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A reflection principle
formulated in terms of games
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Abstract

We introduce a principle formulated in terms of the existence of a win-
ning strategy of a game and prove that this principle is placed between the
reflection principle down to internally stationary sets (RP|s) and the reflec-
tion principle down to internally club sets (RPc). In particular, under CH
this principle gives a new characterization of Fleissner’s Axiom R.

1 Introduction

For a game G played by Players I and I, let WSy (G) denote the assertion “Player
II has a winning strategy in G”.
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In [9], we introduced a game G () for uncountable cardinals x (see Section 3
for the definition of this and other games mentioned here) and proved that the
Rado Conjecture (RC, see Section 2 for the definition of this principle) implies the
assertion

(Go) WSp(GL(k)) holds for all uncountable .

Further, it is proved in [9] that (Gp) implies the Fodor-type Reflection Principle
(FRP, see Section 2 for the definition of this principle and, [4] and [5] for basic facts
of this principle).

In [1], Philipp Doebler introduced a similar game he called G, ([x]**,w;) and
proved that the Rado Conjecture also implies the principle

(G1) WSg(G,([]™,wi)) holds for all k > R,.

He then proved that the principle (G;) implies the Semistationary Reflection (SSR).
In this paper, we introduce a game G} ([«]**) which generalizes both G*(x) and
G ([k]“*,w1). Unfortunately the principle

(Gli) WS]](G&J'([K,]M)) for all 2 Nz

is not a consequence of the Rado Conjecture: In Section 4, we show that the
principle (GH) implies the reflection principle RPjs. It is known that RP;s (or even
RP) is not a consequence of RC (see Sakai [14]).

2 Reflection Principles

Let us first review the reflection principles we mentioned in the previous section.
We shall call here a partial ordering T' = (T, <r) a tree if the initial segment
{ueT : u<rt}inT below each t € T is well-ordered. In particular, we assume
here that a tree may have multiple roots.
A tree T is special if there are T; C T', i € w such that each of T;’s is pairwise

incomparable and T = (J,¢,, Ti.
Rado’s Conjecture (RC) is the assertion:

(RC):  Any tree T is special if and only if all subtrees of T of cardinality R; are
special.

RC is known to be consistent (modulo a large large cardinal). E.g., Todoréevié
showed that, if  is strongly compact and P = Col(w;, <k), then we have

|Fp “Rado’s Conjecture”.
For a cardinal « and a regular cardinal § < k, we denote

Ef ={a <k : cf(a) =76}
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a mapping g : F — & for E C E¥ is called a ladder system if supg(a) = o and
otp(g(c)) = ¢ hold for all « € E.

For a regular uncountable cardinal «, we define the Fodor-type Reflection Prin-
ciple for xk by

FRP(x): For all stationary E C Ef and for all ladder system g : E — [k]®0, there
exists a* € E7; such that

{z € [0*]% : sup(z) € E, g(sup(x)) C z}

is stationary in [a*]R.
The Fodor-type Reflection Principle (FRP) is the assertion:

(FRP): FRP(k) holds for all regular x > R;.

FRP is known to be equivalent to many mathematical reflection principles over
ZFC (see [3], [4], [5], 6], [7], see also [8]).

(2.1)  Any locally countably compact topological space X is metrizable if and
only if all subspaces of X of cardinality < N; are metrizable

is one of such assertions equivalent to FRP over ZFC (see [4] and [5]).

FRP implies Shelah’s Strong Hypothesis and hence, in particular, Singular Car-
dinal Hypothesis (see [7]). It also implies the total failure of square principles [J,
for all cardinals x > N;.

Suppose that M < H(\) for some regular A > Ny and | M | = ;.

M is said to be internally cofinal (abbreviation: 1U)Y if [M]¥ N M is cofinal in
[M]* with respect to C. M is internally stationary (abbreviation: 1S) if [M]® N
M is stationary in [M]R0. M is internally club (abbreviation: IC) if [M]% N M
contains a closed unbounded set in [M]R. Finally, M is internally approachable
(abbreviation: IA) if M is the union of a continuously increasing sequence (M, :
o < wi) countable sets such that (M, : a < 8) € My, forall § < w; 2.

It is clear from the definition that, for any M < H(\), we have the implication:
MislA= MisIC= MislS = M is IU. It is easy to see that all of these notions
can be characterized in terms of filtration (see footnote 2) ):

Lemma 2.1 Suppose that M < H(X) for some regular A > wos and | M | = ;.

Y Internally cofinal M is also called internally unbounded in the literature (see e.g. Krueger
(11)).

2) For a structure M of cardinality N;, we shall call a continuously increasing sequence
(Mo @ @ < w1) of countable subsets of M with |, <wy Mo = M a filtration of M. By thinning
out the index set w;, we may assume in some cases that the filtration (M, : & < w;) consists of
elementary structures.
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(1) M is internally cofinal if and only if there is a filtration (ay : a < wi) of
M such that ag1 € M for every o < wy.

(2) M is internally stationary if and only if {a < w; : My € M} is stationary
for a/any filtration (M, : o <w1) of M.

(3) M is internally club if and only if there is a filtration (M, : a < w;) of M
such that My, € My, for all a < w;. 0

These notions can be different: e.g. John Krueger proved under PFA, there are
stationarily many internally club but not internally approachable M < H(A) for
all regular A > N, (for this and other results of this line see Krueger [11] and [12]).
However this is not the case under CH:

Lemma 2.2 Under CH, any M < H(A) is WU if and only if it is IS if and only if
it is 1C if and only if it is IA. 0

In the following, we shall always denote one of the properties IU, IS, IC or IA
with P. “C” in connection with a cardinal, say A, denotes a(n arbitrary) well-
ordering of the set H(\) of all sets of hereditarily of cardinality < A. If we have to
emphasize that the well-ordering C refers to H(\), we write Tyyy).

For a cardinal A > R; let

RPp([H(A\)]™): For any stationary S C [H(A)]J* there is a P elementary sub-
structure M of the structure (H(A), €,C) (of cardinality R;) such that

(2.2)  SN[M]* 3 is stationary in [M]%.

We define the global version of the reflection principle RPp down to a structure
with the property P to be RPp([H(A)]¥) for all cardinal A > R;.
RPp([H())]R0) is equivalent with seemingly stronger variants of the assertion:

Lemma 2.3 the following are equivalent for a regular cardinal A > N;:

(a) RPp([H(A)]).

(b) For any stationary S C [H(k)]X and any expansion M of the structure
(H(k), €,CC) in an arbitrary countable language, there is a P elementary substruc-
ture M of M (of cardinality R;) with (2.2).

(c) For any stationary S C [H(k)]* and any expansion M of the structure
(H(k), €,C) in an arbitrary countable language, there are stationarily many P
elementary substructures M of M (of cardinality R;) with (2.2). 1]

Using Lemma 2.3 we can prove the following downward transfer property of

RPp([H(A)]):

3) That is, S intersection with the set of all countable subsets of the underlying set of the
structure M.



Lemma 2.4 For regular cardinals ®; < X < A, if RPp([H(\)]®) holds then
RPp([H(X)]R0) also holds. a

Lemma 2.5 The following are equivalent: (a) RPp.

(b) For any uncountable X, stationary S C [X]R¢, regular § with X C H(d)
and any expansion M of (H(#),€,C,X) in a countable language, there is a P
elementary substructure M of M of cardinality N; such that S N [X N M]* s
stationary in [X N MR,

(¢) For any uncountable cardinal A, stationary S C [A]*, regular § > X\ and any
expansion M of (H(6),€,C, A) in a countable language, there is a P elementary
substructure M of M of cardinality N; such that S N [A N M]¥ is stationary in
AN MR, n]

Fleissner’s Axiom R ([2]) is equivalent to RPyy in our notation. For a any set X
of cardinality > Ny, let

(AR([X]™)): For any stationary S C [X]* and w;-club? T C [X]N, there is
U € T such that § N [U]™ is stationary in [U]™.

Then we define Axiom R to be the assertion that AR([A]™) holds for all cardinal
a > ;. Since AR([A]™), for cardinals A > R; also satisfy the downward transfer
similar to Lemma 2.4, the following Lemma implies the equivalence of RPyy and
Axiom R:

Lemma 2.6 For any A > Ry, we have AR([2<*]™0) if and only if RP\y([H(A)]*0). 0

Proof. Note that | H(\)| = 2<% and hence AR([2<*]™) is equivalent to AR([H())]).

First, assume RP;y([H()\)]®). Suppose that S C [H(A)]™ is stationary and
T C [H(M)* is wi-club.
Let M = (H()),€,C,T). By Lemma 2.5, there is M < M such that

(2.3) M| =Ry
(24) M EIU and
(2.5)  SN[M]™ is stationary in [M]%.

By (2.3), (2.4) and M < M, it is easy to see that M is the union of an w; chain
of elements of T. By w;-clubness of T" it follows that M € T'. This shows that

AR([H(A)]¥) holds.
Assume now AR([2<*]*) and suppose that S C [H())]?¢ is stationary. Let

T ={Me[HMN™ : M <H), M = IU}.

AT C [X]™ for an uncountable set X is said to be wi-club (or “tight and unbounded” in
Fleissner’s terminology in [2]) if T is cofinal in [X|® with respect to C and for any increasing
chain (Uy @ @ <wj) in T of length w;, we have U(Kw1 Uy, eT.

41
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Then T is wi-club. By AR([2<*]*) or by its equivalent AR([H(A)]™), there is
M € T such that SN [M] is stationary in [M]¥. This shows that RP,y([H())]*)
hOldS. 0 (Lemma 2.6)

3 Definition of the games

For a cardinal «, let
(3.1) "k ={fe€" K : fisregressive}.

The game GY (k) for Players I and II is defined as follows: A match in G} ()
is a sequence of the form:

I | foemx f1 €k v fa€NK
III 606/% (515!9 6n€I€

(n<w)

Player II wins in a match of G}, (k) as above if
(32) {a€Ef : fula) <sup{d; : i €w} for all n € w} is unbounded.

The game G (k) was introduced in [9]. It is used there to prove the implication
of FRP from RC by showing that the assertion (Gp) as in Section 1 defined in terms
of this game interpolates the implication.

The following game G, ([x]*,w;) for Players I and II for a cardinal x was
introduced by Doebler in [1]: A match in G, ([x]™,w1) is a sequence of the form:

I | foe™Muw fir € WMy, o fae Wy (n <w)
III (50€LU1 01 Ewp - Op Ewy -
II wins in a match of G, ([k]™*,w1) as above if
{a €[ : foa) <sup{d; : i € w} for all n € w}
is cofinal in [k]R!. RC RPic
Doebler proved that the principle (G;) as de- \\v
fined in Section 1 in terms of this game follows

also from RC and it implies SSR. (Go) (Gu)
It is easy to see that both of (Gp) and (G;)
are consequences of RPc (this also follows from
Corollary 4.4). Hence we have the diagram on the cc
right:
Since FRP and SSR imply almost all known consequences of RC® | it seems to
be an interesting question what is the natural principle which is still a consequence
of both RC and RP\c while which implies both FRP and SSR.

FRP SSR

5) Perhaps with the exception of the negation of Martin’s Axiom for X; dense sets which is a
consequence of RC while RCp’s are consistent with Martin’s Axiom since they all follow from
MA™ (g-closed).



The assertion of the existence of the winning

strategy for player II (the principle (GH) introduced RC RP,c
in Section 1) in the following game G} ([s]™) for all ~ ) -

Kk > N; seemed to be a natural candidate for such an / ' N\
interpolant. Unfortunately, this principle turned out (Go) (Gy)

to be too strong to be a consequence of RC while it

is still a consequence of RPc as we shall see in Sec- FRP SSR

tion 4. In [9] we introduce a weakening of (GH) which ClC

is an interpolant of RC and RP\c on one side and FRP
and SSR on the other.

Here is the definition of G ([x]™) for a cardinal x > R;. We call a function
[+ [6]" — & regressive if f(a) € a holds for all a € [«]™. Similarly to the definition
(3.1), let

(33) MWilg={felMg: fis regressive}.
A match in G4 ([]™) for Players I and II is a sequence of the form:

I | foe MMk fi e Wy o fa € WM " (< w)
1 | do €[] dy € k] - dy, € [N
IT wins in a match in G} ([x]™!) as above if
{a €[k : fala) € U{d; : i € w} for all n € w} RPnc

is cofinal in [x]™.

Note that by the definition of the games, it is clear
that (GH) implies both of (Go) and (Gy). ‘/RP,S

(Gl

. . ll
4 Characterizations of (G*') FRP SSR
The following characterization of (G!') can be obtained ClC

easily by regarding the moves of Player I in G}!([x]**) as an
enumeration of Skolem functions with parameters in some model M and the moves
of Player II as the gradual capturing of x N M:

Lemma 4.1 For any cardinal k > Wy the following are equivalent:

(a) WSn (G ([£]™)).

(b) For sufficiently large regular 0 with M = (H(6),€,C), for any M < M
with | M| = Ry and K € M, we have: for any a € [, there are b € [k|™ and
countable N < M such thata Cb, be N, M C N andbN N =bN M.

(c) For sufficiently large regular 0 with M = (H(9),€,C), for club many®
countable M < M with k € M, we have: for any a € [s]™, there are b € [k]* and
countable N < M such thata Cb,be N, M C N andbNN =bN M. ]

6) We can also express this “club many ...” in terms of expansion of the structure M similarly
to Lemma 2.3 or Lemma 2.4.
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By Lemma 4.1, (c), we see immediately that WSy (GL}H([«]™)) for cardinals x >
R; also enjoy the downward transfer property:

Corollary 4.2 Suppose X; < &' < k and WSp(GY ([]¥)) holds. Then we also
have WS (GL ([«'])).

Theorem 4.3 The following are equivalent: (a) (GH).

(b) For all k > Ny, for all sufficiently large regular 6 with M = (H(6), €,C),
there are club many countable M < M such that K € M and for any X € [H(x)]™,
there are Y € [H(k)]|™ and countable N < M such that X CY,Y e N, MCN
andYNN=YNM.

(c) For all k > Ny, for all sufficiently large regular 6 with M = (H(6), €,C),
there are club many countable M < M such that k € M and for any X € [H(x)!,
there are Z < (H(k), €, Gy x)) of cardinality R, and countable N < M such that
XCZ, ZeN, MCNandZNN=ZNM.

(d) For any k > Ny and stationary S C [H(x)]™, for any X € [H(k)]™ there
is a Z < H(k) such that X C Z | Z| =R, and SN Z is stationary in [Z].

(e) For all k > Ny, for all sufficiently large regular 8 with M = (H(6), €,C),
there are club many countable M < M such that k € M and for any X € [H(x)]"*,
there are IS Z < (H(k), €, Cnx)) of cardinality ¥y and countable N < H(0) such
that X CZ, Ze N, MCNand ZNN=2ZNM.

Proof. (a) = (b): Let A = 2<% = |'H(k)| and let ¢ : A — H(k) be a bijection.
Then all countable M < M with ¢ € M satisfies the condition in (b): the situation
of Lemma 4.1, (b) (for k there = ) is translated to the desired condition in the
present (b) by .

(b) = (a): The back-translation by the mapping ¢ as in the proof of (a) =
(b) implies WSy (G4 ([2<#])) for all Kk > N;. By Corollary 4.2, it follows that
WSH(G‘{}([I‘G]M)) for all k > N;.

(b) = (c): Suppose that x, 8, M, M, X, Y, N are as in (b). Then Z = skyu(Y)
witnesses (c).

(c) = (d): Assume that (c) holds and suppose that S C [H(x)]™ is stationary.
Let § M, M be as in (c). Since there are club many M’s as in (c), we may assume
that

(41) SeMand H(k)NMES.
Let X € [H(x)]™ be defined by
(42) X=w UMK NMYU{MNH()}.

Let Z < H(x) and N < H(0) be as in (c) for this X. Thus we have N is countable,
Z is of cardinality N;, X C Z, Z€ N, M C N and



(43) ZNN=ZnM.

We are done by showing that S N Z is stationary in [Z]®. Since S, Z € N, it is
enough to show that any club C C [Z]® with C € N intersects with S: Note that
we have

(44) ZNM=HkENM

by (4.2). For such a club C we have

S>3 MnNH(k) by (4.1)
=ZNM by (4.4)
=ZNN by (4.3)

=|J(CNN) e C. by elementarity, C € N and closedness of C

Thus SN C # O as desired.
(c) = (e): The proof of (c) = (d) above for S = [H(x)] ¢ shows this.

(e) = (c): trivial.
(c) = (b): trivial.
(d) = (e): Assume that (d) holds. For k > Ny, let # a sufficiently large regular

cardinal and M = (H(0), €, ). Let

(45) S={Me[M]™ : M <M,k€ M, there is Xps € [H(x)]™ such that

(4.6) there are no countable N < M
and Y < (H(k), €, Cyx)) such that
M < N, X CY,Y is IS and of size Ny,
YeNand MNY=NNY

It is enough to show that S is non-stationary. In the following we show this
indirectly: We assume that S is stationary and drive a contradiction from this

assumption.
For each M € S we choose X, € [H]™ such that

(4.7 Xm 2 MUuw, Xy < M and (4.6) holds for M and Xy.
Let x > 2<% be regular. Note that we have H(#) € H(x). Let

(4.8)  S={MeHO)™ : M < (H(x),€,Cne),
k,0,---€M, MNH(O) €S }.

By the assumption of the stationarity of S, S is also stationary. Thus, by (d), there
is Z < (H(x), €, C) such that

(49) |Z| =N, w; CZ,
(4.10) %,0,8,(Xm : M €S), Crxy, Tree), - € Z and

45
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(4.11) SN Z is stationary in [Z]%.
Let
(4.12) Y =ZNH(k).

Then we have w; C Y and hence |Y | =R; and Y < (H(k), €, Cxyx))-

Y is stationary in [Y]%: Suppose that C C [Y]® is a club. Let ¢ = {z €
[Z]* : zNY € C}. Then C is a club subset of [Z]®. By (4.11), Z N [Z]* is
stationary in [Z]®. Hence there is an z € C N Z. By definition of C, we have
tNH(k) eC.

Since Z < (H(x), €,Cx(y)) and H(k) € Z by (4.10), we have z N H(k) € Z.
By z NH(k) € C we have z N H(k) € H(k). It follows that x N H(k) € Y. Thus
tNH(K) €CNY.

For each M € SN Z we have M N'H(8) € SN Z as we just saw and, by (4.10),
Xmone) € ZNH(k) =Y. Since w; C Y, it follows that

(413) Xmrne) CY.
By (4.11), there is countable N* < (H(x), €, Cy)) such that

(414) N*NnZeSNZ and
(415) X,Y,Z,-.-€ N

Let M* = (N*NZ)NH(#). Then we have M* € S by (4.14). M* C N*N'H(0) by
the definition of M* and X~ CY by (4.13). Y € N*N'H(6) by (4.12) and (4.15).
We also have

(4.16) M*NY = ((N*NZ)NH())N(ZNH(K)) = M*NH(k) = (N*NH(E))NY.
Thus N*NH(f) and Y contradict to the choice of X .. 0 (Theorem 4.3)
Corollary 4.4 The following implications hold:

RPc = (GY) = RPs. 0

Proof. By Theorem 4.3,(d). The implication “RP)c = (G!!)” follows from the
following trivial observation. 0 (Corollary 4.4)

Lemma 4.5 If M < H(6) is IC and S N [M]R is stationary in [M]R°, then SN
(M N [M]R0) is stationary in [M]™ as well. u]

Corollary 4.6 Under the CH, we have:
Axiom R & RP|U =4 RP|5 = (Gll) L= RP|C = RPlA.

Proof. By Lemma 2.2, Lemma 2.6 and Corollary 4.4. Q (Corollary 4.6)
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