^{\beta}\geq^{*}f_{\alpha})\}.$

Note that given $t\in[\omega]^{<\omega}$ and $m_{0}\in\omega$ , the set
$\{H\subseteq\omega|\forall m\geq m_{0}(g_{t,\omega\backslash H}^{\beta}(m)\geq f_{\alpha}(m))\}$

is closed in $\mathcal{P}(\omega)$ , and hence compact. Therefore, $\mathcal{H}_{\beta}$ is a $K_{\sigma}$ set.
To see that this set is an appropriate choice of $\mathcal{H}_{\beta}$ as called for

above, we check the following.

CLAIM 10. Any filter $\mathcal{H}\supseteq \mathcal{H}_{\beta}$ satisfies (SEAL).

PROOF. Let $\mathcal{H}\supseteq \mathcal{H}_{\beta}$ be a filter, and assume $\tau_{\beta}=\tau_{\dot{g}}$ for some
$\mathbb{M}(\mathcal{H})$ -name $\dot{g}$ for a function in $\omega^{\omega}$ Suppose there were $(t, G)\in$

$\mathbb{M}(\mathcal{H})$ and $m_{0}\in\omega$ such that
$(t, G)|\vdash_{\mathbb{M}(\mathcal{H})}\forall m\geq\check{m}_{0}(\dot{g}(m)\geq\check{f}_{\alpha}(m))$ .

By the definition of $9_{t,G}^{\beta}$ , we must then also have $g_{t,G}^{\beta}(m)\geq f_{\alpha}(m)$

for all $m\geq m_{0}$ . So $\omega\backslash G\in \mathcal{H}_{\beta}\subseteq \mathcal{H}$ , contradicting the fact that
$\mathcal{H}\dashv$

is a filter.
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CLAIM 11. $\mathcal{H}_{\beta}\cup \mathcal{G}_{\beta}$ generates a filter.
PROOF. We take $F\in \mathcal{F},$ $G’\in \mathcal{G}_{\beta}’$ , and for some $k<\omega,$ $H_{i}\in \mathcal{H}_{\beta}$

for $i<k$ , and argue that $F \cap G’\cap\bigcap_{i<k}H_{i}$ has cardinality $\omega$ . Assume
for the sake of contradiction that $F \cap G’\subseteq^{*}\bigcup_{i<k}\omega\backslash H_{i}$ . For each
$i<k$ , fix $t_{i}\in[\omega]^{<\omega}$ such that $g_{t_{i},\omega\backslash H_{i}}^{\beta}\geq^{*}f_{\alpha}$ . Also fix $j$ such that
$A_{j}\subseteq^{*}F$ . Without loss of generality, we may take $a<\omega$ such that
$A_{j}\backslash a\subseteq F,$ $F \cap G’\backslash a\subseteq\bigcup_{i<k}\omega\backslash H_{i}$ and $\max(t_{i})\geq a$ for every
$i<k$ (if necessary by extending each $t_{i}$ with a sufficiently large
element of $\omega\backslash H_{i}$ : this can only increase the values of $g_{t_{i},\omega\backslash H_{i}}^{\beta}$ ). Fix
$m_{0}\in\omega$ such that $g_{t_{i},\omega\backslash H_{i}}^{\beta}(m)\geq f_{\alpha}(m)$ for all $m\geq m_{0}$ and $i<k.$
Let $T=\{t_{i}|i<k\}$ and let $\{B_{i}|i<k\}$ be a partition of $A_{j}$ such
that $B_{i}\cap G’\backslash a\subseteq\omega\backslash H_{i}$ for all $i<k$ . By the definition of $f_{\alpha},$

there is some $m>m_{0}$ such that $f_{\alpha}(m)>f_{G’,k,j,T}(m)$ ; take such a
$m$ , and denote $f_{G’,k,j,T}(m)$ by $n$ . By the definition of $f_{G’,k,j,T}$ , there
is an $i$ such that for all $t\in T$ , there is $s\supset_{ee}t$ such that $\tau_{\beta}(s, m)\leq n$

and $s\backslash t$ is a subset of the intersection of $G’$ and $B_{i}$ . In particular,
$\min(s\backslash t_{i})>\max(t_{i})\geq a,$ $s\backslash t_{i}\subset B_{i}\cap G’$ , and $\tau_{\beta}(s, m)\leq n.$

Thus $s\backslash t_{i}\subseteq\omega\backslash H_{i}$ , from which we have $g_{t_{i},\omega\backslash H_{i}}^{\beta}(m)\leq n<f_{\alpha}(m)$ ,
contradicting the choice of $m_{0}.$

$\dashv$

This completes the construction of $\mathcal{G}_{\beta+1}$ from $\mathcal{G}_{\beta}$ , and hence the
proof of Theorem 6. $\dashv$

We are now ready for the consistency of $\mathfrak{b}<\mathfrak{a}$ . Recall from the
beginning of this section that our ground model $V$ satisfies $c=\lambda$ is
regular, $2^{\lambda}=\lambda^{+}$ , and $\langle f_{\alpha}$ : $\alpha<\lambda\rangle$ is unbounded $<^{*}$ -well-ordered.

THEOREM 12. There is a $ccc$ forcing $\mathbb{P}$ such that
$|\vdash_{\mathbb{P}}\mathfrak{a}=\lambda^{+}$ and $\langle f_{\alpha}$ : $\alpha<\lambda\rangle$ is still unbounded.

In particular, $b\leq\lambda<\lambda^{+}=\mathfrak{a}$ is consistent.

PROOF. Perform a finite support iteration of orderings of type
$\mathbb{P}(\mathcal{A})$ of length $\lambda^{+}$ , going through all (names for) mad families along
the way by a bookkeeping argument (this is possible by the assump-
tion $2^{\lambda}=\lambda^{+}$ ). The unboundedness of $\langle f_{\alpha}$ : $\alpha<\lambda\rangle$ is preserved in
the successor step of the iteration by Theorem 6 and in the limit
step, by standard preservation results. $\dashv$
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