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Abstract

We present the classical theory of preservation of $\sqsubset$ -unbounded families in generic
extensions by ccc posets, where $\sqsubset$ is a definable relation of certain type on spaces
of real numbers, typically associated with some classical cardinal invariant. We also
prove that, under some conditions, these preservation properties can be preserved
in direct limits of an iteration, so applications are extended beyond the context of
finite support iterations. Also, we make a breve exposition of Shelah’s theory of
forcing with an ultrapower of a poset by a measurable cardinal.

1 Introduction
In this paper, we discuss two topics of technical nature that can be applied to forcing
iterations with finite support. The first is about preservation properties of $\sqsubset$-unbounded
families in forcing extensions, where $\sqsubset$ is a definable relation on spaces of real numbers as
explained in Context 3.1. These type of preservation properties are introduced in [JS90]
and [Br91], later generalized and summarized in [$BaJ$ , Sect. 6.4 and 6.5] and [G92]. As
these properties can be preserved under finite support iterations (fsi) of posets with the
countable chain condition (ccc), the main application has been in the context of cardinal
invariants, where the preservation property is used to preserve some cardinal invariant
small while, with the reals added through the iteration, some other cardinal invariant
becomes larger in the final generic extension.

The second topic is about forcing with an ultrapower of a poset by a measurable
cardinal $\kappa$ , originally introduced by Shelah [S04] to show that, given a ccc poset $\mathbb{P}$ , the
ultrapower of $\mathbb{P}$ destroys all the maximal almost disjoint (mad) families of size $\geq\kappa$

that exist in the $\mathbb{P}$-extension (see Corollary 4.4). This was used by Shelah to produce
a ccc forcing notion that forces $\kappa<\mathfrak{d}<\mathfrak{a}$ where $\mathfrak{d}$ is the dominating number (see
Example $3.2(1))$ and a is the least size of an infinite mad family. Also, Shelah modified
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the construction of the model to get the consistency of $\aleph_{1}<\mathfrak{d}<a$ without the use of a
measurable cardinal.

This paper does not contain original results by the author and only contains technical
results. The main purpose is to explain the two topics mentioned above under the point
of view of the author, this as a prelude of the main results in [Me-l]. Some known facts
about these topics that are not proven (and not even explicitly stated) in any other article
or book are presented in this article, for instance:. The preservation property of Definition 3.6 is preserved in direct limits under some

conditions (Theorem 3.10). This allows to preserve this property under some itera-
tions of stronger type than fsi, e.g., template iterations 1 ([Me-l, Sect. 4]).

$\bullet$ Preservation of $\sqsubset$ -unbounded reals (see Definition 3.16) under parallel direct limits
(Theorem 3.19). This fact simplifies the proof of the author’s result stating that,
in a certain type of template iteration, a real added at some stage of the iteration
cannot be added at any other stage [Me-l, Thm. 4.16 and 4.18].. $A$ characterization about forcing a projective statement of real numbers with the
ultrapower of a ccc poset (Theorem 4.3). This fact implies directly Shelah’s result
discussed above about destroying mad families with ultrapowers.

This article is structured in three parts. In Section 2, we explain correctness and
direct limits, elementary facts about forcing that are essential for the construction of
iterations with finite supports (e.g. template iterations). Section 3 is devoted to the topic
of preservation properties on iterations with finite supports and, in Section 4, we discuss
forcing with ultrapowers.

Acknowledgements. The author is deeply grateful with professor J. Brendle for all his
help and guidance, in particular, with the topics of preservation properties and template
iterations that the author learnt directly from him.

The author is also thankful with professor S. Fuchino for his invitation to the RIMS
2013 conference.

2 Correctness and direct limits
The concept of correctness is originally developed for complete Boolean algebras [Br-l,
Br-2, Br05], but notions and results can be translated in terms of posets in general. In
this section, we present correctness for posets.

Usually, if $\mathbb{P}$ and $\mathbb{Q}$ are posets, $\mathbb{P}\ll \mathbb{Q}$ denotes that $\mathbb{P}$ is completely embedded into $\mathbb{Q}.$

For this article, we reserve the notation $\mathbb{P}\ll \mathbb{Q}$ to say that $\mathbb{P}$ is a complete suborder of
$\mathbb{Q}$ . Also, if $M$ is a transitive model of (a quite large finite fragment of) ZFC and $\mathbb{P}\in M,$

$\mathbb{P}<M\mathbb{Q}$ denotes that $\mathbb{P}\subseteq \mathbb{Q}$ and that any maximal antichain of $\mathbb{P}$ in $M$ is also a maximal
antichain of $\mathbb{Q}.$

For this section, fix $M\subseteq N$ transitive models of ZFC. Note that, if $\mathbb{P}\in M$ and $\mathbb{Q}\in N$

are posets, $\mathbb{P}<M\mathbb{Q}$ implies that, whenever $G$ is $\mathbb{Q}$-generic over $N,$ $\mathbb{P}\cap G$ is $\mathbb{P}$-generic over
$M$ and $M[\mathbb{P}\cap G]\subseteq N[G].$

lThis iteration technique was created by Shelah [S04]. See also [Br02], [Br05] and [Me-l] for further
discussions.
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Recall the four-element lattice $I_{4}$ $:=\{\wedge, 0,1, \vee\}$ where $\vee$ is the largest element, $\wedge$ is
the least element and $0,1$ are in between.

Definition 2.1 (Correct system of embeddings). Let $\mathbb{P}_{i}$ be a poset for each $i\in I_{4}$ and
assume that $\mathbb{P}_{i}<\mathbb{P}_{j}$ for $i<j$ in $I_{4}$ . We say that the system $\langle \mathbb{P}_{\wedge},$ $\mathbb{P}_{0},$ $\mathbb{P}_{1},$ $\mathbb{P}_{\vee}\rangle$ is correct
if, for each $p\in \mathbb{P}_{0}$ and $q\in \mathbb{P}_{1}$ , if both have compatible reductions in $\mathbb{P}_{\wedge}$ , then $p$ and $q$

are compatible in $\mathbb{P}_{\vee}$ . An equivalent statement is that, for each $p\in \mathbb{P}_{0}$ and for every
reduction $r\in \mathbb{P}_{\wedge}$ of $p,$ $r$ is a reduction of $p$ with respect to $\mathbb{P}_{1},$ $\mathbb{P}_{\vee}.$

There is a restrictive version of this notion. For the model $M$ , if $\mathbb{P}_{\wedge},$ $\mathbb{P}_{0}\in M,$ $\mathbb{P}_{\wedge}<\mathbb{P}_{0},$

$\mathbb{P}_{\wedge}<\mathbb{P},$ $\mathbb{P}_{0}<_{M}\mathbb{P}_{\vee}$ and $\mathbb{P}_{1}<\mathbb{P}_{\vee}$ , say that the system $\langle \mathbb{P}_{\wedge},$ $\mathbb{P}_{0},$ $\mathbb{P}_{1},$ $\mathbb{P}_{\vee}\rangle$ is correct with
respect to $M$ if, for any $p\in \mathbb{P}_{\wedge}$ and $q\in \mathbb{P}_{0}$ , if $p$ is a reduction of $q$ , then $p$ is a reduction
of $q$ with respect to $\mathbb{P}_{1},$ $\mathbb{P}_{}.$

The results of this section are applications of this notion to two-step iterations, quo-
tients and direct limits of posets.

Lemma 2.2. Let $\mathbb{P}\in M,$ $\mathbb{P}’\in N$ posets such that $\mathbb{P}\ll M\mathbb{P}’$ . If $\dot{\mathbb{Q}}\in M$ is a $\mathbb{P}$ -name of
a poset, $\dot{\mathbb{Q}}’\in N$ a $\mathbb{P}’$ -name of a poset and $\mathbb{P}’$ forces (with respect to $N$) that $\dot{\mathbb{Q}}<_{M^{P}}\dot{\mathbb{Q}}’,$

then $\mathbb{P}*\dot{\mathbb{Q}}<M\mathbb{P}’*\dot{\mathbb{Q}}’$ . Also, $\langle \mathbb{P},$
$\mathbb{P}*\dot{\mathbb{Q}},$ $\mathbb{P}’,$ $\mathbb{P}’*\dot{\mathbb{Q}}’\rangle$ is a correct system with respect to $M.$

Proof. First prove that, if $(p_{0},\dot{q}_{0}),$ $(p_{1},\dot{q}_{1})\in \mathbb{P}*\dot{\mathbb{Q}}$ are compatible in $\mathbb{P}’*\dot{\mathbb{Q}}’$ , then they
are also compatible in $\mathbb{P}*\mathbb{Q}$ . Let $(p’,\dot{q}’)\in \mathbb{P}’*\dot{\mathbb{Q}}’$ be a common extension. Find $A\in M$

a maximal antichain in $\mathbb{P}$ contained in $\{p\in \mathbb{P}/p\leq p_{0}, p_{1} or p_{0}\perp p or p_{1}\perp p\}$ . As $A$ is
also maximal antichain in $\mathbb{P}’$ , there exists a $p_{2}\in A$ compatible with $p’.$ $p_{2}$ is a common
extension of $p_{0},$ $p_{1}$ because $p’$ is a common extension of $Po,$ $p_{1}$ . Also, $p_{2}$ cannot force, with
respect to $\mathbb{P}$ and $M$ , that $\dot{q}_{0}\perp\dot{q}_{1}$ because $p’$ forces their compatibility with respect to $\mathbb{P}’$

and $N$ . Therefore, there exists $p\leq p_{2}$ that forces $\dot{q}_{0},\dot{q}_{1}$ compatible.
Now, let $\{(p_{\alpha}, q_{\alpha})/\alpha<\delta\}\in M$ a maximal antichain in $\mathbb{P}*\dot{\mathbb{Q}}$ . We claim first that $\mathbb{P}$

forces that $\{q_{\alpha}/p_{\alpha}\in\dot{G}, \alpha<\delta\}$ is a maximal antichain in $\dot{\mathbb{Q}}$ , where $\dot{G}$ is a $\mathbb{P}$-name of its
generic subset. Indeed, let $p\in \mathbb{P}$ be arbitrary and $\dot{q}$ be a $\mathbb{P}$-name for a condition in $\dot{\mathbb{Q}},$

For some $\alpha<\delta$ , there exists a common extension $(r,\dot{s})$ of $(p,\dot{q}),$ $(p_{\alpha},\dot{q}_{\alpha})$ , so $r$ forces that
$p_{\alpha}\in\dot{G}$ and that $\dot{q}_{\alpha},\dot{q}$ are compatible.

Let $(p’,\dot{q}’)\in \mathbb{P}’*\dot{\mathbb{Q}}’$ . Clearly, $p’$ forces $(with$ respect $to \mathbb{Q}, N)$ that $\{\dot{q}_{\alpha}/p_{\alpha}\in H, \alpha<\delta\}$

is a maximal antichain in $\dot{\mathbb{Q}}’$ , where $\dot{H}$ is the $\mathbb{P}’$-name of its generic subset. Hence, there
are $\alpha<\delta$ and $p”\leq p’$ in $\mathbb{P}’$ that forces $p_{\alpha}\in\dot{H}$ and $\dot{q}’$ compatible with $\dot{q}_{\alpha}$ . Therefore,
$(p’,\dot{q}’)$ is compatible with $(p_{\alpha},\dot{q}_{\alpha})$ . $\square$

If $\mathbb{P}$ and $\mathbb{Q}$ are posets and $\mathbb{P}\ll \mathbb{Q}$ , recall that the quotient $\mathbb{Q}/\mathbb{P}$ is defined as a $\mathbb{P}$-name
of the poset { $q\in \mathbb{Q}/\exists_{p\in\dot{G}}$ ($p$ is a reduction of $q$ )} with the order inherited from $\mathbb{Q}$ . It is
known that $\mathbb{Q}\simeq \mathbb{P}*(\mathbb{Q}/\mathbb{P})$ .

Lemma 2.3. Let $\langle \mathbb{P},$ $\mathbb{Q},$ $\mathbb{P}’,$ $\mathbb{Q}’\rangle$ be a correct system. Then, $\mathbb{P}’$ forces that $\mathbb{Q}/\mathbb{P}<_{V^{P}}\mathbb{Q}’/\mathbb{P}’.$

Proof. Correctness implies directly that $|\vdash_{\mathbb{P}’}\mathbb{Q}/\mathbb{P}\subseteq \mathbb{Q}’/\mathbb{P}’$ . We prove first that $\mathbb{P}’$ forces
that any pair of incompatible conditions in $\mathbb{Q}/\mathbb{P}$ are incompatible in $\mathbb{Q}’/\mathbb{P}’$ . Let $p’\in \mathbb{P}’,$

$q_{0},$ $q_{1}\in \mathbb{Q}$ and $q’\in \mathbb{Q}’$ be such that $p’|\vdash_{P’}(q_{0},$ $q_{1}\in \mathbb{Q}/\mathbb{P},$ $q’\in \mathbb{Q}’/\mathbb{P}’$ and $q’\leq q_{0},$ $q_{1}$

”

We need to find a $p”\leq p’$ in $\mathbb{P}’$ which forces that $q_{0}$ and $q_{1}$ are compatible in $\mathbb{Q}/\mathbb{P}$ . As
$p’|\vdash_{P’}q’\in \mathbb{Q}’/\mathbb{P}’,$ $p’$ is a reduction of $q’$ . Find $p\in \mathbb{P}$ and $q\in \mathbb{Q}$ such that $q\leq q_{0},$ $q_{1},$ $p$ is
a reduction of $q,$ $p$ is a reduction of $p’$ and $q$ is a reduction of $q’$ . Indeed, choose $p_{0}\in \mathbb{P}$
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a reduction of $p’$ . Then, as $p_{0}$ is also a reduction of $q’$ , there exists a $q”\in \mathbb{Q}’$ such that
$q”\leq q’,$ $p_{0}$ . Then, we can find $q\in \mathbb{Q}$ a reduction of $q”$ such that $q\leq q_{0},$ $q_{1},p_{0}$ . Now,
find $p\leq p_{0}$ in $\mathbb{P}$ such that it is a reduction of $q$ . Clearly, $p$ and $q$ are as desired. Now,
$p|\vdash_{\mathbb{P}}q\in \mathbb{Q}/\mathbb{P}$ and, as it is a reduction of $p’$ , find $p”\in \mathbb{P}’$ such that $p”\leq p,$ $p’$ . Thus,
$p”|\vdash_{\mathbb{P}’}q\in \mathbb{Q}./\mathbb{P}$

” and $q\leq q_{0},$ $q_{1}.$

Now, let $A$ be a $\mathbb{P}$-name for a maximal antichain in $\mathbb{Q}/\mathbb{P}$ . Given $p’\in \mathbb{P}’$ and $q’\in \mathbb{Q}’$

such that $p’|\vdash_{\mathbb{P}’}q’\in \mathbb{Q}’/\mathbb{P}’$, we need to find $p”\leq p’$ in $\mathbb{P}’$ and $q\in \mathbb{Q}$ such that $p”$ forces
that $q\in A$ and that it $\cdot$ is compatible with $q’$ in $\mathbb{Q}’/\mathbb{P}’$ . Clearly, $p’$ is a reduction of $q’,$

so there exists.$q”\in \mathbb{Q}’$ that extends both $p’$ and $q’$ . Now, let $q_{2}\in \mathbb{Q}$ be a reduction of
$q”$ . Hence, as $A$ is the $\mathbb{P}$-name of a maximal antichain in $\mathbb{Q}/\mathbb{P}$ , there exist $q,$ $q_{3}\in \mathbb{Q}$ and
$p\in \mathbb{P}$ such that $q_{3}\leq q,$ $q_{2}$ and $p$ is a reduction of $q_{3}$ that forces $q\in A$ . Find $q_{4}\in \mathbb{Q}$ such
that $q_{4}\leq p,$ $q_{3}$ . As $q_{4}\leq q_{2}$ , there exists $q”’\in \mathbb{Q}’$ extending $q”$ and $q_{4}$ . Now, let $p”\in \mathbb{P}’$

be a reduction of $q^{\prime//}$ such that $p”\leq p,$ $p’$ . Thus, $p”$ forces that $q\in A,$ $q”’\in \mathbb{Q}’/\mathbb{P}’$ and
$q”’\leq q,$ $q^{l}.$ $\square$

Corollary 2.4. Let $\langle \mathbb{P},$ $\mathbb{Q},$ $\mathbb{P}’,$ $\mathbb{Q}’\rangle$ and $\langle \mathbb{Q},$ $\mathbb{R},$ $\mathbb{Q}’,$ $\mathbb{R}’\rangle$ be correct systems. Then, $\mathbb{P}’$ forces
that the system $\langle \mathbb{Q}/\mathbb{P},$ $\mathbb{R}/\mathbb{P},$ $\mathbb{Q}’/\mathbb{P}’,$ $\mathbb{R}’/\mathbb{P}’\rangle$ is correct with respect to $V^{\mathbb{P}}.$

Proof. By Lemma 2.3 we only need to prove correctness (to get, e.g., $|\vdash_{\mathbb{P}}\mathbb{Q}/\mathbb{P}\ll \mathbb{R}/\mathbb{P},$

note that $\langle \mathbb{P},$ $\mathbb{Q},$ $\mathbb{P},$ $\mathbb{R}\rangle$ is a correct system). In $V^{\mathbb{P}’}$ , we know that $\mathbb{R}/\mathbb{P}\simeq(\mathbb{Q}/\mathbb{P})*(\mathbb{R}/\mathbb{Q})$

and $\mathbb{R}’/\mathbb{P}’\simeq(\mathbb{Q}’/\mathbb{P}’)*(\mathbb{R}’/\mathbb{Q}’)$ . As $\mathbb{Q}/\mathbb{P}<_{V^{1P}}\mathbb{Q}’/\mathbb{P}’$ and $\mathbb{Q}’/\mathbb{P}’$ forces that $\mathbb{R}/\mathbb{Q}<_{V^{\mathbb{Q}}}\mathbb{R}’/\mathbb{Q}’$

by Lemma 2.3, we get the correctness we are looking for from Lemma 2.2. $\square$

Recall that a partial order $\langle I,$ $\leq\rangle$ is directed iff any two elements of $I$ have an upper
bound in $I.$ $A$ sequence of posets $\langle \mathbb{P}_{i}\rangle_{i\in I}$ is a directed system of posets if, for any $i<j$
in $I,$ $\mathbb{P}_{i}<\mathbb{P}_{j}$ . In this case, the direct limit of $\langle \mathbb{P}_{i}\rangle_{i\in I}$ is defined as the partial order2
$limdir_{i\in I}\mathbb{P}_{\iota}$ $:= \bigcup_{i\in I}\mathbb{P}_{i}$ . It is clear that, for any $i\in I,$ $\mathbb{P}_{i}$ is a complete suborder of this
direct limit.

Lemma 2.5 $($ Embeddability $of$ direct limits $[Br-1]\backslash see also [Br05,$ Lemma $1.2])$ . Let
$I\in M$ be a directed set, $\langle \mathbb{P}_{i}\rangle_{i\in I}\in M$ and $\langle \mathbb{Q}_{i}\rangle_{i\in I}\in N$ directed systems of posets such that

(i) for each $i\in I,$ $\mathbb{P}_{i}<_{M}\mathbb{Q}_{i}$ and

(ii) whenever $i\leq j,$ $\langle \mathbb{P}_{i},$ $\mathbb{P}_{j},$ $\mathbb{Q}_{i},$ $\mathbb{Q}_{j}\rangle$ is a correct system with respect to $M$

Then, $\mathbb{P}$ $:=limdir_{i\in I}\mathbb{P}_{i}$ is a complete suborder of $\mathbb{Q}$ $:=limdir_{i\in I}\mathbb{Q}_{i}$ with respect to $M$ and,
for any $i\in I,$ $\langle \mathbb{P}_{i},$ $\mathbb{P},$ $\mathbb{Q}_{i},$ $\mathbb{Q}\rangle$ is a correct system with respect to $M.$

Proof. Let $A\in M$ be a maximal antichain of $\mathbb{P}$ . Let $q\in \mathbb{Q}$ , so there is some $i\in I$ such
that $q\in \mathbb{Q}_{i}$ . Work within $M$ . Enumerate $A:=\{p_{\alpha}/\alpha<\delta\}$ for some ordinal $\delta$ and, for
each $\alpha<\delta$ , choose $j_{\alpha}\geq i$ in $I$ such that $p_{\alpha}\in \mathbb{P}_{j_{\alpha}}$ . Now, if $p\in \mathbb{P}_{i}$ , there is some $\alpha<\delta$

such that $p$ is compatible with $p_{\alpha}$ in $\mathbb{P}_{j_{\alpha}}$ , so there exists $p’\leq p$ which is a reduction of $p_{\alpha}$

with respect to $\mathbb{P}_{i},$ $\mathbb{P}_{j_{\alpha}}.$

The previous density argument implies, in $N$ , that $q$ is compatible with some $p\in \mathbb{P}_{i}$

which is a reduction of $p_{\alpha}$ for some $\alpha<\delta$ . By (ii), $p$ is a reduction of $p_{\alpha}$ with respect to
$\mathbb{Q}_{i},$ $\mathbb{Q}_{j_{\alpha}}$ , which implies that $q$ is compatible with $p_{\alpha}.$

$\square$

2In a more general way, we can think of a directed system with complete embeddings $e_{i,j}$ : $\mathbb{P}_{i}arrow P_{j}$

for $i<j$ in $I$ such that, for $i<j<k,$ $e_{j,k}oe_{i,j}=e_{i,k}$ . This allows to define a direct limit of the system
as well,
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Lemma 2.6. Let $\langle \mathbb{P}_{i}\rangle_{i\in I}$ be a directed system of posets, $\mathbb{P}$ its direct limit. Assume that
$\mathbb{Q}$ is a complete suborder of $\mathbb{P}_{i}$ for all $i\in I$ . Then, $\mathbb{Q}$ forces that $\mathbb{P}/\mathbb{Q}=limdir_{i\in I}\mathbb{P}_{i}/\mathbb{Q}.$

Proof. For $i\in I$ , as $\langle \mathbb{Q},$ $\mathbb{P}_{i},$ $\mathbb{Q},$ $\mathbb{P}\rangle$ is a correct system, by Lemma 2.3 $\mathbb{Q}$ forces that $\mathbb{P}_{i}/\mathbb{Q}$

is a complete suborder of $\mathbb{P}/\mathbb{Q}$ . It is easy to see that $\mathbb{Q}$ forces $\mathbb{P}/\mathbb{Q}=\bigcup_{i\in I}\mathbb{P}_{i}/\mathbb{Q}.$
$\square$

3 Preservation properties
Fix, for this section, an uncountable regular cardinal $\theta$ and a cardinal $\lambda\geq\theta.$

Context 3.1 ([G92],[BaJ, Sect. 6.4]). Fix $\langle\sqsubset_{n}\rangle_{n<\omega}$ an increasing sequence of 2-place
closed relations in $\omega^{\omega}$ such that, for any $n<\omega$ and $g\in\omega^{\omega},$ $(\sqsubset_{n})^{g}=\{f\in\omega^{\omega}/f\sqsubset_{n}g\}$

is (closed) nowhere dense.
For $f,$ $g\in\omega^{\omega}$ , say that $g\sqsubset$ -dominates $f$ if $f\sqsubset g.$ $F\subseteq\omega^{\omega}$ is $a\sqsubset$ -unbounded family

if no function in $\omega^{\omega}$ dominates all the members of $F$ . Associate with this notion the
cardinal $b_{\sqsubset}$ , which is the least size of $a\sqsubset$-unbounded family. Dually, say that $C\subseteq\omega^{\omega}$ is a
$\sqsubset$ -dominating family if any real in $\omega^{\omega}$ is dominated by some member of $C$ . The cardinal

$\mathfrak{d}\sqsubset$ is the least size of $a\sqsubset$-dominating family. For a set $Y$ and a real $f\in\omega^{\omega}$ , say that $f$

$is\sqsubset$ -unbounded over $Y$ if $\forall_{g\in\omega^{\omega}\cap Y}(f\not\subset g)$ , which we denote by $f\not\subset Y.$

Although this context is defined for $\omega^{\omega}$ , the domain and codomain of $\sqsubset$ can be any
uncountable Polish space coded by reals in $\omega^{\omega}.$

Example 3.2. (1) For $n<\omega$ and $f,$ $g\in\omega^{\omega},$ $f\leq_{n}^{*}g$ denotes $\forall_{k\geq n}(f(k)\leq g(k))$ , so
$f\leq^{*}g\Leftrightarrow\forall_{n<\omega}^{\infty}(f(n)\leq g(n))$ . The (un)bounding number is defined as $\mathfrak{b}$

$:=\mathfrak{b}_{\leq}*$ and
the dominating number is $\mathfrak{d}$

$:=\mathfrak{d}_{\leq}\cdot$ , which are classical cardinal invariants,

(2) For $n<\omega$ and $A,$ $B\in[\omega]^{\omega}$ , define $A\propto_{n}B\Leftrightarrow(B\backslash n\subseteq A or B\backslash n\subseteq\omega\backslash A)$ , so
$A\propto B$ iff either $B\subseteq^{*}$ $A$ or $B\subseteq^{*}\omega\backslash A$ , where $X\subseteq^{*}Y$ means that $Y\backslash X$ is finite.
Note that $A$ gk $B$ iff A splits $B$ , that is, $A\cap B$ and $B\backslash A$ are infinite. The splitting
number is defined as $\epsilon$ $:=*\mathfrak{b}_{\infty}$ and $\mathfrak{r}$ $:=\mathfrak{d}_{\infty}$ is the (un)reaping number, which are also
classical cardinal invariants.

(3) Consider, for $f,$ $g\in\omega^{\omega}$ and $n<\omega,$ $f=_{n}^{*}g$ defined as $\forall_{k\geq n}(f(n)=g(n))$ . Then,
$f=g*$ iff $\forall_{k<\omega}^{\infty}(f(k)=g(k))$ . Note that $\mathfrak{b}_{=}*=2$ and $\mathfrak{d}_{=}\cdot=c.$

Here, the associated cardinal invariants are not that important. We are interested in
the meaning of “

$f\in\omega^{\omega}$ is $=^{*}$-unbounded over $M$”, which is equivalent to $f\not\in M$

when $M$ is a model of some finite subset of axioms of ZFC.

Lemma 3.3. $\mathfrak{b}_{\subset}\leq$ non $(\mathcal{M})$ and cov $(\mathcal{M})\leq \mathfrak{d}_{\sqsubset}.$

Proof. Immediate from the fact that $(\sqsubset)^{g}$ is meager for any $g\in\omega^{\omega}.$ $\square$

Definition 3.4. Let $F\subseteq\omega^{\omega}$ . Say that $F$ is $\theta-\sqsubset$ -unbounded if, for any $X\subseteq\omega^{\omega}$ of size
$<\theta$ , there is an $f\in F$ such that $f\not\subset X.$

Clearly, any $\theta-\sqsubset$ -unbounded family is $\sqsubset$-unbounded, so

Lemma 3.5. If $F\subseteq\omega^{\omega}$ is $\theta-\sqsubset$ -unbounded, then $\mathfrak{b}_{\sqsubset}\leq|F|$ and $\theta\leq \mathfrak{d}_{\subset}.$
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The following is a property that expresses when a forcing notion preserves $\theta-\sqsubset-$

unbounded families of the ground model.

Definition 3.6 $($ Judah $and$ Shelah $[JS90], [BaJ, Def. 6.6.4])$ . $A$ forcing notion $\mathbb{P}$ is $\theta-\sqsubset-$

good if the following property $ho1ds^{3}$ : For any $\mathbb{P}$-name $\dot{h}$ for a real in $\omega^{\omega}$ , there exists a
nonempty $Y\subseteq\omega^{\omega}$ (in the ground model) of size $<\theta$ such that, for any $f\in\omega^{\omega}$ , if $f\not\subset Y$

then $|\vdash f\not\subset\dot{h}.$

Say that $\mathbb{P}$ is $\sqsubset$ -good if it is $\aleph_{1}-\sqsubset$ -good4.

Note that $\theta<\theta’$ implies that any $\theta-\sqsubset$-good poset is $\theta’-\sqsubset$ -good. Also, if $\mathbb{P}<\mathbb{Q}$ and $\mathbb{Q}$

is $\theta-\sqsubset$-good, then $\mathbb{P}$ is $\theta-\sqsubset$-good.

Example 3.7. (1) Miller [Mi81] proved that $E$ , the canonical forcing that adds an even-
tually different real, is $\leq^{*}$-good. Also, any $\omega^{\omega}$-bounding poset is $\leq^{*}$-good, in partic-
ular, random forcing.

(2) Baumgartner and Dordal [BD85] proved that Hechler forcing]$D$ (the canonical forcing
that adds a dominating real) is $\propto$-good. See also [Br09, Lemma 3.8] for a proof.

(3) Any $\theta-$ cc poset is $\theta_{-=}^{*}$-good. In particular, any ccc poset is $=$ -go$*$ od,

(4) Any poset of size $<\theta$ is $\theta-\sqsubset$-good. In particular, Cohen forcing $\mathbb{C}$ is $\sqsubset$-good. For a
proof, see [$BaJ$ , Thm 6.4.7], also [Me13, Lemma 4].

Lemma 3.8 $([BaJ,$ Lemma $6.4.8], see also [Me13,$ Lemma $3])$ . Assume that $\mathbb{P}$ is $\theta-\sqsubset$ -good.

$(a)$ If $F\subseteq\omega^{\omega}$ is $\theta-\sqsubset$ -unbounded, then $\mathbb{P}$ forces that $F$ is still $\theta-\sqsubset$ -unbounded.

$(b)$ If $\mathfrak{d}_{\subset}\geq\lambda_{f}$ then $\mathbb{P}$ forces that $\mathfrak{d}\sqsubset\geq\lambda.$

Judah and Shelah [JS90] proved that $\theta-\sqsubset$-goodness is preserved in fsi of $\theta-\sqsubset$ -good $\theta-cc$

posets. We generalize the preservation in the limits steps in Theorem 3.10.

Lemma 3.9 $([BaJ,$ Lemma $6.4.11])$ .. Let $\mathbb{P}$ be a poset and $\dot{\mathbb{Q}}.a\mathbb{P}$-name for a poset. If $\mathbb{P}$

is $\theta-cc,$ $\theta-\sqsubset$ -good and $\mathbb{P}$ forces that $\mathbb{Q}$ is $\theta-\sqsubset$ -good, then $\mathbb{P}*\mathbb{Q}$ is $\theta-\sqsubset$ -good.

Theorem 3.10 (Preservation of goodness in short direct limits). Let I be a directed partial
order, $\langle \mathbb{P}_{t}\rangle_{i\in I}$ a directed system and $\mathbb{P}=limdir_{i\in I}\mathbb{P}_{i}.$ If $|I|<\theta$ and $\mathbb{P}_{i}$ is $\theta-\sqsubset$ -good for
any $i\in I$ , then $\mathbb{P}$ is $\theta-\sqsubset$ -good.

Proof. Let $\dot{h}$ be a $\mathbb{P}$-name for a real in $\omega^{\omega}$ . For $i\in I$ , find a $\mathbb{P}_{i}$-name for a real $\dot{h}_{i}$ and
a sequence $\{\dot{p}_{m}^{i}\}_{m<\omega}$ of $\mathbb{P}_{i}$-names that represents a decreasing sequence of conditions in
$\mathbb{P}/\mathbb{P}_{i}$ such that $\mathbb{P}_{i}$ forces that $\dot{p}_{m}^{i}|\vdash_{\mathbb{P}/\mathbb{P}_{i}}hrm=\dot{h}_{i}rm$ . For each $i\in I$ choose $Y_{i}\subseteq\omega^{\omega}$ of
size $<\theta$ that witnesses goodness of $\mathbb{P}_{i}$ for $\dot{h}_{i}$ . As $|I|<\theta,$ $Y= \bigcup_{i\in I}Y_{i}$ has size $<\theta$ by
regularity of $\theta.$

We prove that $Y$ witnesses goodness of $\mathbb{P}$ for $\dot{h}$ . Assume, towards a contradiction, that
$f\in\omega,$ $f\not\subset Y$ and that there are $p\in \mathbb{P}$ and $n<\omega$ such that $p|\vdash_{\mathbb{P}}f\sqsubset nh$ . Choose $i\in I$

$\overline{3According}$to[$BaJ$ , Def. 6.6.4], our property is called really $\theta-\sqsubset$ -good while $\theta-\sqsubset$ -good stands for
another property. However, [$BaJ$ , Lemma 6.6.5] states that really $\theta-\sqsubset$ -good implies $\theta-\sqsubset$-good, and it is
also easy to see that the converse is true for $\theta-cc$ posets, see details in [Me13, Lemma 2],

4In [Me13, Me-l], $\mathbb{P}$ is $\theta-\sqsubset$-good” is denoted by $(+_{\mathbb{P},\sqsubset}^{\theta})$ and $\mathbb{P}$ is $\sqsubset$ -good” is denoted by $(+p,\sqsubset)$
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such that $p\in \mathbb{P}_{i}$ . Let $G$ be $\mathbb{P}_{i}$-generic over the ground model $V$ with $p\in G$ . Then, by the
choice of $Y_{i},$ $f\not\subset h_{i}$ , in particular, $f\not\subset_{n}h_{i}$ . As $C$ $:=(\sqsubset_{n})_{f}=\{g\in\omega^{\omega}/f\sqsubset_{n}g\}$ is closed,
there is an $m<\omega$ such that $[h_{i}rm]\cap C=\emptyset$ . Thus, $p_{m}^{i}|\vdash_{\mathbb{P}/p_{*}}[h|m]\cap C=\emptyset$ , that is,
$p_{m}^{i}|\vdash_{P/P_{i}}f\not\subset_{n}\dot{h}$ . On the other hand, by hypothesis, $|\vdash_{\mathbb{P}/P_{i}}f\sqsubset_{n}h$ , a contradiction. $\square$

Corollary 3.11 (Judah and Shelah [JS90], Preservation of goodness in well ordered
direct limits). Let $\delta$ be a limit ordinal and $\{\mathbb{P}_{\alpha}\}_{\alpha<\delta}$ be a sequence of posets such that, for
$\alpha<\beta<\delta,$ $\mathbb{P}_{a}<\mathbb{P}_{\beta}$ . If $\mathbb{P}_{\delta}=limdir_{\alpha<\delta}\mathbb{P}_{\alpha}$ is $\theta-cc$ and $\mathbb{P}_{\alpha}$ is $\theta-\sqsubset$ -good for any $\alpha<\delta$ , then
$\mathbb{P}_{\delta}$ is $\theta-\sqsubset$ -good.

Proof. First assume that $cf(\delta)<\theta$ , so there is an increasing sequence $\{\alpha_{\xi}\}_{\xi<cf_{(\delta)}}$ that
converges to $\delta$ . Then, $\mathbb{P}_{\delta}=limdir_{\xi<cf_{(\delta)^{\mathbb{P}_{\alpha}}}\epsilon}$ , which implies that $\mathbb{P}_{\delta}$ is $\theta-\sqsubset$-good by
Theorem 3.10.

$Now$ , assume that $cf(\delta)\geq\theta$ . Let $h$ be a $\mathbb{P}_{\delta}$-name for a real. By $\theta-$cc, there is an $\alpha<\theta$

such that $\dot{h}$ is a $\mathbb{P}_{\alpha}$ -name. Then, by hypothesis, there is $Y\subseteq\omega^{\omega}$ of size $<\theta$ that witnesses
goodness of $\mathbb{P}_{\alpha}$ for $\dot{h}$ . It is clear that $Y$ also witnesses goodness of $\mathbb{P}_{\delta}.$ $\square$

Corollary 3.12 (Judah and Shelah [JS90], Preservation of goodness in fsi $[BaJ$ , Lemma
6.4.12] $)$ . Let $\mathbb{P}_{\delta}=\langle \mathbb{P}_{\alpha},\dot{\mathbb{Q}}_{\alpha}\rangle_{\alpha<\delta}$ be a $fsi$ of $\theta-cc$ forcing notions. If, for each $\alpha<\delta,$ $\mathbb{P}_{\alpha}$

forces that $\dot{\mathbb{Q}}_{\alpha}$ is $\theta-\sqsubset$ -good, then $\mathbb{P}_{\delta}$ is $\theta-\sqsubset$ -good.

Proof. Prove by induction on $\alpha\leq\delta$ that $\mathbb{P}_{\alpha}$ is $\theta-\sqsubset$-good. Step $\alpha=0$ is trivial, successor
step comes from Lemma 3.9 and the limit step is a direct consequence of Corollary 3.11.

$\square$

Beyond the applications on fsi, Theorem 3.10 can be applied to obtain goodness in
template iterations, for example, see [Me-l, Thm. 4.13 and 4.15].

The following results show how to add $\sqsubset$-unbounded families with Cohen reals, in
order to get values for $\mathfrak{b}_{\subset}$ and $\mathfrak{d}_{\subset}.$

Lemma 3.13. Let $\nu$ be an uncountable regular cardinal, $\langle \mathbb{P}_{\alpha}\rangle_{\alpha<\nu}a\ll$ -increasing sequence
of forcing notions and $\mathbb{P}_{\nu}=limdir_{\alpha<\nu}\mathbb{P}_{\alpha}$ . If

(i) for each $\alpha<\nu,$ $\mathbb{P}_{\alpha+1}$ adds a Cohen real over $V^{P_{\alpha}}$ , and

(ii) $\mathbb{P}_{\nu}$ is $ccc,$

then, $\mathbb{P}_{\nu}$ adds a $\nu-\sqsubset$ -unbounded family (of Cohen reals) of size $\nu$ . Moreover, it forces
$\mathfrak{b}_{\subset}\leq\nu$ and $\nu\leq \mathfrak{d}\sqsubset.$

Proof. Let $\dot{c}_{\alpha}$ be a $\mathbb{P}_{\alpha+1}$-name of a Cohen real over $V^{P_{\alpha}}$ . Then, $\mathbb{P}_{\nu}$ forces that $\{\dot{c}_{\alpha}/\alpha<\nu\}$

is a $\nu-\sqsubset$ -unbounded family. Indeed, if $\{\dot{x}_{\xi}\}_{\xi<\mu}$ is a sequence of $\mathbb{P}_{\nu}$-names for reals with
$\mu<\nu$ , by (ii) there is an $\alpha<\nu$ such that $\{\dot{x}_{\xi}\}_{\xi<\mu}$ is a sequence of $\mathbb{P}_{\alpha}$-names, so $\mathbb{P}_{\alpha+1}$

forces that $\dot{c}_{\alpha}\not\subset\dot{x}_{\xi}$ for all $\xi<\mu$ . This last assertion holds because $(\sqsubset)^{g}$ is an $F_{\sigma}$ meager
set for any $g\in\omega^{\omega}$ (see Context 3.1).

The second statement is a consequence of Lemma 3.5. $\square$

Lemma 3.14. Let $\delta\geq\theta$ be an ordinal and $\mathbb{P}_{\delta}=\langle \mathbb{P}_{\alpha},\dot{\mathbb{Q}}_{\alpha}\rangle_{\alpha<\delta}$ be a $fsi$ such that,

i$)$ for $\alpha<\theta,\dot{\mathbb{Q}}_{\alpha}$ is forced (by $\mathbb{P}_{\alpha}$ ) to be $ccc$ and to have two incompatible conditions,
and
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ii) for $\theta\leq\alpha<\delta,\dot{\mathbb{Q}}_{\alpha}$ is forced to be $\theta-cc$ and $\theta-\sqsubset$ -good.

Then,

$(a)\mathbb{P}_{\theta}$ adds a $\theta-\sqsubset$ -unbounded family (of Cohen reals) of size $\theta.$

$(b)$ The family added in $(a)$ is forced to be a $\theta-\sqsubset$ -unbounded family by $\mathbb{P}_{\delta}$ . In particular,
it forces that $\mathfrak{b}_{\sqsubset}\leq\theta\leq \mathfrak{d}\sqsubset.$

Proof. (a) This is a direct consequence of Lemma 3.13 and the fact that this iteration
adds Cohen reals at limit stages.

(b) Let $\dot{C}$ be a $\mathbb{P}_{\theta}$ -name for a family of reals as in (a). Step in $V_{\theta}$ . Note that $\mathbb{P}_{\delta}/\mathbb{P}_{\theta}$ is
equivalent to the fsi $\langle \mathbb{P}_{\alpha}/\mathbb{P}_{\theta},\dot{\mathbb{Q}}_{\alpha}\rangle_{\theta\leq\alpha<\delta}$ . Thus, by Corollary 3.12, $\mathbb{P}_{\delta}/\mathbb{P}_{\theta}$ is $\theta-\sqsubset$-good.
Hence, by Lemma 3.8, it forces that $C$ is $\theta-\sqsubset$-unbounded,

$\square$

Example 3.15. Baumgartner and Dordal [BD85] proved that it is consistent that $\epsilon<\mathfrak{b}.$

This is done in the following way. Fix a regular cardinal $\mu>\aleph_{1}$ and let $\mathbb{P}$ be the poset
resulting by a fsi of length $\mu$ of Hechler forcing. This adds a scale of length $\mu$ , so $\mathbb{P}$ forces
$b=\mathfrak{d}=\mu$ . On the other hand, $\mathbb{P}$ is $\propto$-good because of Example 3.7(2) and Corollary 3.12
and, by Lemma 3.14, an $\aleph_{1^{-}}\propto$-unbounded family is added at the $\omega_{1}$ stage of the iteration
and it is preserved until the final extension, so $\mathbb{P}$ forces that $\epsilon=\aleph_{1}.$

If $\nu<\mu$ is an uncountable regular cardinal, the construction of the iteration can be
modified in order to produce a $\mu-\propto$-good poset which forces that any family of size $<v$

of infinite subsets of $\omega$ has an $\propto$-upper bound, this by a good keeping argument using
Mathias forcing with filter bases of size $<\nu$ (Example 3.7(4) is also used for this).

From now on in this section, fix $M\subseteq N$ transitive models of ZFC. We discuss a
property of preserving unbounded reals over $M$ along parallel iterations from $M$ and $N.$

The remaining results of this section are based on [BIS84], [BrFll] and [Me13].
Consider $\sqsubset$ from Context 3.1 with parameters in $M$ and fix $c\in Na\sqsubset$-unbounded real

over $M$ . As Cohen reals over $M$ that belong to $N$ are $\sqsubset$-unbounded over $M$ , typically $c$

is such a real.

Definition 3.16. Let $\mathbb{P}\in M$ and $\mathbb{Q}\in N$ be posets such that $\mathbb{P}<M\mathbb{Q}$ . Consider the
property

$(\star, \mathbb{P}, \mathbb{Q}, M, N, \sqsubset, c)$ : for every $h\in M$ $\mathbb{P}$-name for areal, $|\vdash_{\mathbb{Q},N}c\not\subset h.$

This means that $c$ is forced by $\mathbb{Q}$ (in $N$ ) to be $\sqsubset$-unbounded over $M^{\mathbb{P}}.$

As an example, we have

Lemma 3.17. $(a)$ $([Me13, Thm. 7J)$ Let $S$ be a Suslin $ccc$ poset with parameters in $M.$

If $Sis\sqsubset$ -good in $M$ , then $(\star, S^{M}, S^{N}, M, N, \sqsubset, c)$ holds.

$(b)([$BrFll, Lemma $llJ)$ Let $\mathbb{P}\in M$ be a poset. Then, $(\star, \mathbb{P}, \mathbb{P}, M, N, \sqsubset, c)$ holds.

Lemma 3.18. Let $\mathbb{P}\in M,$ $\mathbb{P}’\in N$ posets such that $(\star, \mathbb{P}, \mathbb{P}’, M, N, \sqsubset, c)$ holds. Also, let
$\dot{\mathbb{Q}}\in M$ be a $\mathbb{P}$ -name of a poset and $\dot{\mathbb{Q}}’\in N$ a $\mathbb{P}’$ -name of a poset such that $\mathbb{P}’$ forces (with
respecttoN) $that(\star, \mathbb{Q}, \mathbb{Q}’, M^{\mathbb{P}}, N^{\mathbb{P}’}, \sqsubset, c)$ . $Then(\star, \mathbb{P}*\mathbb{Q}, \mathbb{P}’*\dot{\mathbb{Q}}’, M, N, \sqsubset, c)$ holds.
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Proof. From Lemma 2.2 it is clear that $\mathbb{P}*\dot{\mathbb{Q}}\ll M\mathbb{P}’*\dot{\mathbb{Q}}’.$ $(\star, \mathbb{P}, \mathbb{P}_{\}}’M, N, \sqsubset, c)$ indicates
that $|\vdash_{P’,N}c\not\subset M^{P}$ and, as it forces $(\star, \mathbb{Q},\dot{\mathbb{Q}}’, M^{P}, N^{\mathbb{P}’}, \sqsubset, c)$ , then $|\vdash_{P’,N}|\vdash_{\dot{\mathbb{Q}},N^{P’}}c\not\subset$

$M^{\mathbb{P}*\mathbb{Q}’}$”
$\square$

The following result is a generalization of the corresponding fact (originally proved
by Blass and Shelah [BIS84] $)$ for finite support iterations (Corollary 3.20). The proof is
almost the same (see, for example, [BrFll, Lemma 12]).

Theorem 3.19. Let $I\in M$ be a directed set, $\langle \mathbb{P}_{i}\rangle_{i\in I}\in M$ and $\langle \mathbb{Q}_{i}\rangle_{i\in I}\in N$ directed
systems of posets such that

(i) for each $i\in I,$ $(\star, \mathbb{P}_{i}, \mathbb{Q}_{i}, M, N, \sqsubset, c)$ holds and

(ii) whenever $i\leq j,$ $\langle \mathbb{P}_{i},$ $\mathbb{P}_{j},$ $\mathbb{Q}_{i},$ $\mathbb{Q}_{j}\rangle$ is a correct system with respect to $M$

Then, $(\star, \mathbb{P}, \mathbb{Q}, M, N, \sqsubset, c)$ where $\mathbb{P}$ $:=limdir_{i\in I}\mathbb{P}_{i}$ and $\mathbb{Q}$ $:=limdir_{i\in I}\mathbb{Q}_{i}$ . Moreover, for
any $i\in I,$ $\langle \mathbb{P}_{i},$ $\mathbb{P},$ $\mathbb{Q}_{i},$ $\mathbb{Q}\rangle$ is a correct system with respect to $M.$

Proof. By Lemma 2.5, it is enough to prove that, if $\dot{h}\in M$ is a $\mathbb{P}$-name for a real in $\omega^{\omega},$

then $|\vdash \mathbb{Q},Nc\not\subset h$ . Assume, towards a contradiction, that there are $q\in \mathbb{Q}$ and $n<\omega$ such
that $q|\vdash_{\mathbb{Q},N}c\sqsubset_{n}h$ . Choose $i\in I$ such that $q\in \mathbb{Q}_{i}.$

Let $G$ be $\mathbb{Q}_{i}$-generic over $N$ with $q\in G$ . By assumption, $|\vdash \mathbb{Q}/\mathbb{Q}_{i},N[G]c\sqsubset nh$. In
$M[G\cap \mathbb{P}]$ , find $g\in\omega^{\omega}$ and a decreasing chain $\{p_{k}\}_{k<\omega}$ in $\mathbb{P}/\mathbb{P}_{i}$ such that $p_{k}|\vdash_{Jp/p}.,M[G\cap \mathbb{P}]$

$\dot{h}|k=grk$ . In $N[G]$ , by hypothesis, $c\not\subset g$ , so there is a $k<\omega$ such that $[g[k]\cap(\sqsubset_{n})_{c}=\emptyset.$

Then, as $\mathbb{P}/\mathbb{P}_{i}<_{M.[G\cap \mathbb{P}]}\mathbb{Q}/\mathbb{Q}_{i}$ by Lemma 2.3, $p_{k}|\vdash_{\mathbb{Q}/\mathbb{Q}_{i},N[G]}[hrk]\cap(\sqsubset_{n})_{c}=\emptyset$ , that is,
$p_{k}|\vdash_{\mathbb{Q}/\mathbb{Q}_{i},N[G]}c\not\subset_{n}h$ , which is a contradiction. $\square$

Corollary 3.20 (Blass and Shelah [BIS84]). Let $\mathbb{P}_{\delta}=\langle \mathbb{P}_{\alpha},\dot{\mathbb{Q}}_{\alpha}\rangle$ be a $fsi$ in $M$ and $\mathbb{P}_{\delta}’=$

$\langle \mathbb{P}_{\alpha}’:\dot{\mathbb{Q}}_{\alpha}’\rangle$ a $fsi$ in N. Assume that, for any $\alpha<\delta$ , if $\mathbb{P}_{\alpha}<M\mathbb{P}_{\alpha}’$ and $\mathbb{P}_{\alpha}’$ forces (in $N$)
$(\star, \mathbb{Q}_{\alpha}, \mathbb{Q}_{\alpha}’, M^{p_{\alpha}}, N^{\mathbb{P}_{a}’}, \sqsubset_{\}}c)$ . $Then,$ $(\star, \mathbb{P}_{\alpha}, \mathbb{P}_{\alpha}’, M, N, \sqsubset, c)$ holdsforany $\alpha\leq\delta.$

4 Forcing with ultrapowers

We present some facts, introduced by Shelah [S04] (see also [Br02]) about forcing with
the ultrapower of a ccc poset by a measurable cardinal.

Recall that a cardinal $\kappa$ is measurable if it is uncountable and has a $\kappa$-complete (non-
trivial) ultrafilter $\mathcal{U}$ , where $\kappa$ -complete means that $\mathcal{U}$ is closed under intersections of $<\kappa$

many sets. Note that, in this case, $\kappa$ is an inaccessible cardinal. For a formula $\varphi(x)$

in the language of ZFC, say that $\varphi(\alpha)$ holds for $\mathcal{D}$-many $\alpha$ iff $\{\alpha<\kappa/\varphi(\alpha)\}\in \mathcal{D}.$

To fix a notation about ultraproducts and ultrapowers, if $\langle X_{\alpha}\rangle_{\alpha<\kappa}$ is a sequence of sets,
$( \prod_{\alpha<\kappa}X_{\alpha})/\mathcal{D}=[\{X_{\alpha}\}_{\alpha<\kappa}]$ denotes the quotient of $\prod_{\alpha<\kappa}X_{\alpha}$ modulo the equivalence
relation given by $x\sim \mathcal{D}y$ iff $x_{\alpha}=y_{\alpha}$ for $\mathcal{D}$-many $\alpha<\kappa$ . If $x= \langle x_{\alpha}\rangle_{\alpha<\kappa}\in\prod_{\alpha<\kappa}X_{\alpha},$

denote its equivalence class under $\sim \mathcal{D}$ by $\overline{x}=\langle x_{\alpha}\rangle_{\alpha<\omega}/\mathcal{D}$. It is known that posets of size
$<\kappa$ does not destroy the measurability of $\kappa$ , that is, preserves the $\kappa$-completeness of $\mathcal{D}.$

For facts about measurable cardinals (and large cardinals in general), see [Kan].
Fix a poset $\mathbb{P}$ , a measurable cardinal $\kappa$ and a $\kappa$-complete ultrafilter $\mathcal{D}$ on $\kappa$ . For

notation, if $p\in \mathbb{P}^{\kappa}$ , denote $p_{\alpha}=p(\alpha)$ . For $p,$ $q\in \mathbb{P}^{\kappa}$ say that $p\leq_{\mathcal{D}}q$ iff $p_{\alpha}\leq q_{\alpha}$ for
$\mathcal{D}$-many $\alpha$ . The poset $\mathbb{P}^{\kappa}/\mathcal{D}$ , ordered by $\overline{p}\leq\overline{q}$ iff $p\leq \mathcal{D}q$ , is the $\mathcal{D}$-ultrapower of $\mathbb{P}.$
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Lemma 4.1 (Shelah [S04], see also [Br02, Lemma 0.1]). Consider $i:\mathbb{P}arrow \mathbb{P}^{\kappa}/\mathcal{D}$ defined
as $i(r)=\overline{r}$ where $r_{\alpha}=r$ for all $\alpha<\kappa$ . Then, $i$ is a complete embedding iff $\mathbb{P}$ is $\kappa-cc.$

Lemma 4.2 (Shelah [S04], see also [Br02, Lemma 0.2]). If $\mu<\kappa$ and $\mathbb{P}$ is $\mu-cc$ , then
$\mathbb{P}^{\kappa}/\mathcal{D}$ is also $\mu-cc.$

Fix a $ccc$ poset $\mathbb{P}$ . We analyze how $\mathbb{P}^{\kappa}/\mathcal{D}$-names for reals looks like in terms of $\mathbb{P}-$

names of reals. For reference, consider $\omega^{\omega}$ . First we show how to construct a $\mathbb{P}^{\kappa}/\mathcal{D}$-name
from a sequence $\langle\dot{f}_{\alpha}\rangle_{\alpha<\kappa}$ of $\mathbb{P}$-names of reals. For each $\alpha<\omega$ and $n<\omega$ , let $\{p_{\alpha}^{n,j}/j<\omega\}$

be a maximal antichain in $\mathbb{P}$ and $k_{\alpha}^{n}:\omegaarrow\omega$ a function such that $p_{\alpha}^{n,j}|\vdash f_{\alpha}(n)=k_{\alpha}^{n}(j)$

for all $j<\omega$ . Put $p^{n,j}=\langle p_{\alpha}^{n,j}\rangle_{\alpha<\kappa}$ and note that, for $n<\omega,$ $\{\overline{p}^{n,j}/j<\omega\}$ is a maximal
antichain in $\mathbb{P}^{\kappa}/\mathcal{D}$ by $\omega_{1}$ -completeness of $\mathcal{D}$ . Also, as $c<\kappa$ , there exist a $D\in \mathcal{D}$ and, for
each $n<\omega$ , a function $k^{n}$ : $\omegaarrow\omega$ such that $k_{\alpha}^{n}=k^{n}$ for all $\alpha\in D$ . Define $t=\langle\dot{f}_{\alpha}\rangle_{\alpha<\kappa}/\mathcal{D}$

the $\mathbb{P}^{\kappa}/\mathcal{D}$-name for a real such that, for any $n,$ $j.<\omega,$ $p’ j|\vdash f(n)=k^{n}(j)$ . Note that, if
$\langle\dot{9}_{\alpha}\rangle_{\alpha<(\sigma}$ is a sequence of $\mathbb{P}$-names of reals and $|\vdash_{\mathbb{P}}f_{\alpha}=\dot{9}\alpha$ for $\mathcal{D}$-many $\alpha$ , then $|\vdash_{\mathbb{P}^{\kappa}/\mathcal{D}}f=\dot{9}$

where $\dot{9}=\langle\dot{g}_{\alpha}\rangle_{\alpha<\kappa}/\mathcal{D}.$

We show that any $\mathbb{P}^{\kappa}/\mathcal{D}$-name $f$ for a real can be described in this way. For each
$n<\omega$ , let $A^{n}$ $:=\{\overline{p}^{n,j}/j<\omega\}$ be a maximal antichain in $\mathbb{P}^{\kappa}/\mathcal{D}$ and $k^{n}:\omegaarrow\omega$ such
that $\overline{p}^{n,j}|\vdash f(n)=k^{n}(j)$ . By $\kappa$-completeness of $\mathcal{D}$ , we can find $D\in \mathcal{D}$ such that, for all
$\alpha\in D,$ $\{p_{\alpha}^{n,j}/j<\omega\}$ is a maximal antichain in $\mathbb{P}$ for any $n<\omega$ . Let $\dot{f}_{\alpha}$ be the $\mathbb{P}$-name
of a real such that $p_{\alpha}^{n,j}|\vdash_{\mathbb{P}}\dot{f}_{\alpha}=k^{n}(j)$ . For $\alpha\in\kappa\backslash D$ just choose any $\mathbb{P}$ -name $\dot{f}_{\alpha}$ for a
real, so we get that $|\vdash_{\mathbb{P}^{\kappa}/\mathcal{D}}f=\langle\dot{f}_{\alpha}\rangle_{\alpha<\kappa}/\mathcal{D}.$

Theorem 4.3. Fix $m<\omega$ . and a $\Sigma_{m}^{1}$ property $\varphi(x)$ of reals. Let $\langle\dot{f}_{\alpha}\rangle_{\alpha<\kappa}$ be a sequence of
$\mathbb{P}$ -names of reals and put $f=\langle f_{\alpha}\rangle_{\alpha<\kappa}/\mathcal{D}$ . Then, for $\overline{p}\in \mathbb{P}^{\kappa}/\mathcal{D},\overline{p}|\vdash\varphi(;)$ iff $p_{\alpha}|\vdash_{\mathbb{P}}\varphi(\dot{f}_{\alpha})$

for $\mathcal{D}$-many $\alpha.$

Proof. This is proved by induction on $m<\omega$ . Recall that $\Sigma_{0}^{1}=\Pi_{0}^{1}$ corresponds to the
pointclass of closed sets. Thus, if $\varphi(x)$ is a $\Sigma_{0}^{1}$-property of reals, there exists a tree $T\subseteq\omega^{\omega}$

such that, for $x\in\omega^{\omega},$ $\varphi(x)$ iff $x\in[T]$ $:=\{z\in\omega^{\omega}/\forall_{k<\omega}(zrk\in T)\}.$

As in the previous discussion choose, for each $n<\omega$ , a maximal antichain $\{p’ j/j<$
$\omega\}$ on $\mathbb{P}^{\kappa}/D$ and a function $k^{n}$ : $\omegaarrow\omega$ such that $\overline{p}^{n,j}|\vdash f(n)=k^{n}(j)$ and $p_{\alpha}^{n,j}|\vdash$

$f_{\alpha}(n)=k^{n}(j)$ for $\mathcal{D}$-many $\alpha$ . First, assume that $p_{\alpha}|\vdash f_{\alpha}\in[T]$ for $\mathcal{D}$-many $\alpha$ and fix
$k<\omega$ . If $\overline{q}\leq\overline{p}$ , we can find a decreasing sequence $\{\overline{q}^{l}\}_{i\leq k}$ and a $t\in\omega^{k}$ such that
$\overline{q}^{\iota}=\overline{q}$. and $q^{+1}\leq p^{n,t(i)}$ for any $i<k$ . Therefore, $\overline{q}^{k}|\vdash frk=k^{n}ot$ and, for $\mathcal{D}$-many $\alpha,$

$q_{\alpha}^{k}1\vdash f_{\alpha}[k=k^{n}ot$ , so $k^{n}\circ t\in T.$

Now, assume that $p_{\alpha}|\}^{\angle}f_{\alpha}\in[T]$ for $\mathcal{D}$-many $\alpha$ . Without loss of generality, we may
assume that there is a $k<\omega$ such that $p_{\alpha}|\vdash\dot{f}_{\alpha}rk\not\in T$ for $\mathcal{D}$-many $\alpha$ . To prove $\overline{p}|\vdash 1rk\not\in T$

repeat the same argument as before, but note that this time we get $k^{n}ot\not\in T.$

For the inductive step, assume that $\varphi(x)$ is $\Sigma_{m+1}^{1}$ , so $\varphi(x)\Leftrightarrow\exists_{y\in\omega^{\omega}}\psi(x, y)$ where
$\psi(x, y)$ is $\Pi_{m}^{1}(\omega^{\omega}\cross\omega^{\omega})$ (notice that, if this theorem is valid for all $\Sigma_{m}^{1}$ -statements, then it
is also valid for $\Pi_{m}^{1}$ ). First assume that $p_{\alpha}|\vdash\exists_{z\in\omega^{\omega}}\psi(\dot{f}_{\alpha}, z)$ for $\mathcal{D}$-many $\alpha$ and, for those
$\alpha$ , choose a $\mathbb{P}$-name $\dot{g}_{\alpha}$ such that $p_{\alpha}|\vdash\psi(\dot{f}_{\alpha},\dot{g}_{\alpha})$ . By induction hypothesis, $\overline{p}|\vdash\psi(f,\dot{g})$

where $\dot{g}=\langle\dot{g}_{\alpha}\rangle_{\alpha<\kappa}/\mathcal{D}$ . The converse is also easy. $\square$

Corollary 4.4 (Shelah [S04], see also [Br02, Lemma 0.3]). Let $\mathcal{A}$ be a $\mathbb{P}$ -name of an
almost disjoint $(a.d.)$ family such that $|\vdash_{\mathbb{P}}|\mathcal{A}|\geq\kappa$ . Then, $|\vdash_{\mathbb{P}^{\kappa}/\mathcal{D}}\mathcal{A}$ is not maximal.
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Proof. Let $r\in \mathbb{P}$ and $\lambda\geq\kappa$ be a cardinal such that $r|\vdash_{\mathbb{P}}\mathcal{A}=\{A_{\xi}/\xi<\lambda\}$ . Put
$A=\langle A_{\alpha}\rangle_{\alpha<\kappa}/\mathcal{D}$ (this can be defined in a similar way by associating the characteristic
function to each set), and show that it is a $\mathbb{P}^{\kappa}/\mathcal{D}$-name of an infinite subset of $\omega$ and
$i(r)|\vdash\forall_{\xi<\lambda}(|A_{\xi}\cap A|<\aleph_{0})$ . But this is straightforward from Theorem 4.3. $\square$
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