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Abstract

We force matrices of isomorphic models of set theory by countable conditions. We show that the matrices
entail semimorasses and morasses depending on the forcing method. We also present a construction of a
Souslin tree that makes use of a matrix.

Introduction

The idea of matrices of isomorphic models of set theory was conceived by Todorcevic ([T1] and [T2]).
Recently, Aspero and Mota make use of a matrix forced by finite conditions to force a new forcing axiom.
Their iterated forcing involves new apparatus so called markers ([A-M]). We may view that the new forcing
axiom is forced over the intermediate stage formed by the matrix.

We investigate the matrices of isomorphic models of set theory forced by side conditions. We consider
a list of basic and additional properties of the matrices. There are two ways to force matrices. One way
is by finite conditions like [A-M] and the other by countable conditions like [B-S], [V] and [Ko]. The basic
properties are assured to hold by forcing a la Aspero and Mota ([A-M]). But we force by countable conditions
so that the basics as well as additional properties are satisfied. Roughly speaking, the matrices forced by
finite conditions entail Kurepa trees, quagmires ([Ka]), and o,, ([M]). The matrices forced by countable
conditions entail semi-morasses ([Ko]) and morasses ([D]).

We also present a construction of a Souslin tree that is carried out along a matrix. While this approach
is rather a direct one but is weaker than [V] and [I], since we assume the matrix has a type of associated
diamond.

In general, we would like to view forcing by side conditions as means to provide intermediate stages
in relevant constructions. For example, the matrix forced by side conditions forms an intermediate stage
to make sure that the rest of the construction goes fine. Namely, the quotient satisfies, say, some type of
properness, even is c.c.c. The entire construction would be done by, say, proper forcing due to the side
conditions. Though the exceptions to this view would include forcing closed and cofinal subsets by finite
conditions as in [F], [Mit], and [Kr].

In this note, we concentrate on the matrices forced by countable conditions ([B-S], [V] and [Ko]). The
matrices forced by finite conditions are discussed in a separate note [M].

§1. A matrix

We develop a theory of structures called matrices. A matrix is a complex next to the ordinals and
entails morass-like structures. To understand the following premise, it would be helpful to tell what a typical
situation is. In a typical situation, a matrix is gotten by cofinality preserving proper forcing. Hence H below
is H, in the ground model and H, below is H, in the generic extension. Hence k C H C H,. below.

1.1 Premise. Let & be a regular cardinal with wy < k. We have a fixed transitive set H such that
(1) kC HC H,.
(2) The &-structure (H,€) is a transitive model of set theory without the power set axiom.

(3) The cofinatilies and cardinalites below & are absolute between the universe and (H,€).

We would further assume other things, if needed. For example, {N € H | N is countable (in H)} is
stationary in [H]“. Since we see no use of this yet, we drop this requirement.

1.2 Proposition. (1) The least uncountable cardinal w; is definable in (H, €) with no parameters.

(2) If wy < K, then wy is definable in (H, €) with no parameters.
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(3) If X is countable in H, X € M, and M is an elementary substructure of (H,€), then X C M (proper
inclusion).

(4) Let M, N be elementary substructures of (H,€). M and N may or may not be in H. Let ¢ : (M, €
) — (N, €) be an isomorphism. Let X € M and X be countable in H. Then ¢(X) = ¢“X.

(5) If N,N', M € H are elementary substructures of (H, €) such that (N, €) and (N’, €) are isomorphic in
H and N, N’ € M, then the isomorphism exists in M.

1.3 Definition. N is a matriz (of isomorphic countable elementary substructures of H), if

(1) For all N € N, N are countable in H and the €-structures (N, €) are elementary substructures of
(H,€).

(2) For all N,N' € N, if NNw; = N'Nuw,, then two structures (N, €) and (N’,€) are isomorphic in H
and the (necessarily) unique isomorphism ¢ is the identity on the intersection N N N’. Futhermore, we
demand ¢“(NNN) C NN N'. Hence, ¢: (N,e, NNN) — (N',€, NN N’) is an isomorphism.

(3) Forall N,N' € N, if NNw, < N'Nws, then there exists N € N such that N € N and NNw; = N'Nwy.

(4) For all N,N' € N, there exists N € N such that N, N’ € N". (&-directed)

(5) H=UWN. (cofinal)

1.4 Definition. A matrix N satisfies LD(2) (locally directedness with binary spliting), if

(6) For all N € NV, (exclusively) either (0) || (limit) || (suc) holds, where
(O)NNN =0.

(limit) N = W N N).
(suc) There exist N7 and N3 such that

N1 #Nz,Nl Nwy =N2 ﬂwl,NﬂN= {N1,N2}U(N0N1)U(NHN2).

A matrix N satisfies LD(2) + A, if in the item (6), we further have
(A) {N1 Nwa, N Nws} forms a A-system.

Namely, A = (N; Nwy) N (N2 Nwz) is a common proper initial segment of Ny Nw, and N2 Nwy and the
non-empty tail (N2 Nwy) \ A comes after the non-empty tail (N} Nwy) \ A, or vice versa.

1.5 Definition. A matrix N satisfies LD(< 2) (locally directedness with at most binary spliting), if
(6) For all N € N, (exclusively) either (0) || (limit) || (suc); || (suc)2 holds, where
(O)NNN =0
(limit) N = JW N N).
(suc); There exists N; such that
NNN ={N1}uWNnNN).
(suc)z There exist N; and N3 such that

Ny # Nay, Ny Nw; = Ny ﬂwl,NﬂN':-{Nl,Nz}U(NﬂNl)U(NnNz).

We may express (suc); and (suc)z combined as follows.

(suc)<2 There exist N; and N such that
Nl ﬂwl = N2 ﬂwl,NﬂN = {Nl,Nz} U (Nﬂ Nl)U (NmNz)
1.6 Definition. A matrix N is complete, if for any sequence (e; | ¢ < w2) of elements of H, there exist

N,N{,N; € N andi < j < wg such that N1 # Ny, NiNw; = Ngﬂwl,NﬂN = {Nl,Ng}U(NﬁNl)U(NﬂNz),
and two structures (N1, €, ¢;) and (N2, €, e;) are isomorphic.



1.7 Definition. A matrix A is A-complete, if for any sequence (e; | i < ws) of elements of H, there exist
N, N1, Ny € N and i < j < wy such that Ny # Ny, NiNw;y = NoNwi, NNN = {Ny, N2JU(NNN)UNNN,),
{N1 Nway, N2 Nwsy} forms a A-ystem, and two structures (Ny, €, e;) and (Ng, €, e;) are isomorphic.

§2. Basics on a matrix

A matrix NV contains many elements ([A-M] and [Ko]).
2.1 Proposition. Let A/ be a matrix and N, N’ € NV.

(1) If N'Nw; < N Nuw, then there exists N € N such that N € N and N Nw; = N’ Nw;.
(2) If N € N’ and there exists N € AN with N Nw; < N" Nw; < N’ Nwy, then there exists N € M such
that Ne N € N and NNw; = N"Nw,.

Proof. (1): Take M € N such that N’ € M and M Nw; = NNw;. Let ¢ : M — N be the isomorphism
and set N = ¢(N’). Since N' € M and N’ is countable in H, we have N’ C M. Then N'Nw; C MNN and
so N'Nwy = ¢“(N' Nwy) = ¢(N' Nwy) = ¢(N)N(w1) = ¢(N') Nw; = NNwy. Hence NNw; = N' Nwy
and N = ¢(N') e N.

(2): Take M € N such that N € M and M Nw; = N” Nw;. Then take M’ € N such that M € M’
and M'Nw; = N'Nw;. Let ¢ : M’ — N’ be the isomorphism. Let N = ¢(M). Then N € N N N’. Notice
that N € NN M’ holds and so ¢(N) = N. Now it is routine to show this N works.

o

LD(2) and LD(< 2) hold level-wise. In the case of unary plitting, there exists a unique predecessor. In
the case of binary plitting, there exists a unique pair.

2.2 Proposition. Let N be a matrix.

(1) HN,M e N suchthat NNw; =MNw, and NNN =0, then NN M = 0.

(2) If N,M € N such that NNw; = M Nw, and N = JWN N N), then M = JWN N M).

(3) Let N,M € N such that NNw; =M Nw; and NN N = {N;} U (N N N;). Then there exists M; such
that M1 Nw; = Ny Nwy and NN M = {M;} U (NN M).

(4) Let N,M € N such that NNw; = M Nwy, Ny # Ny, NyNwy = NoNwy, and NON = {N;, N} U
(NN N1) U (N N Ny). Then there exist My # My, My Nw; = My Nwy (= Ny Nw;) such that
NNOM = {My, Ma} U(NNM)UWNNM).

(5) Let N, Ny, M, € N such that NN N = {Nl} U (Nﬂ Nl) == {M1} U (Nﬁ M1), then M; = N;.

(6) Let N, Nl,Nz € NSUCh that N1 76 Nz, N1ﬂwl = Nzﬂwl, andNﬂN = {Nl,Nz}U(Nan)U(NﬂNz). If
M, # My, MiNwy = MoNwy, and NON = {M],MQ}U(NﬂMl)U(NﬂMg), then {Ml,Mz} = {Nl,Nz}.
Proof. (1), (2), (3), and (4): Since (N,€,N N N) and (M,€,N N M) are isomorphic, we may check

these items. Notice that if Ny € NN N and ¢ : (N,€) — (M, €) is an isomorphism, then ¢[N; : (Ny, €

) — (¢(N1), €) is the isomorphism.

(5): We have My € NN N = {N1} U(NM N Ny). Suppose on the contrary that M; € NN N;. Then
MiNw < NiNwy. Since Ny e NN = {M;} U (N N M), we must have Ny Nw; < My Nw;. This is a
contradiction. Hence M; € {N;}. Thus M; = Ni.

(6): We have M; e NNN = {Ny, No}U(NNN;)U(NNN2). Suppose on the contrary that M; € (NN
Nl)U(NﬂNg). Then Mi;Nw; < N1Nw; = NaNw;. Since Ny, Ng € NNON = {M],Mz}U(NﬂM})U(Nan),
we must have Ny Nw; < M Nw; = My Nw;. This is a contradiction. Hence My € {Ny, N}, Similary, we
conclude Ma € {Ny, N2}. Thus {M1, M2} = {Ny, Na}.

a

A matrix that satisfies LD(< 2) entails a closed and cofinal subset of w;.

2.3 Lemma. Let NV be a matrix. Let I = {NNw; | N € N}.
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(1) I is a cofinal subset of w;.
(2) If NV satisfies LD(< 2), then I is closed and cofinal in w;.
(8) If NV satisfies LD(2), then I is closed and cofinal in w;.

Proof. (cofinal) Let k < w;. Since k € H =|JN, we have N € N such that k € N and so k < NNw;.

(closed) Let ¢ < w; be a limit ordinal such that I N3 is cofinal in 4. Let N € N be such that i < NNw,
and N Nw; is the least among those NNw;. Then i = N Nw; must hold. We argue in four cases by LD(< 2).
Assume i < N Nwj.

Case 1. NN N = 0. Since I N1 is cofinal, pick any N’ € N with N’ Nw; < i. Then we may calculate
acopy N € NN N of N'. This is a contradiction. Hence this case does not occur.

Case 2. N = [J(N N N). Then there are many N' € NN N with i < N'Nw; < NNw;. This would
contradict the leastness of N Nw;.

Case 3. There exists N; such that NN N = {N;} U N NN;). Then NyNw; < NNuw; and so
NiNw; <i< NNuw;. Then there exists N’ € N such that N; € N’ € N. This is a contradiction.

Case 4. There are Ny # N such that Ny Nw; = NaNw; and NNN = {Ny, Na}UNNN)UNNNg).
Then Ny Nw; < NNw; and so Ny Nw; < i < NNuw;. Then there exists N' € N such that Ny € N' € N.
This is a contradiction.

§3. A tree and copies of cardinals A via a matrix

Let us fix a matrix AV once for all in this section. We extract a tree out of V' as in [M] that is based on
[D].

3.1 Definition. Let I = {NNw1 | N € N}. Fori € I, let us fix N; € N with N;Nw, = d.
Transitive collase N; onto N;. Let Fi,, = {(cn)™! | N € N and NNw; = i}. For i,j € I with i < j, let
Fj={cmo(en) ' | NNMeN,NeM,NNw =iand M Nuw; = j}. Here cy € H and cp € H are the
transitive collapses of N and M, respectively.

The following is a represetation of A'. Write N, = H.
3.2 Lemma. (1) For all i < j in JU {w;} and all f € F,;, we have f € H and f : (N;,€) — (N, €)
are elementary embeddings.
(2) For alli < j in I, Fj; is a countable set.
(3) Foralli < j < kinIU{w}, we have Fjx = Fjx o F;;. (pairwise compositions)
(4) For all 41,93 € I and all f; € F,.,, f2 € Fi,u,, there exist (g1,92, h, k) such that 4,42 <k <w; in I,
91 € Fiyk, 92 € Fiyk, h € Frwy, fi=hogr, and f =hoga.
(5) Noy =U{f“Ni | i€ 1, f € Fiuy }-
(6) Foralli < jin TU{w1}, all fi, f2 € Fy;, all 1,82 € N, if fi(e1) = f2(€3), then &7 = &3. (tree order)

Proof. (1): Some account for the case j <w;. Let f € Fi; and let f =cpm o (c,x_)_'l. Since N € M, we
have N < M. Since ¢y : N — N; and ¢y : M — N, we have f = cp o (en)™ : N — Nj.

(2): Fij = {cn, o (cn)™! | N € NN N;, NNw; = i} holds and so F; is countable. Some details follows.
Let f € Fy;. Take N',M € N such that N’ € M and f = cy o (en/)™". Since N; Nwy = j = M Nwy,
there exists an isomorphism ¢ : M — N;. Let N = ¢(N’). Then Ne NN N;, NNw; = N'Nwy =1,
cm = cn, o ¢ and cnv = cy o (¢[N'). Hence f = cn, o (cy)~! holds.

(3): Let i < j < k < w, in I. The case k = w; is similar. Let f = cp o (cn)™! € Fix with N € M.
Take N’ € N such that N € N' € M and N'Nw; = j. Then cy: o (cy)™! € F;;j and cp o (env)™! € Fi.
It is clear that f = (ca o (cn')~!) o (cn’ © (en)™?!) € Fjx o Fij. Conversely, let f € Fi; and g € Fjx. Then
g =cn, o (cm)~!. Since M and Nj are isomorphic, we may assume f = cp 0 (cn)~! for some N € M € Ny.
Hence go f = (e, © (cm)™!) o (em o (en)™!) = en, 0 (en) ™! € Fig.



(4): Let fi = (en,)”! and fo = (en,)”!. Since NV is &-directed, there exists N € A such that
Ni,N; € N. Let k= NNuwi, h = (en)"}, g1 = ey o(en,)” ! and g2 = cy o (cn,)™!. Then h € Fi,,
91 € Fiyk, 92 € Figp and fi = hogi, f2 = hog; hold.

(6): Let e € H = JN. Then there exists N € N with e € N. Let i = N Nw;. Then e is in the range
of (en)~! € Fi,.

(6): First with j = w;. Let fi = (en,)™! and fo = (en,)”! with Ny Nwy = NoNwp = 4. Let
e = fi1(&1) = f2(€2). Then e € Ny N N;. Since two structures (Ni,€) and (Ny, €) are isomorphic and the
isomorphim ¢ : N1 — Nj is the identity on N; N Ny, we have &1 = ¢y, (€) = (cn, © ¢)(e) = cn,(e) = &3.

Next i < j <wy in I. Let fi(€7) = f2(€). Take any h € Fj,,. Then (ho f1)(e1) = (ko f2)(ez). Hence
we have seen that €7 = e5.

o

Following [D], we considered a tree order in [M].

3.3 Definition. ([M]) Let T' = {(5,8) | i € T U {w1}, € € N;}. Fort; = (41,81),t2 = (32,%z), We set
ty < to, if 4y < i and there exists f € F,,;, with f(g]) = &5.

3.4 Lemma. ([M]) (1) (T,<r) is a tree.

(2) For e € N, let i, € I be the least i € I such that e € N for some N € N with N Nw; = 4. Then for
all i € I with ¢ > i, there exists a unique m;(e) € N; such that there exists h € F,,, with h(m;(e)) = e.
The set {(4,mi(e)) | e <4 € I} U {(w1,€)} forms a chain in (T, <r).

(3) For different e1,e3 € H,,,, {(i,mi(e1)) | ¢ > ie, in I} and {(4,mi(e2)) | i > ie, in I} split at some point.

Proof. (1): (irreflexive) (i,€) <t (3,€) does not hold, as i < i does not hold.

(transitive) Let (i1,e7) <7 (i2,8) <r (43,€3). Then 4, < iz < 13, f(&1) = &, g(ez) = €5. Hence i; < i3
and (g 0 f)(e7) = .

(comparison below a node) Let (i1,87), (i2,82) <7 (i,8). We have fi1(e1) = € = f2(8z). Let i, = is.
Then we know &7 = €. Two nodes are identical in this case. Let i; < 35. Then fi = hog with g € Fj,,
and h € Fy,;. Then h(g(e€7r)) = f2(ez). Hence g(e7) = e3. Therefore (i1,81) <r (i2,€2). The remaining case
is similar.

(linear order below any node is well-ordered) Since (i1,&7) <r (i2,€z) entails é; < iz, the linear order
below any node is well-ordered.

(2): Let cy(e) = mi.(e). Then for any i > i, in I, we have f; € F,,; and h; € Fj,, such that
(en)™! = hi o f;. Hence let m;(e) = fi(mi (e)). Then h;(m;(e)) = e and so (i,mi(e)) <r (w1,e). Hence if
ie <41 < g in I, we have (i1, 71, (e)) <7 (i2,mi, (€)).

(3): Take N € N with e;,e3 € N. Let i¢,e; = N Nwy. Then for any ¢ € I with 4 > i.,.,, we see that
m;(e1) and m;(ez) are different.
o

For all cardinals A with wp; < A < k, we find copies of them that are single-rooted in the tree.

3.5 Lemma. (1) Let A be a cardinal such that wy < XA < x and for all N € M, A € N. Then there
exists (ig, o) such that ip € I and & € N, , and that

K= {f(E(;) I fe Fiowl} € [’\]/\
(2) Let A = k. Then there exists (ig, &) such that i € I, & € N;,, and that

K ={f(&) | f € Fipur} € N

Proof. (1): Since Ny, = {f(€) | i € I, f € Fiu,,,& € N;} and {(i,8) | i € I, € N;} is of size wy, there
|

exists i € I and & € Nj, such that {f(&) | f € Fiyu, } C A is of size A.

83
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Some details. Since A = {f(§) | i € I,£ < (MM, f € F,)}, there exists 49 € I and & < (AN such
that {f(fo) | f € Fioul} € P‘])‘

(2): Since N, = {f(€) |1 € I, f € Fi,, €€ N;} and {(3,8) | i€ [,€ € N} is of size wy, there exists
io € I and & € N;, such that {f(&) | f € Figun} € A is of size A.

Some details. For all £ < o(N;) = (the set of ordinals in the collapse NV;) and all f € Fi,,, we have
fE)<k=AandsoA={f(§)|ie I, €< o(N;), f € Fiu, }. Hence there exists (io, &) such that & < o(Ny,)

and {f(&) | f € Figun} € A
o

The single-rooted copies K enjoy the following.
3.6 Lemma. Let ig € I and &5 € V;,, and K = {f(€5) | f € Fiu,} € H. Then we have

(1) N € N with NNw; =1p, then NNK = {z5"}, where &" = (cn)~'(€5). (one-point)
(2) For all N € N with ig < i = NNuwy,

NNK ={(cn) o f(@)]| f€ Fii} ={(@)" | No€ NNN,NoNwi = io}
= {NNK | NeNNN,ig<NNw}.

(3) For all N,N' € N, if ip £ NNw; = N'Nwy, then (N,€, KN N) and (N',€, KN N') are isomorphic.
(4) For all N,N' € N with ip € NNw,N' Nwy, if NN K C N'Nn K (proper inclusion-ship), then
NnNw; < N'Nw.

Proof. (1): Let N € N with NNw; = ig. Let e € NN K. Then there exists f € Fjou, such that
e = f(e5). Let M € N such that f = (camr)~*. Then e = (cm)~'(85) € M N N. Hence cn(e) = cm(e) and
so e = (cn)~1(gg). Conversely, let (g5)Y = (cn)~!(€5). Then (Z)Y € NN K.

(2): Let N € N withig < i = NNw;. Let e € NN K. Then there exists f € Fu, such that
e = f(€5). Snice f € Fj,,, and i < i, there exists (g, h) such that g € Fig;, h € Fiy,, and f = hog. Since
h € F,.,, there exists M € A such that h = (cp)~!. Since e = (cm) ' 0g (&), eisin M and soin M N N.
Hence cn(e) = cu(e) and so e = (cn)™' o0 g(€g). Conversely, let g € Fiyi. Then (en)™' 0 g € Figu, and so
(en)"'og(eg) € NNK. Since Fij; = {cn o (eng)™ | No € NN N,NoNwy = ip}, we have

{(_EG)NO ] Ny € NNN,NNwy = ’ig} = {(CND)_I(%) | Ny € NﬂN,Nonwl = 10} = {(CN)—I ocNy©
(eno) ™2 (&) | No € NN N, NoNwy =140} = {(cn) ™" 0 f(&0) | f € Figi}-

And, trivially

NNK = {(&)Ne | No € NNN, NoNwy = ig} = U{NoNK | No € NNN, NoNwy =i} = {NNK | N €
NNN,ig<NNw}

(3): Let ¢ : (N,€) — (N’, €) be the isomorphism that is the identity on NN N'. Then cy = cnv © ¢.
First assume 4o = N Nw; = N’ Nw;. Then NN K = {(cn)"*(20)} and N'N K = {(cn)"'(€0)}. Since
cN = cNv © ¢, we have

en (6((@)N)) = (en)((E)Y) = .

And so ¢((eg)") = ¢((ew)~1(€5)) = (en')" (&) = (g5)N’. Next, assume 39 < N Nw; = N'Nw;. Since
NNK ={(cy) ' og(e) | g€ Fis} and N'NK = {(cn+) ! 09 (e0) | g € Fig:}, we have

P“NNK)={po(cn)  og(@) | g€ Fipi} ={(cn) ' og(e5) | g € Fii} =N'NK.

(4: Le¢e NNK Cc NNK. If NNw; = N'Nw;, then let ¢ : (N, €) — (N', €) be the isomorphism
that is the identity on N N N’. We calculate NN K C N'NK =¢*(NNK)C N andso NNK C NNN'.
Hence N'N K = ¢*(NNK) = NN K. This is a contradiction. If N'Nw; < NNuwi, then let M € N such
that N' € M and M Nw; = N Nw;. Then there exists an isomorphism ¢ : (M, €) — (N, €) that is the



identity on NN M. Then ¢“(N'NK) C¢“MNK)=NNKCN' NKCMandso ¢“(N'NK)C NNM.
Thus NNOK =¢“(N'NK)C NNK C N'NK. This is a contradiction. Thus N Nw; < N’ Nwy.
u]

84. A matrix N, for A with ws < A <k

Let AV be a matrix that satisfies LD(2) and is complete. Let A be a cardinal with ws < A < k. Since
A is not expected to be definable in the structure (H,€), we can not expect that for all N € A/, A € N.
However, we construct a subfamily Ny of A such that V), is a matrix that satisfies LD(< 2) and that for all
NeNy,, AEN.

4.1 Lemma. Let N be a matrix that satisfies LD(2) and is complete. Let wy < A < k.

(1) For any k < w, and e € H, there exist N, Ny, Ny € N such that N; # Ny, e, A€ NyNNo, k < NyNw; =
NaNwy, NON = {N1, No} U (NN N U NN N).

(2) Let N, Ny, N, € N be such that Ny #Ngy, \ée NN Ny, NyNw; =NaNw; and NN N = {Nl,Nz} U
(NNN1)U(NNNy). Then for any M € A such that A € M and MNw; = NNws, there exist M; # My
such that M1 Nw; = MaNwy, Ae MiNMz, and NN M = {M;, Mo} U (NN M) U NN M),

(3) Let J = {i < wy | there exists N € A such that A € N and N Nw; =4, for all N € N such that
A € N and N Nw; = i, there exists Ny # N, such that Ny Nwy; = Ny Nwi, A € N; N Ny, and
NNON ={N;,N2}UNNN)UWNNN;z)}. Then J = {i <w; | there exists N, Ny, N, € N such that
NNwy =14, N1 # Ny, NyNwy = NaNwi, A\E N1N Ny, and NNN = {Nl,N2}U(NﬂN1)U(NﬂN2)}
is cofinal in w;.

(4) Let Ny ={N eN | A€ N and NNw; € JUJ*}, where J* denotes the set of countable ordinals that
are accumulation points of J. Then this Ny is a matix that satisfies LD(< 2).

Proof. (1): Let M; = {k,e, A} for all i < ws. By the completeness, there exist N, N;, N, € A such that
Ni # Nz, (N1,€,k,e,)) and (N3, €,k, e, A) are isomorphic, and N NN = {Ny, No} U (N NN ) U (NN Ny).
We have IV # N3, e, A€ NN Ny and k < N3 Nwy = Ny Nwy.

(2): Let N, N1, N; and M be as in the assumption. Since NNw; = M Nws, there exists an isomorphism
¢ : (N,€) — (M, €) that is the identity on N N M. Since A € N N M, we have ¢(A\) = X. Let M; = ¢(N;)
and My = ¢(Nz). Then M1 Nw; = My Nwy, A € M NMz,and NN M = (ZS“(Nﬂ N) = {é(Nl),(f)(Nz)} @]
¢“(Nﬁ Nl) U¢“(Nﬂ Nz) = {Ml,Mz} U (/\/ﬂ M}) U (Nﬂ Mz).

(8): This follows from (1) and (2).

(4): We check that V) is a matrix that satisfies LD(< 2).

(1) For all N € NV, N are countable in H, the (N, €) are elementary substructures of the structure (H, €).

Proof. Since Ny C N, this follows.
a

(2) For all N,N" € N,, if NNw; = N’ Nw, then two structures (N, €, Ny N N) and (N’, €, Na N N') are
isomorphic and the unique isomorphism ¢ is the identity on the intersection N N N,

Proof. Since Ny € N and A € N N N’, the isomorphism ¢ : (N,€) — (N’,€) fixes A\. Hence
P“MNN)={p(M) | M e NNNAXEMMNw € JUJ*} ={M | M e NNN'  Xe M'M'Nw; €
JUJ*} =NyNN'.

o

(3) Forall N, N’ € N,, if NNw; < N'Nw;, then there exists N € Ny such that N € N and NNw; = N'Nw,.

Proof. Since Ny C N, there exists N € A such that N € N and NNw; = N Nw;. Then N € N
holds.
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(4) For all N, N' € N, there exists N” € N, such that N, N’ € N". (€-directed)

Proof. Since N, C N, there exists M € N such that N,N' € M. By the completeness of N, there
exists N € N such that N" Nw; € J and M € N”. Then we have N,N' € N" € N,.
o

(5) H =N.. (cofinal)

Proof. Let e € H. Then there exists N € A with e, A € N. By the completeness of NV, there exists M
such that N € M and MNw; € J. Thene € M € N,.

(6) For all N € N,, either (0) || (limit) || (suc)<2 holds, where

Q) ManNN =0.
(limit) N = {J(WN, N N).
(suc)<2 There exist Ny and N; such that

N1 ﬂwl =Nzﬂw1,N,\l"lN= {Nl,NQ}U(N,\an)U(NAnNQ).

Proof. Let N € N\. We have three cases.
Case 1. NN N = 0. Then NyxN N = @ holds.

Case 2. N =|J(N N N). We observe N = {J(N\ N N) as follows. We first show that NNw; € J*. If
N Nw; € J, then, since A € N, there exists Nj, N such that Ny # No, NyNw; = NaNwp, A € N1 NNy,
and NN N = {N1, N2} U (N NN;)UNNN2). But N = J(MNN). This entails a contradiction. Hence
NNuw; € J*. Now let e € N. Pick N' € NN N such that e,A € N’. Since N Nw; € J*, there exists
M e NN N such that N' € M and M Nw; € J. Then we have e € M € N,.

Case 3. NN N = {N, N2} UN NN UNNN;). Then NNw; € J. Since N Nwy € J, there exists
M, # My, MiNw; = MaNwp, A € My N M, and NNN = {M],Mz}U(NﬁM])U(NﬂMg). Since
{My, My} = {Ny, N2}, we may assume N; = M; and N, = M,.

Subcase 1. N, NN = 0. Done.

Subcase 2. My NN # 0. Let i = max(N Nw; N (J U J*)). Since JU J* is closed, this is well-defined
and we have i € JU J*.

Subsubcase 1. NyNw; =14. Since A € NyN Ny and NiNw; = N Nwy =1 € JU J*, we have
Niy,N, e N, andso N,NN = {Nl,Nz}U (N)‘ an)U (N,\ ﬂNz).

Subsubcase 2. i < N} Nw;. Then there exist no elements j € JUJ* withi <j < NNw, € J.

Subsubsubcase 1. i € J. There exists unique M; (Mz) such that A€ M; e NN N; and M1 Nw;y =14
(A€ Mz € NN Ny and My Nwy = i), respectively. Then M;, Mz € N and Ny, NN = {M;, Mz} U(N,\ N
M) U (Na N Ma). It is plausible that M; = Ms. Some details follow. Since i € J, there exists N' € N
such that A € N’ and N’ Nw; = i. Pick N” € N such that N’ € N” and N"Nw; = N Nw;. Then
A € Nyn N". By calculating the isomorphic copy M; € N1 of N/, we see that there exists M; such that
A€ M € NN N; and M; Nw; = 4. Similary, we have Mz such that A € My € NN N; and My Nw; = &.
To show the uniqueness, say, let M| # M be such that A € M] € NN N, and M{ Nw; = i. We derive a
contradiction. Since My, M| € Ni, there exist N7 € N such that {M;, M|} C Ni and N{ Nw; is the least
among those Nj. Then i < Nj Nw; < N1 Nw;. Hence NiNw, ¢ J. Since Nj € N that satisfies LD(2), we
must have N'N N} = {M;, M} U (N N M;) U (N NM]) for some M # M] such that M; € M; U {M;} and
M| € M] U {M]}. Since A € My N M}, we have N{ Nw; € J. This is a contradiction. Hence M; = M{. To
see that My NN = {Ml,Mz}U(N)‘ an)U(N)\ﬂMz), let M e N\ynN C {Nl,Nz}U(NﬂNI)U(NnNQ).



Since A € M and M Nw; € JUJ*, we have M Nw; <i. If MNw; =4, then A € M € Ni(N;) would
entail M = M(M = Ms) by the uniqueness. If M Nw; < 4, then M € (M, N Ny) U (N, N Nz). Then by
the uniqueness, if M € Ny(Nz), then M € My € Ny (M € My € Ny). Hence, M € (My N M1) U (VN My).
Since My, My € N\ N N, the converse holds.

Subsubsubcase 2. ¢ € J*. Since J* C I, there exists N' € N such that A € N’ and N'Nw; = i.
Some details follow. Since ¢ € J*, there exists N” € A such that N"Nw; < i and A € N”. Pick any
N' € N such that N € N and N'Nw; = ¢ and so A € N’. Then there exists unique M; (M) such that
AeEMy e NNNyand MiNwy, =14 (A€ My € NN Ny and Mz Nwy = i), respectively. Then My, My € N,
and My NN = {My, Ma} U (Ny N M) U (Ny N M,). It is plausible that M; = M. Details are identical
to the previous case as follows. By considering copies M; and M3 of N, we have M; and M; such that
MiNwi=MaNwi =N'Nw, =i, A€ M e NN Ny, and A € My € NN N,. To show the uniqueness of,
say, My, let M{ # M, such that A € M{ € N N Ny. Let N{ € N be such that {M;, M{} C N{ and N] ﬂwl
is the least among those N] Nw;. Then i < Nj Nw; < Ny Nw;. Since N{ € N that satisfies LD( ), W
must have N N N| = {MI,MI}U (N NMy) U (N NMY]) for some M; # M] such that M; € M; U {M;} and
M{ € M]U{M]}. Since A € My N M}, we have N] Nw; € J. This is a contradiction. Hence M; = M!. To
see that My NN = {M1, Mo} UM\ N M) UNAN M), let M € NaNN C {Ny,N2JUNNND)UNNN).
Since A € M and M Nwy € JUJ*, we have M Nwy <i. If MNw; =4, then A € M € Ny(N3) would
entail M = M,(M = M;) by the uniqueness. If M Nwy < 4, then M € (M) N N1) U (My N Nz). Then by
the uniqueness, if M € N1(Ny), then M € M; € Ny (M € My € N3). Hence, M € (N N M1) U (Ny N My).
Since My, My € Ny N N, the converse holds.

o

4.2 Lemma. Let N be a matrix that satisfies LD(2) and is complete, then for each cardinal A with
wg < A £ kK, there exists a matrix N, that satisfies LD(< 2) and that if A < «, then for all N € Ny, A € N.

Proof. For the cardinals A with wy < A < k, we find the subfamily My of A such that N} is a matrix
that satisfies LD(< 2) and that for all N € My, A € N. If A\ =w; or A = &, let Ny = N. In either case, N,
is a matrix that satisfies LD(2). If wy < A < &, since ws is definable in H with no parameters, then for all
N € N, we have A € N,

§5. Many semimorasses by a matrix that satisfies LD(2) and is complete

Koszmider considered a generalization of (wy, 1)-morasses ([Ko]), that is (w;, A)-semimorasses. We show
a matrix that satisfies LD(2) and is complete entails that for all A with wy < A < k, there exists an
(w1, A)-semimorass. We follow steps taken by [D] that derives neat morasses from non-neat morasses.

Let A be a matrix that satisfies LD(2) and is complete. Let A be a cardinal with ws < A < k. Let Ny,
be a matrix that satisfles LD(< 2) as in the previous section. If A\ < x, then for all N € Ny, N € N,.

Since N} is a matrix, we have a tree associated with N}, (i0,&0), and a copy K of ) as in the previous
section. Now we follow [D].

5.1 Definition. Fori € I = {M Nw | M € N,} with iy < 1, we call i is redundant, if there exists
(N,N)suchthat NNNe Ny, io<NNwi <i=NNuwyand NNK=NNK.

5.2 Propoition. Let ¢ € I with ¢y < . The following are equivalent.

(1) ¢ is redundant.
(2) For all N € Ny with N Nw; = 1, there exists N € Ny NN such that io <K NNw; and NN K =NNK.

Proof. It suffices to observe that (1) implies (2). Let N € Ny with N Nw; = 4. Since ¢ is redundant,
there exists (M, M) such that M\ M e N\, MNw; <i=MnNw; and MNK = MN K. Pick N' € N,
such that M € N’, and N'Nw; = i. Since N' Nw; = M Nwi, there exists ¢ : (N, €) — (M, €). Then
MNKCNNMandso g(M)NK =¢“(MNK)=MNK =MnK. Hence we may assume that M € M
with MNK=MnNK. Let ¢: (M,€) — (N,€). Then ¢(M) e \aNNand p(M)NK =NNK.
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O

5.3 Proposition. (1) If N € Ny, N e \hNN, 4 < NNwy, and NN K = NN K, then for all
MeN,NNwithNNw; < MNuw;,,wehave MNK =NNK.

(2) {i €I} <iisnot redundant} is a closed and cofinal subset of w;.

Proof. (1): First let M € Nby NN with MNw; = NNw;. Let ¢ : (M,€) — (N,€). Then
MNKCNNK=NNMandso NNK =¢“MNK)=MnNK andso MNK = NN K. Next let
M e NyNN with NNw; < M Nw;. Pick N € M, NN such that N € N’ and N'Nw; = M Nw;. Then
N'NnK = NnNK. Hence we have seen that MNK = NNK.

(2): (closed) Let i < w; be a limit ordinal such that there are cofinally many j’s below i that are
not redundant. Since I is closed, we have ¢ € I. If i were redundant, then there exists (XN, N) such that
N eNyNN suchthat NNw; =iand NNK = NN K. Since N Nw; < N Nw; = 1, there exists j such
that N Nw; < j <i and j is not redundant. Pick M € N) N N such that N € M and M Nw; = j. Then
MNK =NnNK. Since j is not redundant. This is a contradiction.

(cofinal) Suppose that {: € I | 19 < 7 is not redundant} is countable. Since g is not redundant, we have
the greatest element ¢ in {i € I | iy < 7 is not redundant}. Then for any N € N withi < NNw,, there must
exist M € NyN N such that M Nw; =iand MNK = NNK. Hence {N'NK | N' e NyNN,i < N'Nuw;}
is of size one. Since N, is €-directed, we conclude {N'N K | N’ € N),i < N'Nw;} is of size one. Thus
K = NN K for (any) N € N, with N Nw; = i. Since K is of size greater than or equal to ws, this is a
contradiction.

jm}

We introduce semimorasses from [Ko]. We understand that X; # X in the item (5), (b).
5.4 Definition. (JKo]) Let F C [A\J*. We call F is an (w1, A)-semimorass, if

(1) (F, Q) is well-founded.
(2) Forall X € F,F|X ={Y € F | Y C X} is of size countable.

(3) Forall X,Y € F, if rank(X) = rank(Y), then 0.t.(X) = 0.t.(Y) and F|Y = {fxy “Z | Z € F| X}, where
fxy : X — Y is the order isomorphism.

(4) For all X,Y € F, there exists Z € F such that X,Y C Z.
(5) For all X € F, either (a) || (b).
(a) F|X is C-directed.
(b) There exist X7, X7 € F|X such that
o rank(X,) =rank(X3).
o X = X;UX,.
e fx,x, : X1 — X is the order isomorphism that is the identity on X; N X5.
o FIX = {X1, X2} UF|X, U F|Xs.
(6) UF = A
5.5 Theorem. Let N be a matrix that satisfy LD(2) and be complete. Then for all A with ws < X < &,
there exists an (w;, A)-semimorass.

Proof. We use K as a copy of A\. We follow [D] in the rest of the proof. Let F = {NNK | N € Nj,ip <
N Nwy, N Nwy is not redundant }. Then this F works. To check 6 items, we prepare

Claim 1. For X € F,say, X =NNK,

FIX={MNK|MeN,NN,ig < MNuw is not redundant}.

Proof. Let Y € F|X. Then there exists N € N, such that Y = NN K, iy < N Nw; is not redundant.
Since NN K =Y ¢ X = NN K, we know that N Nw; < NNuw;. Pick M’ € N, such that N € M’



and M'Nw; = NNw;. Let ¢: (M',€) — (N,€) be the isomorphism that is the identity on M’ N N.
Since NNK =Y CcMnNXCMNN, ¢NNK)=NNK. Let M = ¢(N). Then M € Ny NN and
M Nw; =NnNuw; is not redundant. MNK =¢“NNK)=NNK=Y.

a]

Claim 2. Let N,N' € N, ig < NNw; = N'Nw; be not redundant. Let ¢ : (N, €) — (N’, €) be the
isomorphism that is the identity on N N N’. Then

{¢4Y | Y € FI(NNK)} = FI(N' N K).

Proof. Since FIINNK)={MnNK | M eN\NN, iy <MnNuw; is not redundant}, we have

{oY | Y e FIINNK)} = {¢*(MNK) | M € NxN N, iy £ M Nw is not redundant} = {¢(M) N
K| MeNNN,ig < MNuw; is not redundant} = {M'NK | M' € Nou N N', ig < M’ Nw, is not
redundant} = F|(N' N K).

Now we begin to check the items in the definition of semimorasses.

{1): Let (N,NK | n < w) be C (proper inclusion-ship)-descending elements of F. But N, 1NK C N,NK
entails N,41 Nwy < Np Nwy. This is impossible. Hence (F, C) is well-founded.

(2): Let X € F,say, X = NN K. We know that FI(NNK)={MNK | M e N\NN,ig < MNuw is
not redundant}. Hence F|X is of size countable.

(3): Let X =NNK,Y = MNK € F with rank(X) = rank(Y). Then N Nw; = M Nw; holds. Some
details follow. If N Nw; < M Nw;, then there exists M’ € N, such that N € M’ and M' Nwi = M Nwy.
Let ¢ : (M',€) — (M, €) be the isomorphism that is the identity on M’ N M. Then (F|(M'N K),C) and
(FI(M N K),C) are isomorphic via Y — ¢*Y. Since N € Ny N M’ and 49 £ N Nw; is not redundant, we
have NN K € F|(M'N K). Then rank(N N K) < rank(M’ N K) = rank(M N K). This is a contradiction.
Similarly, if M Nw; < N Nw;, then we would have rank(M N K) < rank(N N K). Hence we must have
NN W] = M ﬂwl.

Since NNw; = MNw,, we have an isomorphism ¢ : (N, €} — (M, €) that is the identity on NNM. Since
¢“(NNK)=MnNK, we have 0.t.(X) = 0.t.(NNK) = 0.t.(MNK) = 0.t.(Y). The order isomorphism fxy
from X onto Y is the restriction ¢[X. Hence, we know that F|Y = {¢“Z | Z € F|X} = {fxv*“Z | Z € F|X}.

(4): Let X = NNK,Y = MNK € F. Since N, is €-directed and {i € I | i is not redundant } is cofinal
in wy, there exists M’ € N, such that N,M € M’ and M’ Nw; is not redundant. Let Z = M’ N K. Then
X,2YCZand Z € F.

(5): Let X =NNKeF Let J={j € (NNwi)NI|ip <7 isnot redundant}. We have several cases.
Case 1. J = 0: Then F|X = 0 and is vacuously C-directed.

Case 2. J is cofinal below N Nw;: We show F|X is C-directed. Since N Nw; € I*, we must have
N =UWN.NN). Let NNNK,N"n K € F|X. Then we may assume that N', N" € N. Hence there exist
N e Nx\NN with N', N € N"'. Since j that are not redundant are cofinal below N Nw;, we may assume
N""N wy is not redundant. Hence N'NK,N"NK C N"NK € F|X.

Case 3. J is non-empty and bounded below N Nwi: Let j; be the max of J. We have several subcases.

Subcase 1. N = |J(NMaxN N): Let us pick any M € Ny NN with M Nw; = j;. Then we know that
FIX={MNK}UF|(MnNK). Hence F|X is trivially C-directed with the greatest member M N K.

Subcase 2. NN N = {N;}U (N N N;p). Since we have NN K = Ny N K, N Nuw; is redundant. But
N Nw; is not redundant. Hence, this case does not occur.

Subcase 3. There exist N1 and N3 such that Ny # Ny, Ny Nw; = NaNwi, and NyNN = {N;, N} U
(Ma N N1) U (Ny N Np): We have several subsubcases.
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Subsubcase 1. N;NK = NoNK: Since NNK = (NyNK)U(N:NK), we have NNK = Ni\NK = NaNK.
Hence N Nw; is redundant. This case does not occur.

subsubcase 2. N; Nw; = Ny Nw; < 71: Since there exists no elements of I N (N1 Nwy, N Nwy), this
case does not occur.

Subsubcase 3. Ny NK # NoN K and j; < Ny Nw; = N2 Nwy: Fix (any) M; € N N Ny such that
M) Nw; = 7 and fix (any) My € NN N, such that MaNwy = ji. Since M1 Nw; = Mz Nwy, there exists an
isomorphism ¢ : (M}, €) — (Mg, €) that is the identity on M; N M. Now we know that NyNK = MiNK,
FIIMNK)=F|(MiNnK), NaNK = M;NK, and F|(No N K) = F|(M; N K). Let X; = M1 N K and
X, = M;N K. Then X1, X3 € F, X1 # Xz, rank(X;) = rank(X3), X = X; U X2, ¢[X) is the isomorphism
from X, onto X3, ¢[X; is the identity on X) N X3, and F|X = {X;, X2} U (F|X1) U (F|X2).

Subsubcase 4. NyNK # N, NK and j; = Ny Nwy; = NaNwp: Let X3 =N NK and Xo = NN K.
Then these X; and X, work.

(6): Since K = {f(&) | f € Figur } = {(&)N | N € N3, NNwy = ig} = U{NNK | N € Ny,i0 < NNuw1}
and {j € I | ip < j,j is not redundant} is a cofinal in w;, we have K = J F.

o

§6. A simplified (w;, 1)-morass by a matrix that satisfies LD(2) + A

We consider an extra requirement on matrices to get simplifies morasses of [D]. For the sake of conve-
nience, we recall the definition of a simplified (w;, 1)-morass, which is not necessarily neat, as a collection of
countable subsets of w,.

6.1 Definition. ([D]) Let F C [wp]S¥. We call F is a simplified (w1, 1)-morass, if
(1) (F,c) is well-founded.
(2) Forall X € F,F|X = {Y € F|Y C X} is of size countable.

(3) For all X,Y € F, if rank(X) = rank(Y), then o.t.(X) = 0.t.(Y) and F|Y = {fxy“Z | Z € F|X}, where
fxy : X — Y is the order isomorphism.

(4) For all X,Y € F, there exists Z € F such that X,Y C Z.
(5) For all X € F, either (a) || (b).
(a) F|X is C-directed.
(b) There exist X;, X2 € F|X such that
o rank(X;) =rank(X>).
e X N X, is a proper initial segment of both X; and X,.
e X; C min(X; \ (X1 N X2)).
e For all W € F|X, either W C X, || W C X,.
6) UF = wa.
Since morasses require A-systems, we need to strengthen our matrices.
6.2 Theorem. Let A be a matrix that satisfy LD(2) + A. Then there exists a simplified (w;, 1)-morass.
Proof. The proof is identical to the one for semimorasses. We consider a copy K of w;. Hence,

(1) ip € I = {MnNw, | M € N}, (if wg < &, then & < (wg)¥), (if wa = &, then & < o(Ny,)), and
K ={f() | f € Figun} € [w2]**.
(2) I N € N with N Nw; = 4o, then NN K = {Z" }, where & = (cn)~'(&). (one-point)
(3) For all N € N withip <%= NNuwy,
NNEK ={(cn)" o f(&) | f € Figi} = {(€)" | No € NN N, NoNwy =0}



= {NNK | NeNNN,iy<NNw}

(4) Forall NN e NV, if ig < NNw; = N'Nw, then (N,€, KN N) and (N, €, K N N') are isomorphic.
(6) For all NN’ € N with ip < NNw,N' Nw, f NNK C N'N K (proper inclusion-ship), then

NNw; < N'N wi.

6.3 Definition. Fori € I = {NNw; | N € N'} with i < 4, we call 1 is redundant, if there exists (N, N)
suchthat NNNeN,ig< NNwi<i=NNwiand NNK=NnNK.

We observed

6.4 Proposition. Let i € I with ig < 4. The following are equivalent.

(1) 7 is redundant.
(2) For all N € N with N Nw; =1, there exists N € N N N such that ic < NNw, and NNK = NNK.
0

6.5 Proposition. () IfN e N, Ne NNN,ig < NNwi,and NNK = NNK, thenforall M e NNN
with NNw; < MNwy, wehave MNK=NNK.
(2) {i € I'| ip <1 is not redundant} is a closed and cofinal subset of w;.
a)

Let F = {NNK|N € N,igp < NNuw is not redundant}. We observe that this F is a simplified
(w1, 1)-morass on K. We prepared

Claim 1. For X € F,say, X =NNK,

FIX={MnK|MeNNN,ig < Mw is not redundant}.
o

Claim 2. Let N,N' € M, ig < NNw; = N' Nw; be not redundant. Let ¢ : (N, €) — (N', €) be the
isomorphism that is the identity on N N N’. Then

{¢“Y | Y € FI(NNK)} = F|(N'NK).

Now we begin to repeat checking 6 items. In item (5), it gets a little new.

(1): F c [K]S¥ is well-founded with respect to the proper inclusion-ship C. To see this, let (N,NK | n <
w) be a C-descending sequence. But N,4+1NK C N,NK entails Np,+1Nw; < NyNw;. This is a contradiction.

(2): For X € F,say, X = NNK, we have F|X = {MNK | M € FNN,iy < M Nw, is not redundant}.
Hence F|X is of size countable.

(3): Let X = NNK,Y = MNK € F with rank(X) = rank(Y). Then N Nw; = M Nw; holds. Some
details follow. If N Nw; < M Nwy, then there exists M’ € N such that N € M’ and M' Nw; = M Nwy.
Let ¢ : (M',€) — (M, €) be the isomorphism that is the identity on M’ N M. Then (F|(M'NK),C) and
(F|(M N K),C) are isomorphic via Y — ¢“Y. Since N € NN M’ and iy < N Nw; is not redundant, we
have NN K € F|(M' N K). Then rank(N N K) < rank(M’' N K) = rank(M N K). This is a contradiction.
Similarly, if M Nw; < N Nwj, then we would have rank(M N K) < rank(N N K). Hence we must have
NNwy =MnNuw;.

Since NNw; = MNwy, we have an isomorphism ¢ : (N, €) — (M, €) that is the identity on NNM. Since
¢“(NNK)=MnNK, we have 0.t.(X) = 0.t.(NN K) = 0.t.(M N K) = 0.t.(Y). The order isomorphism fxy
from X onto Y is the restriction ¢[X. Hence, we know that F|Y = {¢“Z | Z € FIX} = {fxv“Z2 | Z € F|X}.
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(4): Let X = NNK,Y = MNK € F. Since N is €-directed and {i € I | ip < 4,1 is not redundant} is
cofinal in wy, there exists M’ € N such that N,M € M’ and M’ Nw; is not redundant. Let Z = M'N K.
Then X, Y C Zand Z € F.

(5): Let X = NNK € F. Let J = {j € (NNwy) NI | ip < j is not redundant}. We have several cases.
Case 1. J = 0: Then F|X = 0 and is vacuously C-directed.

Case 2. J is cofinal below N Nw;: We show F|X is C-directed. Since N Nw; € I*, we must have
N =JWNN). Let NNNK,N"NK € F|X. Then we may assume that N', N” € N. Hence there exist
N" e NON with N',N” € N'". Since j that are not redundant are cofinal below N Nw,, we may assume
N'" N w, is not redundant. Hence N'NK,N'NK c N nK € F|X.

Case 3. J is non-empty and bounded below NNwy: Let j; be the max of J. We have several subcases.

Subcase 1. N = |J(M N N): Let us pick any M € NN N with M Nw; = ji. Then we know that
FIX ={MNK}UF|(MnNK). Hence F|X is trivially C-directed with the greatest member M N K.

Subcase 2. There exist N; and N, such that Ny # Nz, Ny Nw; = NoNwy, NNN = {N,N2}U (NN
N)U (N N DNy), and {N; Nwz, N2 Nws} forms a A-system: We have several subsubcases.

Subsubcase 1. N;NK = N;NK: Since NNK = (NiNK)U(N,NK), we have NNK = Ni\NK = N2NK.
Hence N Nw; is redundant. This case does not occur.

subsubcase 2. N; Nw; = NaNw; < j1: Since there exists no elements of I N (N1 Nwy, N Nwi), this
case does not occur.

Subsubcase 3. NN K # NN K and j; < Ny Nwi = Np Nwi: Fix (any) M; € N N N; such
that M; Nw; = ji and fix (any) My € N N Nz such that M2 Nw; = j1. Since My Nw1 = Mz Nwy,
there exists an isomorphism ¢ : (M), €) — (M2, €) that is the identity on M) N M,. Now we know that
N]ﬂK = Man. NgﬂK = Man, and so Man 7,6 MzﬂK. Since MlﬂK =N10K= (NanQ)nK
and MoNK = NoNK = (NaNwe) NK, {Mi1NK,MyN K} forms a A-system with the non-empty tails.
Let X; = MinK and Xy = M;N K. Then X;,X; € F, rank(Xl) = rank(Xz), X = X, U X,, d)[Xl
is the isomorphism from X; onto X3, ¢[X; is the identity on X; N X3, {X), X2} forms a A-system, and
FIX = {X1, X2} U (F|X1) U (F| Xa2).

Subsubcase 4. NN K # N2 NK and j; = Ny Nw; = NaNw;: Let X3 =Ny NK and X = NaN K.
Then these X; and X2 work.

(6): Since K = {f(€0) | f € Fiowr} ={(E)N | Ne N,NNwy =ip} = {NNK | N €N,ip < NNwi}
and {j € I | ip < 4,7 is not redundant} is a cofinal in w;, we have K = Ur.
o

§7. Forcing a matrix A

We force a matrix A that satisfies LD(2) + A and is A-complete.

7.1 Premise. In the ground model V, let s be a regular cardinal with £ > w;. We assume the
continuum hypothesis (CH) in V.

Our p.o. set P is o-Baire and has (CH) the wy-c.c. For p € P, p is of size countable and consists
of countable subsets N of H, such that (V,€) are elementary substructures of the structure (Hy,€). We
require that each (N, €) has an isomorphic copy (N', €) such that {N Nwz, N'Nws} forms a A-system and
the (necessarily unique) isomorphism is the identity on the intersection N N N'.

7.2 Proposition. (CH) Let M = {N € [H(]“ | there exists N’ # N such that {N Nwz, N' Nwe}
forms a A-system, (N, €) and (N, €) are isomorphic countable elementary substructures of (Hy, €) and the
isomorphism ¢ is the identity on N N N’}. Then M is stationary in [H,]“.

Proof. Let F : [H<¥ — H,. For each i < wy, fix a countable elementary substructure (N;, €) of
(Hg, €) such that i € N; is closed under F. By CH, we may assume that (NV; Nwp | i < w;) forms a
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A-system. We may also assume that for any ¢ # j, (N;, €,1) and (Nj, €,5) are pair-wise isomorphic and
that the isomorphism is the identity on N; N N;. Pick any ¢ < j and set N = N; and N’ = N;.
o

As in [B-S] and [Ko|, we require that the conditions are the possible initial segments of A in the following
sense.

7.3 Definition. Let p € P, if

(1) pis a countable subset of M such that
e There exists the top element NP € p such that p = {NP} U (pN NP).
e For all N € pN NP, there exist N' € pN NP such that N'Nw; = NNw; and {N Nwg, N'Nw,} forms a
A-system.
(2) For all N,N' € p, if NNw; = N'Nwy, then two structures (N,€,pN N) and (N',€,p N N') are
isomorphic and the isomorphism ¢ is the identity on the intersection N N N'.
(3) Forall N,N' € p, if NNw; < N'Nwi, then there exists N € p such that N € N and NNw; = N' Nwy.
(4) For all N € p, (exclusively) either (0) || (limit) || (suc) holds, where
(0) pN N = 0.
(limit) N = J(pN N).
(suc) There exist N1 # Nj such that Ny Nwy = NaNwy, pN N = {N1,N2} U (N N1) U (pN Ny), and
{N1 Nwz, Ny Nwy} forms a A-system.
For p,q € P, we set ¢ < p, if NP € g and ¢ N NP = pn NP,

7.4 Proposition. Let p € P and N, N’ € p.

(1) If N'Nw; < N Nuwi, then there exists N € p such that N € N and NNw; = N' Nw.
(2) If N € N’ and there exists N € p with NNw; < N”"Nw; < N'Nwi, then there exists N € p such that
NGEGN, and_]‘[ﬂwlzN”ﬂwl.

Proof. (1): Take M € p such that N € M and M Nw; = NNw;. Let ¢ : (M,€) — (N,€)
be the isomorphism and set N = ¢(N'). Since N’ € M and N’ is countable, we have N’ ¢ M. Then
N'Nw; € MNN and so N'Nw; = ¢“(N'Nwy) = ¢(N'Nwy) = ¢(N')Nwy = NNw;. Hence NNw; = N’ Nw;
and N = ¢(N') € N.

(2): Take M € p such that N € M and M Nw; = N Nw;. Then take M’ € p such that M € M’ and
M'Nwy = N'Nwy. Let ¢: (M',€) — (N',€) be the isomorphism. Let N = ¢(M). Then N € pn N'.
Notice that N € NN M’ holds and so ¢(N) = N. Now it is routine to show this N works.

o

It is straightforward to observe the following.

7.5 Proposition. Let p,q € P.
(1) {NNuwy | N € p} is a countable closed subset of w; with the max NP Nw;.
(2) If g < p, then {NNw; | N € p} is an initial segment of {N Nw; | N € g}.

Proof. (1): Let i < wy be a limit ordinal such that {N Nw; | N € p} Ni is cofinal below i. Since
¢ < NP nwy, we can fix N € p such that N Nw, is the least with ¢ < N Nw;. Then we may show that
t = N Nuw; as follows. On the contrary, suppose ¢ < N Nw;. Then check in three cases (0) || (limit) || (suc)
with respect to this V. In either case, we have a contradiction. Hence i = N Nw;.

(2): We get no new ordinals N Nw; with N € ¢ strictly below N? Nw;.

We record a typical construction of conditions in P.
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7.6 Lemma. Let p € P. Let M = NP and let M’ be such that M’ # M, {M Nwy, M' Nw;} forms a
A-system, two elementary substructures (M, €) and (M’, €) of (H,, €) are isomorphic and the isomorphism
¢:(M,€) — (M',€) is the identity on M’ N M. Extend ¢(M) = M’ and ¢(p) = ¢p“(pN NP) U {M'}.

(1) ¢(p) € P and pn M' = ¢(p) " M.
(2) If M € M such that p, #(p) € M", then pU ¢(p) U {M"} € P.

Proof. First note that M’ € M by assumption. Since M ¢ M and p = {M}U (pNM) ¢ MU {M},
#(M) and ¢(p) are well-defined. We can check that ¢(p) = ¢“p and that for all N € MU{M}, ¢(p)N¢p(N) =
¢“(pN N) as follows.

¢(p) = ¢“(PNNP)U{M'} = ¢“(pN M) U {¢(M)} = ¢“({M} LU (pN M)) = ¢“p.
For N = M,
¢(p) NG(N) = ¢(p) N M' = (¢“(PNNP)U{M'}) N M' = ¢“(pN NP) = ¢“(pN N).
For N € M = NP,

¢(p) N@(N) = (¢“(PNNP)U{M'}) N $(N) = ¢“(pN NP) N (N) = ¢“(pN N).

(1): We check 4 items to conclude ¢(p) € P.

¢ @(p) = ¢“p the set of point-wise images is countable. For any N € p, (¢(N), €) is a countable elementary
substructure of (Hy,€). The restriction ¢[N : (N,€) — (¢(N),€) is an isomorphism that is the
identity on N N ¢(N). By assumption, we have ¢(NP) = M’ € M. For ¢(N) € ¢(p) N ¢(N?), we have
N' € pNNP such that N'Nw; = NNw; and { NNw3, N'Nw, } forms a A-system. Let o : (N, €) — (N, €)
be the unique isomorphism that is the identity on N N N’. Notice that ¢ € M. Then ¢(N') # ¢(N),
{#(N)Nwe, ¢(N'}Nwy} forms a A-system, and ¢(a) : ($(N), €) — (¢(N'), €) is an isomorphism that is
the identity on ¢(N)N@(N'). Hence ¢(N) € M. And so ¢(p) = {#(NP)}U(é(p)N@(NP)) C M. For all
#(N) € ¢(p)N¢(NP), we have seen that there exist ¢(N') € ¢(p)Nd(NP) such that ¢(N)Nw; = ¢(N')Nwy
and {#(N) Nwz, ¢(N') Nwy} forms a A-system.

e For ¢(N),¢(N') € ¢(p) with ¢(N)Nw; = ¢(N')Nw;, we have seen that ¢(o) : (p(N), €) — (¢(N'), €)
is an isomorphism that is the identity on ¢(N) N @(N'). Since ¢p(o)“(¢(p) NH(N)) = ¢“(c“(pNN)) =
¢“(pNN') = ¢(p) N $(N'), we conclude ¢(a) : (p(N), €, ¢(p) NG(N)) — (¢(N'), €,6(p) N ¢(N')) is an
isomorphism that is the identity on ¢(N) N ¢(N’).

o Let ¢(N)Nw; < ¢(N’)Nw;. Then NNw; < N'Nw;. Hence there exists N € p such that NV € N and
NNw; = N'Nw;. Hence ¢(N) € ¢(p), $(N) € ¢(N), and ¢(N) Nw1 = ¢(N') Nwy.

e Let ¢(N) € ¢(p). If Nnp =10, then ¢(N)N¢(p) = 0. If N =J(pN N), then ¢(N) = U(¢(p) N ¢(N)).
If there exist N7 # N such that Ny Nw; = NaNwy, {N1Nwz, NoNws} forms a A-system, and pN N =
{N1, N2} U(pN N1) U (pN Nz), then ¢(N1) # ¢(N2), ¢(N1) Nwi = ¢(N2) Nwi, {$(N1) Nwz, ¢(N2) Nwa}
forms a A-system, and ¢(p) N ¢(N) = {¢(N1), d(N2)} U (¢(p) N ¢(N1)) U (¢(p) N ¢(N2)). Next, since
p={M}N({ENM), ¢) = {M'}U(s(p)NM'),and M Nw; = M'Nw;, we have pN M' =pNnMNM' =
(p“p)NMNM =¢p(p)Nn MM =¢(p)NM.

(2): We check 4 items to conclude ¢ =pU ¢(p) U {M"} € P.

e Since p C M, ¢(p) C M, and M" € M, we have ¢ C M. Since ¢ N M" = p U ¢(p), we have
g={M"}u(gnNM"). For all N € gn M" = pU ¢(p), we know that there exists N' € gN M" such that
N'Nw; = NNuw and {N Nwz, N' Nw,} forms a A-system.

e Since qgNM = (pUd(P)NM = (NM)U(@PINM)=(pPNnM)U@pNM NM)=pnM and
aNM’ = (pUG(R)NM’ = (PNM")U($(p)NM’) = ($(p)NMNMU(S(PINM') = $(p)NM' = $“(pN M),

we have
¢: (M, e,qNM) — (M',e,qn M')



is an isomorphism that is the identity on M N M'. For N € pN M, we have NN = (N M)NN =
(PNM)NN =pNN and gN¢(N) = (gNM')N$(N) = (¢(p) N M') N ¢(N) = ¢(p) N $(N). Hence for
all N,N' € pN M with N Nw; = N’ Nwy, the maps

o:(N,e,qNN) — (N',€,gnN'),

¢(0) : ((N), €,4N¢(N)) — ($(N'),€,qaN $(N')),
¢IN: (N,€,¢NN) — (¢(N),€,9N $(N)),
¢(0) o ¢[N : (N,€,gNN) — (¢(N'),€,9N ¢(N'))
are all isomorphisms that are the identities on the intersections.
® M"Nuw; is the max in {N Nw; | N € ¢} and pU ¢(p) c M”".

o For any N € p, we have seen that gN N = pN N and ¢N ¢(N) = ¢(p) N ¢(N). Hence if pN N = 0,
then gN N =gN¢(N) =0. If N = J(pN N), then N = [J(gN N) and ¢(N) = J(¢(p) N ¢(N)) =
Ul@N @(N)). If Ny # Noy NyNwy = Ny Nwy, {N1 Nwz, N2 Nwy} forms a A-system, and pN N =
{N1, N2} U (pN N1)U (pN Np), then gNN =pN N = {Ny,Na} U (gN N1) U (¢N Ny) and g N $(N) =
¢(P)NG(N) = {$(N1), 6(N2) }U(d(p)N(N1))U(d(R)NS(N2)) = {d(N1), (N2) }U(gne(N1))U(ane(Na)).
Since NP Nwy = ¢(NP) Nwy, {NP Nws, (NP) Nwe} = {M Nws, M' N wy} forms a A-system, and
gNM" = (pNM") U (g(p) N M") = pU ¢(p) = {NP} U (p N NP) U {¢(NP)} U (¢(p) N $(NP)) =
{NP,¢(N?)} U (gN NP)U (g N ¢(NP)). Thus M" satisfies (suc).

7.7 Lemma. For any p € P and e € H,, there exists ¢ < p such that e € N9.

Proof. Since NP € M, there exists M’ such that M'Nw; = NPNwy, {NPNwz, M'Nw,} forms a A-system,
(M’,€) and (N?, €) are two isomorphic countable elementary substructures of (Hy, €) and the isomorphism
¢ : (NP, €) — (M’, €) is the identity on NP N M'. Let M" € M with e,p, ¢“(pN N?) U {M'} € M". Then
we have seen that ¢ = pU (¢“(p N NP) U {M'}) U {M"} € P. This q¢ works.

O

7.8 Lemma. P is o-Baire.

Proof. Let p € P. Let p, P, Hc € M < Hg, where 0 be a sufficiently large regular cardinal and | M | = w.
We may assume that M N H, € M. Let (p, | n < w) be a (P, M)-generic sequence with p; = p. Hence
HeNM = J{NP~ | n <w} and so NP» Nwy’s are cofinal below M Nw;. Let ¢ = {MNH,}UU{pn | n < w}.
Then this ¢ € P and so P is o-Baire. Some details follow.

e Foralln <w, p, C Mand MNH, € M. Hence ¢ ¢ M. M N H, is the top element of g, as
gN(MNHc) =U{pn | n <w}andsoq = {MNH}U(@N(MNH,)). For all elements N € J{p, | n < w},
say, N € p, MNP, there exists N' € p, N NP such that N'Nw; = NNw; and {N Nwa, N'Nw,} forms
a A-system.

e Let N,N' € gqn(MNH,), say, NN’ € p,. If NNw; = N'Nwy, then (N, €, p, N\N) and (N',€,pnNN")
are isomorphic and that the isomorphism (N, €,p, N N) — (N', €,p, N N') is the identity on N N N'.
Since gN N = p, NN and ¢N N’ = p, N N’, the map ¢ is an isomophism from (N, €,q N N) onto
(N',€,gN N").

o Let NNN' €¢q. f NNwy < N'Nwy < MNwy, then N,N € pr, for some n < w. Hence there exists
N €ppsuchthat Ne Nand NNw; =N'Nw;. f NNw; < MNw;y, then N € M N H,.

® Let NV € g. Suppose first N € p, for somen < w. If p, "N =0, then NN =p, NN = . If
N =U(pn N N), then N = J(pr, N N) = |J(g N N). If there are Ny # Ny such that Ny Nw; = Ny Nwy,
{N1Nwa, Na Nwy} forms a A-system, and p, N N = {Ny, N2} U (p, N N1) U (pp, N Ng), then gN N =
PN = {N1, Na} U (pn N N1)U (pn N N2) = {N1, N2} U (gN N1)U(gN Nz). Suppose next N = M N H,.
Then N = JU{pn | n < w} =(gN N). Namely M N H, satisfies (limit).

95
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7.9 Lemma. (CH) P has the ws-c.c.

Proof. Let (p; | i < w3) be a list of conditions. We may assume that (N Nws | i < wp) forms a
A-system. Hence for all i # j, NP # NPi. We may also assume that for all i # j, (NP, €,p; N NP+) and
(NP:,€,p; N NPi) are isomorphic and the isomorphisms are the identities on the intersections N7 N NP7,
Let M € M such that p;,p; € M. Let ¢ =p; Up; U{M}. Then g€ P and q < pi, p;.

o

~ 7.10 Lemma. Let G be P-generic over the ground model V. In the generic extension V[G], let
N =|JG. Then this N is a matrix that satisfies LD(2) + A with H = HY .

Proof. By genericity. We mention that for any N € N, say, N € p € G, we have NNN=pnN.

The matrix A is A-complete.

7.11 Lemma. In V[G], let (e; | 7 < wz) be a sequence of elements of H = HY. Then there exist
N,N;,N; € N and i < j < wy such that
(1) NiNw; = N2Nwy, {N1Nws, NaNw,} forms a A-system, and NNN = {N1,N2}U(NHN1)U(N0N2).
(2) e; € Ny, ej € Na, and (N1, €,¢e;) and (N2, €, €;) are isomorphic.

Proof. Repeat the proof of the ws-c.c.

§8. A construction along a matrix

We present a construction along a matrix AV that is a complex next to the ordinals. While our construc-
tion is a direct one, but it is weaker than [D] and [I], since we assume that the relevant matrix is A-complete.
We make use of this A-completeness to force a sort of diamond by the Cohen forcing Fn(w1,w) that adds a
new subset of w; by the finite conditions.

8.1 Lemma. Let A be a matrix that satisfy LD(2) + A and be A-complete. Let Ko = {f(&) | f €
Fipw,} € w2 be a copy of wy along N. Then in the generic extension by the Cohen forcing Fn(w,w), we
have a choice function F : N — K, and a flag E: N' — 2 such that
(1) For any N,M € N, if i < NNw; = M Nw, then (N, €, F(N), E(N)) and (M,e,F(M), E(M)) are

isomorphic.

(2) For any one-to-one list (§; | i < wg) of elements of K5 and e € 2, there exist N, N;, N, € A and

i < j < wg such that

e Ny # Np,ig £ NiNnw; = N Nw, {N1 ﬂKz,NzﬂKz} forms a A-system, NNON = {Nl,Ng}U (Nﬁ

N1) U (N n Nz).

o F(Nl) = 6,‘, F(Nz) = {j, and E(N) =ée.

Proof. Let p € P, if p= (F?, EP) such that
(1) FP and EP are finite functions of the same domain that is included in {NNwy | N € N,ig < NNw }.
(2) For all i € dom(F?) = dom(EP), FP(i) € N;N Kz = {f (%) | f € Fip:} and EP(i) € 2.

For p,q € P, we set ¢ < p, if F¥ 2 FP and E9 2 EP.

Let G be P-generic over V. In V[G], let F¢ = J{FP? | p € G} and E® = U{EP | p € G}. Then

FSG and ES are total functions with the domain {N Nw; | N € N,ip < NNuw}. For N € N with
io € NNuwy, let F(N) € NN K, and E(N) € 2 such that (N, €, F(N), E(N)) is isomorphic with (N, €




,FE(N Nw1), ES(N Nw;)), where N denotes the transitive collapse of N. Then for all N and M such
that N,M € N and 49 < NNw; = M Nuwi, by definition, the two structures (N,€,F(N), E(N)) and
(M,e,F(M), E(M)) are isomorphic.

Claim. For any one-to-one list (§; | i < wy) of elements of K and e € 2, there exists N, N1, Ny € N
and 7 < j < wy such that

® Ny # Np, ig < NiNwp = NaNwy, {Ny N Ka, Na N K} forms a A-system, N NN = {Ny, N2} U (NN
Ny u (N n Nz)
L4 F(Nl) = fi, F(Ng) = §j, and E(N) = €.

Proof. Let p|l-p“(&; | i < wy) be a one-to-one list in K7 and é € 2”. For each i < wy, let p; < p, & € K»
and e; € 2 such that p; |-p“¢; = ¢ and € = ¢;”. Consider a sequence ((p;,&;,€;) | ¢ < wg) of elements of H.
Since NV is A-complete, there exist N, N;, N2 € N and i < j < ws such that
(1) N1 # Na, N1Nw; = N Nwe, {N1 Nwa, N2 Nwsy} forms a A-system, and N NN = {N1,N2} U(NM'N

Ni)UWNNNg).

(2) Pi=pj=r,¢e= €j =€, piv&i € Nl! pjvgj € N25 and (vaeagi) and (Nz,e,fj) are iSOIIlOI'phiC.

Since ’I"”“P“fi = éi # éj = {j”, we must have & # fj. Since (N],E,Nl n Kz) and (Nz, e, Na N Kz)
are isomorphic and the isomorphism is the identity on N; N Ny, we must have &; € (N1 N K3) \ N; and
§; € (N2N Kz2) \ N1. Hence, {N; N K3, N; N K,} forms a A-system. Let ¢ = (F9,E%), where F9 =
F7 U {(N1 Nwy, the Ny—collapse of &), (N Nwy, Free)} and E9 = E™ U {(N1 Nwy, Free), (N Nwy,e)}. Then
alFp F(Ny) = &, F(Ny) = £, and B(N) = ¢”.

O

8.2 Theorem. Let N be a matrix that satisfy LD(2) + A. Let Ko = {f(&) | f € Figuy} C w3 be a
copy of wy along NV. Let there exist a choice function F : N' — K5 and a flag E : N' — 2 such that
(1) For any N,M € N, if ig < NNw; = M Nwy, then (N,€,F(N),E(N)) and (M, €,F(M), E(M)) are
isomorphic.
(2) For any one-to-one list (& | ¢ < wa) of elements of K, and e € 2, there exist NN, Ny,N; € N and
1 < j < wp such that
® N1 # Ny, o S NiNwy = Ny Nwy, {N1N Ky, NN K>} forms a A-system, NN N = {N;, N2} U (M N
N1)U (N N Ny).
o F(N1) =&, F(Ny) =¢;, and E(N) =e.
Then there exists an wy-Souslin tree.
Proof. We first provide an out-line,
Step 1. Construct (N = TN = (NN Ky, <N) | N € N,ip < N Nw,) such that

(1) TV is a countable tree such that if o <™V 3, then o < 8.

(2) If ¢ : (N,€) — (N',€) is the isomorphism, then N' N K, = ¢“(N N K3) and for all @, 8 € N N Ky,
ola) <N ¢(B) iff a <N 8.

(3) If N’ C N, then TV’ is a subtree of TV (for all o, 8 € N'N K3, a <V 8 iff o <V’ B).

(4) Exclusively either (0) || (limit) || (suc) holds.
(0) If Ngo € N with NgNw; = 1g, then TNo = ({(6_0_)N°},@)
(limit) If N = UV N N), then TN = (N N Ky, | J{<¥ | Ne NN N,ig < NNw;}).
(suc) Let there exist Ny, No € AN N such that N7 # Ny, Ny Nw; = Ny Nwy, {N1 N K2, N; N K3}
forms a A-system with possibly empty tails, and N NN = {N1, N2} U (N N Ny) U (VM N N,). We are
interested in the case F(N) # F(N;), where we may assume F(N;) < F(N,) as two ordinals. Now
we have two cases. If E(N) = 1, then F(N;) <V F(N;). If E(N) = 0, then F(N;) ¢ F(N;) and
F(Nz) £N F(Ny).
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Step 2. Let T = (K3, <7T) = (K3,J{<" | N € N,ip < NNuw;}). Then this T is an wp-Souslin tree.

Assuming Step 1, we show Step 2.

Claim. T = (K2, <7T) is a tree that is embeddable into the ordinals.

Proof. (irreflexive) If a <7 a, then a <V « for some N € N with ig < NNw;. But then a < a as an
ordinal. This is a contradiction.

(transitive) Let o <T 8 <T 4. Then a <¥ g <" v. Let N,N’ € N" € N. We have o <N" B <N o
and so a <" . Hence a <7 ~.

(comparison below a node) Let o <T v and 8 <7 . Then a <N yand B <V 4. Let NN' e N" e N.
Then o <N v and 8 <" « and so «, 8 are comparable in TV and so are in T.

(embeddable into the ordinals) Let o <7 3. Then o <V 3 and so a < 3.

Hence T = (K3, <7T) is a tree.

Claim. If A C T is an antichain, then | A| < wy.

Proof. To the contrary, assume that A is of size wy. Let (§; | ¢ < wz) be a one-to-one enumeration of A.
Let e = 1. Then there exist N, N;, N, € N and i < j < wp such that
o Ni,No e NN N, Ny # Ny, N1 Nuw, =N20W1,NQN={N],NQ}U(NﬂNl)U(NnNz).
[ ] F(Nl) = E,‘, F(Nz) = Ej, and E(N) =e=1.
By Step 1, since F(N,) = & # & = F(N2) and E(N) = 1, we have F(N;) <V F(N;) and so & <7 §;.

Since A is an antichain, this is a contradiction.
D

Claim. If B C T is a chain, then | B| < wa.

Proof. To the contrary, assume that B is of size wp. Let (§; | i < wp) be a one-to-one enumeration of
B. Let e = 0. Then there exist N, N;, N, € N and i < j < wq such that

e Ni,N; e NNN, Ny # Nay, NyNuwy = NoNwi, NNN = {N],NQ}U(NHN])U(NnNg).
[ F(Nl) = {,‘, F(NQ) = §j, and E(N) =e=0.
By Step 1, since F(Ny) = &; # §; = F(N2) and E(N) = 0, two different nodes ¢; and §; are incomparable
in the tree V. Then we conclude ¢; and £; are incomparable in the tree T. This is because, say, if &; <Tg;,
then £ <™’ ¢; for some N’ € N. Let N,N’ € N" € N'. Then & <™" ¢;. Since T" is a subtree of TV", this

would be a contradiction. Since B is a chain, this is a contradiction.
a

Claim. T is an w3-Souslin tree.

Proof. Let T, denote the a-th level of T'. If T,,, # @, then any element of T,,, gives rise to a chain B of
size wy. Hence T,,, = 0. Hence T is of height < w;. For each T, # @, since Ty is an antichain, T, is of size
at most w;. Since T is of size wsz, we conclude that T is an wp-tree. Namely, T is a tree of height w; with
each level of size at most w;. Since T has no antichain of size wy and no chain of size wy, T is an wy-Souslin

tree.
w
Proof of Step 1. Construct TV = (N N K3, <™) by recursion on 19 < N Nw; such that

(1) TV is a countable tree that is embeddable into the ordinals.
(2) f NNw; = N'Nwi, then (N,€,T N Ko, <V) and (N, €, N’ N Ky, </') are isomorphic.



(3) If N' C N, then TV is a subtree of TV.
(4) Exclusively either (0) || (limit) || (suc) holds.
(0) If No € N with Ny Nwy = 49, then TNo = ({(£5)N°},0).
(limit) If N = JNV N N), then TV = (NN Ky, J{<X | N e NN N,ig < NNw}).
(suc) Let there exist Ny, N € NN N such that Ny # Nz, Ny Nw; = NaNwy, {N1NK,3, N;NK,} forms a
A-system with possibly empty tails, and N’ NN = {N1, N} U(NNN1) U (N NNg). If F(N;) # F(Ng),
where we may assume F(N1) < F(N), and E(N) = 1, then TV = (N N Ky, <M U <M U <3).
Otherwise, TN = (N N K, <N U <M2). Here
* <3= O(F(N1)) x ([F(N2)']<x2 \ Ny).
e O(F(N)) ={6 e NinK, | (£ <M F(Ny)}.
o F(Nz)' is the <M2-least element £ such that £ € (Np N K3) \ Ny and € <Nz F(N,).
o [F(N2)]ewe ={§ € N2N K3 | € SN2 F(Ny)' || F(Np) <2 g}

Case (0): Let No € N with No Nw; = dp. We set TN = ({(&)N°},0), where No N K3 = {(&)™}.
Hence T™o consists of the single element. The T™o’s satisfy the induction hypothesis.

Case (limit): Let N = {JW NN). Set TN = (NN K, U{<X [NENNN ,ig < NNw}).
Claim. TV is a tree that is embeddable into the ordinals.

Proof. (irreflexive) If o <V @, then o <& o and so @ < « as an ordinal. This is a contradiction.

(transitive) Let o <V 8 <V 4. Then o <¥ 8 and 8 <& . Let N,N € NN e NN N. Then
a <N B < yandsoa<™ v. Hence a <V 1.

(comparison below anode) Let o <V yand 8 <V 4. Then o <X yand 8 <& . Let N,Ne N eNNN.
Then o <" v and 6 < + and so & and 3 are comparable in TV’ and so are in TV.

(embeddable into the ordinals) Let @ <V . Then o <& § and so « < 8.
w

Claim. If NNwi = N'Nwy, then (TV,<V) and (TV',<™') are isomorphic under the isomorphism
¢:(N,€) — (N, €).

Proof. We know that ¢“(N N K3) = N'N K,. Let o, € NN Ky and le¢ N € NN N. Then
O[N: (N, e) — (¢(_1_V_’), €) is the unique isomorphism. Thus by induction, o <& g3 iff ¢(a) <*X) $(8) and
so a <N Biff g(a) <N ¢(B).

Claim. If N C N (proper inclusion), then T is a subtree of TV

Proof. We must have N Nw; < NNw; and N € N. This is because, if N Nw; < N N wi, then there
exists N € N such that N € N’ and N'Nw; = NNuw. Let ¢ : (N,€) — (N, €) be the isomorphism.
Since NC NNN C NN N', we have N = ¢“N = N’ and so N C N C N' = N. This is a contradiction.
I NNw = NNw;. Then let ¢ : (N,€) — (N, €) be the isomorphism. Then N € NN N and so
N = ¢“N = N. This is a contradiction. Hence N Nw; < N Nw;. Then there exists N' € N such that
NeN and N'Nw; = NNwy. Let ¢: (N',€) — (N, €) be the isomorphim. Since N C N'N N, we have
N =¢“N = ¢(N) € N.

Let o, 5 € NNKj. If a <& j, then by definition, we have a <V 4. Conversely, if & <N $, then a <& 3
for some ¥ € NN N. Let N,Ne NNe NNN. Then o <™ B and it in turn, by induction, entails a <& 3.

|

Case (suc). Let (TN, <N) = (NN Kz, <™ U <M2 U <y), if E(N) =1 and F(N;) # F(N3), where we
may assume F'(N1) < F(N3). Otherwise, let (TN, <V) = (N N Ky, <Nt U <P2),
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Claim. TV is a tree that is embeddable into the ordinals.

Proof. (irreflexive) If o« <V @, then & <M o/ || @ <™ || @ <3 a. Then o < « as an ordinal. This is a
contradiction.

(transitive) Let o <V 8 < v. Want to show o <V «.

Case. <3 is not relevant: We provide details of two subcases.
Subcase 1. o <™ 3 <M2 4, Since {N1 N K3, N2 N K} forms a A-system with possible empty tails,
we have a, 83 € N; N N, and so, via the isomorphism, o <™ 8 <™z 4, Hence a <¥* y and so a <V 7.
Subcase 2. a <2 § <™ 4, We have o,3 € NN N, and a <M g <M ~, Hence a <™ v and so
a <M.
a]

Case. <3 is relevant: We have several subcases. The point is that { Ny N K3, N2N K3} forms a A-system
with possible empty tails.

Subcase 1. o <3 8 <3 7. By the definition of <3, we have & € N;, 8 € No\ N1, 8 € Ny, and
v € N2 \ N1. This case does not occur.

Subcase 2. a <3 8 <™ 4. This case does not occur.

Subcase 3. a <3 8 <™? 4. Then a <3 v holds.

Subcase 4. o <M 8 <3 7. Then a <3 v holds.

Subcase 5. o <2 8 <3 . Then a <3 v holds.

(comparison below a node) If & <” and B <" +, then a and 3 are comparable in TV.

Case. <3 is irrelevant: We provide details when oo <™ 4 and 8 <™? 5. In this case, a, 8, and v are
all in Ny N No. Hence 8 <™ v and so a and # are comparable in 771, Hence so are in TN,

Case. <3 is relevant: We have several subcases.

Subcase 1. a <3 and 8 <3 7. Then « and 3 are comparable in 7" and so are in TV.

Subcase 2. a <3« and 8 <™ . Since v € N3 \ Ny, this case does not occur.

Subcase 3. a <z yand 3 <Mz 4. If € Ny \ N, thena <3 3. If 3€ NiN Ny, then 8 <M a || a =
B || « <M B. In any case, a and 3 are comparable in TV,

(embeddable into the ordinals) Let o <N . Then in either case o <™ 3 || o« <N g3 || @ <3 B, we have
a<pf.
]

Claim. <V NN; =< and <V NN, =<Mz,

Proof. We have several cases.

Case 1. a, 8 € N; and a <2 8. Then, via isomorphism, a <™ 4.
Case 2. o, € N, and a <™ . Then, via isomorphism, a <2 3.
Case 3. a,8 € N, and a <3 8. This case does not occur.

Case 4. a,3 € N; and a <3 3. Then, via isomorphism, a <™ 3.

Claim. Let N € NN N. Then T is a subtree of TV.
Proof. We have several cases.

Case 1. N = N;. We have seen <”V NN} =</,
Case 2. N = N,. We have seen <" NN, =<2,
Case 3. N € N;. We calculate <¥=<M NN = (<¥ NnN}) NN =<V NN.



Case 4. N € Ny. We calculate <¥=<M NN = (<¥N NNy) NN =<V NN.

Claim. Let ¢ : (N, &, N1, N2) — (N', €, N{, N}) be the isomorphism. We have

’

¢: (N, e, TV, <Ny — (N, e, TV, <M.

Proof. Since ¢[N; and ¢[N, are the isomorphisms from N; (N2) onto Nj (N}), respectively, we have
¢: (N, & F(N), F(Nz), E(N)) — (N', €, F(N7), F(N3), E(N")).
Then F(N1) # F(N3) and E(N) = 1 iff F(N}) # F(N}) and E(N') = 1. By induction,
BNy = (N1, TN, <M) — (N, T, <M,

¢[Na : (Ng, TN2, <o) — (N}, TNz, <M3),

and
¢: (N,G,NOK2,<3) — (N’161N10K2$<’3)
are isomorphisms, where <3 considered with respect to F(Ny), F(N3), TVi, and TNz, Hence (N,€,TV, <N)
and (N', €, TN, <N') are isomorphic via ¢ : (N, €) — (N, €).
a)

This completes Step 1.

8.3 Question. (1) Develop a theory of finitely many sorted matrices that would serve as alternative
structures to some of higher gap morasses.

(2) Do we have any theory of non-homogeneous matrices, where no wsg-c.c. is expected, that would provide
another view to [F], [Kr|, [Mit], and [Mo] ?

(3) What kind of directions do [N] and [V-V] suggest, say, with respect to question (1) ?
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