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ABSTRACT. In this paper we review recent research on certain topological as-
pects of the vortex lines of stationary ideal fluids. We will mainly focus on
the study of knotted and linked vortex lines and vortex tubes, which is a topic
that can be traced back to Lord Kelvin and was popularized by the works of
Arnold and Moffatt on topological hydrodynamics in the $1960s$ . In this con-
text, we will provide a leisurely introduction to some recent results concerning
the existence of steady solutions to the Euler equation in Euclidean space with
a prescribed set of vortex lines and thin vortex tubes of arbitrarily complicated
topology.

1. INTRODUCTION

Our goal in this paper is to review some problems in fluid mechanics whose
common denominator is that the main object of interest are the integral curves of
the velocity and vorticity of the fluid, which are usually called stream and vortex
lines, respectively. Mathematically, these problems are extremely appealing because
they give rise to remarkable connections between different areas of mathematics,
such as PDEs, dynamical systems and differential geometry. From a physical point
of view, these questions are often considered in some approaches to turbulence and
hydrodynamical instability.

Regarding the study of the topological structure of stream and vortex lines,
one aspect that has attracted considerable attention is the existence of knotted and
linked lines. The interest in these questions goes back to Helmholtz, who discovered
the phenomenon of the transport of vorticity, and to Lord Kelvin, who developed
an atomic theory in which atoms were understood as thin knotted vortex tubes in
an ideal fluid: the ether. Although this atomic theory was abandoned after some
years, it was a major $bo$on for the development of knot theory.

In modern times, the main figures in the study of knotted stream and vortex lines
are Vladimir Arnold, who proved the celebrated structure theorem for steady flows
and introduced the asymptotic linking number, and Keith Moffatt, to whom we owe
the introduction of the helicity in fluid mechanics and its connection with the en-
tangledness of the fluid. An excellent reference for these and other questions, which
are still a very active area of research known as topological hydrodynamics [14], is
the monograph [3].

The paper is organized as follows. In Section 2 we recall some basic concepts
related to the Euler equation for ideal fluids. In Section 3 we review some heuristic
arguments suggesting the existence of stream and vortex lines of any knot type in
steady Euler flows and state Arnold’s structure theorem. In Section 4 we introduce
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Beltrami fields, which are used in Section 5 to prove a realization theorem for linked
stream and vortex lines [7]. $A$ readable detailed sketch of the proof is also given in
this section. To conclude, in Section 6 we state a deeper theorem that ensures the
existence of thin vortex tubes of any link type in steady Euler flows.

2. THE EULER EQUATION

In this paper we will consider the Euler equation for ideal fluids in $\mathbb{R}^{3}$ :

$\frac{\partial u}{\partial t}+(u\cdot\nabla)u=-\nabla P, divu=0.$

The unknowns are the velocity field $u(x, t)$ and the pressure function $P(x, t)$ . The
integral curves of the velocity field (that is, the solutions to the non-autonomous
$ODE$

$\dot{x}(t)=u(x(t), t)$

for some initial condition $x(t_{0})=x_{0})$ are called particle paths and describe the
motion of the particles in the fluid. The trajectories of $u(x, t)$ at fixed time $t$ are
called streamlines, and thus the streamline pattern changes with time if the flow is
unsteady. If the flow is steady, it is obvious that the particle paths coincide with
the streamlines.

Another time-dependent vector field that plays a crucial role in fluid mechanics
is the vorticity, defined by

$\omega:=$ curl $u.$

The integral curves of the vorticity $\omega(x, t)$ at fixed time $t$ (that is to say, the solutions
to the autonomous $ODE$

$\dot{x}(\tau)=\omega(x(\tau), t)$

for some initial condition $x(O)=x_{0})$ are the vortex lines of the fluid at time $t.$

The study of vortex lines is a classic topic in fluid mechanics that can be traced
back to Helmholtz [13] and Lord Kelvin [22] in the XIX century. In particular, the
analysis of these objects is central in topological fluid mechanics, an area that has
attracted considerable attention after the foundational works of Arnold [1, 2] and
Moffatt [18] and lies somewhere between the theory of partial differential equations,
dynamical systems and differential geometry.

This paper is devoted to the study of stream and vortex lines. More precisely,
the kind of questions we will consider in this paper refer to the topological structure
of these lines of a fluid: as we will see, our basic goal is to ascertain whether these
lines can be of arbitrary knot (or link) type.

In this direction, it should be noted that the most interesting situation is that of
steady fluids. In this case, the velocity field does not depend on time and the Euler
equation can be written as
(2.1) $u\wedge$ curl $u=\nabla B,$ $divu=0,$

where $B$ $:=P+ \frac{1}{2}|u|^{2}$ is the Bernoulli function. The reason why stream and vortex
lines have been throughly studied for steady fluids is that, on the one hand, they
are somehow connected with the important phenomenon of Lagrangian turbulence
and that, on the other hand, there are physical arguments, known for decades,
that suggest the existence of stationary solutions with stream and vortex lines of
arbitrarily complicated topology. Let us start by briefly reviewing these arguments.
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3. TRANSPORT OF VORTICITY, MAGNETIC RELAXATION AND KNOTTED VORTEX
LINES

The argument suggesting the existence of vortex lines with complex topology,
which is essentially due to Helmholtz [13], is based on the transport of vorticity.
The basic idea is the following. Suppose that $u(x, t)$ is a time-dependent solution
of the Euler equation. Then its vorticity satisfies the equation

$\frac{\partial\omega}{\partial t}=[\omega, u],$

with $[\cdot,$ $\cdot]$ the commutator of vector fields. Therefore, the vorticity at time $t$ can be
expressed in terms of the vorticity $\omega_{0}(x)$ at time $t_{0}$ as

$\omega(x, t)=(\phi_{t,t_{0}})_{*}\omega_{0}(x)$ ,
where $(\phi_{t,t_{0}})_{*}$ denotes the push-forward of the non-autonomous flow of the velocity
field between the times $t_{0}$ and $t.$

From this expression for the vorticity it stems that the vortex lines at time $t$

are diffeomorphic to those at time $t_{0}$ . Therefore, one can attempt to construct the
initial vorticity $\omega_{0}$ with a prescribed set of vortex lines. This can be done as follows.
Let $L$ be any finite link in $\mathbb{R}^{3}$ . As it has trivial normal bundle, we can ensure that
there are two smooth functions $f,g$ of compact support in $\mathbb{R}^{3}$ such that $L$ is the
union of connected components of $f^{-1}(1)\cap g^{-1}(1)$ , and that at these components
the intersection is transverse. Using these functions, we can prescribe the initial
vorticity as the divergence-free vector field

$\omega_{0}:=\nabla f\cross\nabla g.$

Through the Biot-Savart operator, this initial vorticity corresponds to the initial
velocity

$u_{0}(x):= \frac{1}{4\pi}\int_{\mathbb{R}^{3}}\frac{(x-y)\wedge\omega_{0}(y)}{|x-y|^{3}}dy,$

which falls off at infinity as $|u(x)|<C/|x|^{2}$ and lies in the Sobolev space $H^{k}(\mathbb{R}^{3})$

for all $k$ . By construction, the field $\omega_{0}$ is tangent to the level sets of the functions $f$

and $g$ , and the gradients of $f$ and $g$ are not collinear at any point of $L$ . Therefore
the link $L$ is a union of periodic trajectories of the initial vorticity $\omega_{0}$ , so if there
is a global solution to the Euler equation with initial datum $u_{0}$ , the solution $u$

has a set of vortex lines diffeomorphic to the link $L$ at all times. In particular, ifthe fluid $u(x, t)$ evolves, for large times, into an equilibrium state, characterized by
a steady solution to Euler $u_{\infty}(x)$ , it is conceivable (although certainly not at all
obvious) that this steady solution should also have a set of periodic vortex lines
diffeomorphic to $L$ . Of course, these hypotheses prevent us from promoting this
heuristic argument to a rigorous result.

The heuristic argument in support of the existence of knotted stream lines is
based on the phenomenon of magnetic relaxation. To explain this argument [19],
let us consider the following magnetohydrodynamic system with viscosity $\mu$ :

$\frac{\partial v}{\partial t}+(v\cdot\nabla)v=-\nabla P+\mu\Delta v+H\cross$ curl $H,$

$\frac{\partial H}{\partial t}=[H, v], divv=divH=0.$

117



ALBERTO ENCISO AND DANIEL PERALTA-SALAS

In this equation, $v(x,t)$ represents the velocity field of a plasma, $H(x, t)$ is the
associated magnetic field and $P(x, t)$ is the pressure of the plasma.

Just as in the case of vortex lines, the idea is to take initial conditions $(H_{0}, v_{0})$

such that $H_{0}$ has a set of periodic trajectories given by a link $L$ . This can be done
as in the case of vortex lines. Then one can argue that, if there is a global solution
with this choice of initial conditions, it is reasonable that the viscous term $\mu\Delta v$

forces the velocity to become negligible as $tarrow\infty$ . If the magnetic field also has
some definite limit $H_{\infty}(x)$ as $tarrow\infty$ , then this limit field satisfies

$H_{\infty}\cross$ curl $H_{\infty}=\nabla P_{\infty},$ $divH_{\infty}=0.$

By Eq. (2.1), $H_{\infty}$ is then a steady solution to the Euler equation. Since the magnetic
field is transported by the flow of the velocity field, the same argument as above
suggests that one can hope that $H_{\infty}$ should have a set of periodic trajectories (i.e.,

stream lines) diffeomorphic to the link $L$ . The problems that appear when one tries
to make this argument rigorous are similar to those appearing in the case of vortex
lines.

In spite of the fact that it is very challenging to make them rigorous, these
arguments are the main theoretical basis for the well known conjecture that there
are steady solutions to the Euler equation having stream and vortex lines of any link
topology. $A$ priori, this conjecture is quite striking in view of Arnold’s celebrated
structure theorem [3], which asserts that, under mild technical assumptions, the
stream and vortex lines of a steady solution to Euler whose velocity field is not
everywhere collinear with its vorticity are nicely stacked in a rigid structure akin
to those which appear in the study of integrable Hamiltonian systems:

Theorem 3.1 (Arnold’s structure theorem). Let $u$ be a solution to the steady

Euler equation in a bounded domain $\Omega\subset \mathbb{R}^{3}$ with analytic boundary. Suppose
that $u$ is tangent to the boundary and analytic in the closure of the domain. If $u$

and its vorticity are not everywhere collinear, then there is an analytic set $C$ , of
codimension at least 1, so that $\Omega\backslash C$ consists of a finite number of subdomains in
which the dynamics of $u$ is of one of the following two types:

$\bullet$ The subdomain is trivially fibered by tori invariant underu. On each torus,
the flow of $u$ is conjugate to a linear flow (rational or irrational).

$\bullet$ The subdomain is trivially fibered by cylinders invariant under $u$ whose
boundaries sit on $\partial\Omega$ . All the trajectories $ofu$ on each cylinder are periodic.

Heuristically, this structure should somehow restrict the way the vortex lines
are arranged. Partial results in this direction have been shown in [10], where it
is proved that under appropriate hypotheses the stream or vortex lines of steady

solutions with non-collinear velocity and vorticity cannot be of certain knot types.

4. BELTRAMI FIELDS

In his structure theorem, Arnold emphasized that the key hypothesis is that
the velocity and the vorticity should not be everywhere collinear [2], and actually
conjectured that when this condition is not satisfied, i.e. when the velocity and
vorticity are everywhere parallel, then one should be able to construct steady so-
lutions to the Euler equation with stream and vortex lines of arbitrary topological
complexity.
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Therefore, if one tries to construct steady solutions to the Euler equation with
stream or vortex lines of any link type, it is natural to consider solutions of the
form
(4.1) curl $u=fu,$ $divu=0,$
with $f$ a smooth function on $\mathbb{R}^{3}$ . Taking the divergence in this equation we infer
that $\nabla f\cdot u=0$ , i.e., that $f$ is a first integral of the velocity. As a consequence
of this, the trajectories of $u$ must lie on the level sets of the function $f$ . We have
proved recently [9] that there are no nontrivial solutions to Eq. (4.1) for an open
and dense set of factors $f$ in the $C^{k}$ topology, $k\geq 7$ . In particular, there are no
nontrivial solutions whenever $f$ has a regular level set diffeomorphic to the sphere.
This result is reminiscent of (and somehow complementary to) Arnold’s structure
theorem, cf. Theorem 3.1, for steady solutions with nonconstant Bernoulli function
$(that is, for$ solutions where $u and curl u are not$ collinear) .

Accordingly, in order to construct solutions with complex orbit structures we
will focus our attention on Beltrami fields, which satisfy the equation

curl $u=\lambda u$

for some nonzero constant $\lambda$ . Obviously the streamlines of a Beltrami field are the
same as its vortex lines, so henceforth we will only refer to the latter.

There is abundant numerical evidence and some analytical results that suggest
that the dynamics of a Beltrami field can be extremely complex. The most thor-
oughly studied examples of Beltrami field are the $ABC$ fields, introduced by Arnold
himself and discussed in detail, e.g., in [6]:

$u(x)= (A \sin x_{3}+C\cos x_{2}, B\sin x_{1}+A\cos x_{3}, C\sin x_{2}+B\cos x_{1})$ .
Here $A,$ $B,$ $C$ are real parameters. It is remarkable that all our intuition about
Beltrami fields comes from the analysis of a few exact solutions, which basically
consist of fields with Euclidean symmetries and the $ABC$ family.

An interesting approach to the conjecture on the existence of linked vortex lines
in steady solutions to Euler, due to Etnyre & Ghrist (1999), hinges on the con-
nection of Beltrami fields with contact geometry [11]. The main observation is the
following. Let $u$ be a Beltrami field and $\alpha$ its dual 1-form, so that the Beltrami
equation can be written using the Hodge $*$-operator as
(4.2) $*d\alpha=\lambda\alpha.$

Therefore, if the Beltrami field does not vanish anywhere, we have that
$\alpha\wedge d\alpha=\lambda|u|^{2}dx_{1}\wedge dx_{2}\wedge dx_{3}$

does not vanish either, so that by definition $\alpha$ defines a contact 1-form. Conversely,
if $\alpha$ is a contact 1-form in $\mathbb{R}^{3}$ , there is a smooth Riemannian metric $g$ adapted
to the form $\alpha$ so that this 1-form satisfies Eq. (4.2) with the $Ho$dge $*$ -operator
corresponding to the metric $g$ . The vector field associated with $\alpha$ is a Beltrami
field with respect to the metric $g.$

The reason why this observation is useful is that the machinery of contact geom-
etry is very well suited for the construction of contact forms whose associated vector
fields (which are called Reeb fields) have a prescribed set of periodic trajectories.
Therefore, one finds that there is a metric in $\mathbb{R}^{3}$ , which in general is neither flat
nor complete, such that the Euler equation in this metric admits a steady solution
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of Beltrami type having a set of vortex lines of any link type. This strategy does
not work when we consider the Euler equation for a fixed (e.g. Euclidean) metric.

5. REALIZATION THEOREM FOR VORTEX LINES

In this section we shall review a recent result that shows how Beltrami fields can
be used to prove that there are steady solutions to the Euler equation with a set of
periodic vortex lines diffeomorphic to any given link [7]. The statement applies to
Beltrami fields with any nonzero constant $\lambda$ ; obviously for $\lambda=0$ the claim does not
hold true, as $u$ would be a gradient field and, as such, could not have any periodic
trajectories.

Theorem 5.1. Let $L\subset \mathbb{R}^{3}$ be a finite link and let $\lambda$ be any nonzero real number.
Then one can deform the link $L$ by a diffeomorp hism $\Phi$ of $\mathbb{R}^{3}$ , arbitrarily close to
the identity in any $C^{m}$ norm, such that $\Phi(L)$ is a set of vortex lines of a Beltrami
field $u$ , which satisfies the equation curl $u=\lambda u$ in $\mathbb{R}^{3}$ . Moreover, $u$ falls off at
infinity as $|D^{j}u(x)|<C_{j}/|x|.$

We have only considered the case of finite links, but the case of locally finite links
can be tackled similarly at the expense of losing the decay condition of the velocity
field. In particular, taking into account the fact that the knot types modulo diffeo-
morphism are countable, this yields a positive answer to a question of Williams [23]
and Etnyre & Ghrist [11]: is there a steady solution to the Euler equation whose
streamlines realize all knot types at the same time?

It should be mentioned that the steady solutions to the Euler equation that we
construct in the theorem do not have finite energy: being Beltrami fields, the field
satisfies $\Delta u=-\lambda^{2}u$ , so it cannot be in $L^{2}(\mathbb{R}^{3})$ . Nadirashvili has proved recently [20]
that the $1/|x|$ decay we have is optimal within the class of Beltrami solutions (not
necessarily with constant proportionality factor, see Eq. (4.1) $)$ , nonetheless, so in
particular our solutions are real analytic and belong to the space $L^{p}(\mathbb{R}^{3})$ for all
$p>3$ (which is optimal as well according to Nadirashvili’s result). Notice that the
$1/|x|$ decay was not proved in Ref. [7] (indeed, in this paper the Beltrami field was
not shown to satisfy any conditions at infinity), but follows from the more refined
global approximation theorem that we have proved in [8].

We shall next sketch the proof of Theorem 5.1. The heart of the problem is
that one needs to extract topological information from a PDE. Generally speaking,
topological techniques (such as those used in [11]) are too soft’ to capture what
happens in a PDE, while analytical techniques (see e.g. [16]) have not been very
successful in these kinds of problems either. We will resort to an intermediate
approach. The basic philosophy is to use the methods of differential topology and
dynamical systems to control auxiliary constructions and those of PDEs to relate
these auxiliary constructions to the Euler equation.

To simplify the exposition, we will divide the presentation in three steps. In Steps
1 and 2 we will construct a local Beltrami field, defined in a neighborhood of the
link $L$ , for which $L$ is a set of robust vortex lines. In Step 3 we will approximate
this local Beltrami field by a global Beltrami field that has a set of vortex lines
diffeomorphic to $L.$
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Step 1. Let us take a connected component $L_{1}$ of the link $L$ . It is well know that,
perturbing the knot a little through a small diffeomorphism, we can assume that
the knot $L_{1}$ is analytic. Since the normal bundle of a knot is trivial, we can take
an analytic strip (or ribbon) $\Sigma$ around $L_{1}$ . More precisely, there is an analytic
embedding $h$ of the cylinder $\mathbb{S}^{1}\cross(-\delta, \delta)$ into $\mathbb{R}^{3}$ whose image is $\Sigma$ and such that
$h(\mathbb{S}^{1}\cross\{0\})=L_{1}.$

In a small tubular neighborhood $N_{1}$ of the knot $L_{1}$ we can take an analytic
coordinate system

$(\theta, z, \rho):N_{1}arrow \mathbb{S}^{1}\cross(-\delta, \delta)\cross(-\delta, \delta)$

adapted to the strip $\Sigma$ . Basically, $\theta$ and $z$ are suitable extensions of the angular
variable on the knot and of the signed distance to $L_{1}$ as measured along the strip
$\Sigma$ , while $\rho$ is the signed distance to $\Sigma.$

The reason why this coordinate system is useful is that it allows us to define a
vector field $w_{1}$ in the neighborhood $N_{1}$ that is key in the proof: simply, $w_{1}$ is the
field dual to the closed 1-form

$d\theta-zdz.$

From this expression and the definition of the coordinates it stems that $w_{1}$ is an
analytic vector field tangent to the strip $\Sigma$ and that $L_{1}$ is a stable hyperbolic
periodic trajectory of the pullback of $w_{1}$ to the strip $\Sigma.$

Step 2. The field $w_{1}$ we constructed in Step 1 will now be used to define a local
Beltrami field $v_{1}$ . To this end we will consider the Cauchy problem
(5.1) curl $v_{1}=\lambda v_{1},$ $v_{1}|_{\Sigma}=w_{1}.$

One cannot apply the $Cauchy-Kowalewski$ theorem directly because the curl opera-
tor does not have any non-characteristic surfaces as its symbol is an skew-symmetric
matrix. In fact, a direct computation shows that there are some analytic Cauchy
data $w_{1}$ , tangent to the surface $\Sigma$ , for which this Cauchy problem does not have any
solutions: a necessary condition for the existence of a solution, when the field $w_{1}$

is tangent to $\Sigma$ , is that the pullback to the strip of the 1-form dual to the Cauchy
datum must be a closed form.

Through a more elaborate argument that involves a Dirac-type operator, one
can prove that this condition is not only necessary but also sufficient. Therefore,
the properties of the field $w_{1}$ constructed in Step 1 allow us to ensure that there is
a unique analytic field $v_{1}$ in a neighborhood of the knot $L_{1}$ which solves the Cauchy
problem (5.1). Taking now the neighborhood $N_{1}$ small enough, we can assume that
$v_{1}$ is defined in its closure $\overline{N_{1}}.$

It is obvious that the knot $L_{1}$ is a periodic trajectory of the local Beltrami field
$v_{1}$ . As a matter of fact, it is easy to check that this trajectory is hyperbolic (and
therefore stable under small perturbations). The idea is that, by construction,
the strip $\Sigma$ is an invariant manifold under the flow of $v_{1}$ that contracts into $L_{1}$

exponentially. As the flow of $v_{1}$ preserves volume because $v_{1}$ is divergence-free, there
must exist an invariant manifold that is exponentially expanding and intersects $\Sigma$

transversally on $L_{1}$ , which guarantees the hyperbolicity of the periodic trajectory
$L_{1}.$

As a consequence of this hyperbolicity, $L_{1}$ is a robust periodic trajectory. More
concretely, by the hyperbolic permanence theorem any field $u_{1}$ that is close enough

121



ALBERTO ENCISO AND DANIEL PERALTA-SALAS

to $v_{1}$ in the $C^{m}(N_{1})$ norm has a periodic trajectory diffeomorphic to $L_{1}$ , and this
diffeomorphism can be chosen $C^{m}$-close to the identity (and different from the
identity only in $N_{1}$ ). Here $m$ is any positive integer.

Step 3. Applying the previous argument to each component $L_{i}$ of the link $L$ we
obtain (pairwise disjoint) tubular neighborhoods $N_{i}$ around each knot $L_{i}$ and local
Beltrami fields $v_{i}$ defined in $\overline{N_{i}}$ . This defines a Beltrami field $v$ in the closed set

$S:= \bigcup_{i}\overline{N_{i}}.$

The global Beltrami field $u$ is obtained through a Runge-type theorem for the
operator $curl-\lambda$ . This result, whose proof makes use of functional-analytic methods
and Green’s functions estimates [8], allows us to approximate the local Beltrami
field $v$ by a global Beltrami field $u$ in the $C^{m}(S)$ norm. More precisely, for any
positive $\epsilon$ and any positive integer $m$ there is a global Beltrami field $u$ , satisfying
the fall-off cOndition $|D^{j}u(x)|<C_{j}/|x|$ for all $j\geq 0$ , such that

$\sum_{j=0}^{m}|D^{j}u(x)-D^{j}v(x)|<\epsilon$

for all $x\in S.$ (The case of locally finite links requires an analog of this result in
which the field $u$ does not satisfy the fall-off condition but the positive constant $\epsilon$

can be replaced by any positive function $\epsilon(x)$ , which can be allowed to tend to zero
at infinity arbitrarily fast).

To conclude the proof of the theorem it is enough to take $\epsilon$ small enough so that
the hyperbolic permanence theorem ensures that if $\Vert u-v_{i}\Vert_{C^{m}(N_{t})}<\epsilon$ then there
is a diffeomorphism $\Phi_{i}$ of $\mathbb{R}^{3}$ such that $\Phi_{i}(L_{i})$ is a periodic trajectory of $u$ and
$\Phi_{i}-$ id is supported in $N_{i}$ and such that $\Vert\Phi_{i}-$ id $\Vert_{C^{m}(\mathbb{R}^{3})}$ is as small as one wishes.
Therefore, the diffeomorphism $\Phi$ defined as

$\Phi(x):=\{\begin{array}{ll}\Phi_{i}(x) if x\in N_{i} for some i,x otherwise\end{array}$

maps the link $L$ into a set of vortex lines of the Beltrami field $u$ and is arbitrarily
close to the identity in the $C^{m}$ norm.

6. REALIZATION THEOREM FOR THIN VORTEX TUBES

In Theorem 5.1 we have established the existence of steady solutions to the Euler
equation in $\mathbb{R}^{3}$ with vortex (or stream) lines of any link type. However, there are still
many open questions about the structure of vortex lines in steady incompressible
fluids that are of great interest, both physically and mathematically.

A long-standing problem in this direction is Lord Kelvin’s conjecture [22] that
knotted and linked thin vortex tubes can arise in steady solutions to the Euler
equation. This conjecture was motivated by results due to Helmholtz and Maxwell’s
observations of what they called ‘water twists’. Another recent related experiment,
where nontrivially knotted vortex tubes are produced in laboratory for the first
time, is described in [15]. We recall (see e.g. [17]) that $a$ (closed) vortex tube is
defined as a domain in $\mathbb{R}^{3}$ that is the union of vortex lines and whose boundary is
an embedded torus.
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Kelvin’s conjecture is fully consistent with Arnold’s views of steady ideal fluids.
Indeed, after establishing his structure theorem, Arnold conjectured [2] that, con-
trary to what happens in the non-collinear case, Beltrami fields could present vortex
lines of the same topological complexity as the trajectories of any divergence-free
vector field. By KAM theory, typically these trajectories give rise to infinitely many
invariant tori and chaotic regions between them.

There is strong numerical evidence of the existence of thin vortex tubes in the
Euler equation, both in the case of steady and time-dependent fluid flows. Indeed,
thin vortex tubes have long played a key role in the construction and numerical
exploration of possible blow-up scenarios for the Euler equation, which in turn
has led to rigorous results such as [4, 5]. $A$ particularly influential scenario in this
direction is [21], which discusses how an initial condition with a certain set of linked
thin vortex tubes might lead to singularity formation in finite time.

Recently we have proved [8] a realization theorem for thin vortex tubes of any
link type that is roughly analogous to that of Theorem 5.1. To state this result,
let us denote by $\mathcal{T}_{\epsilon}(L)$ the $\epsilon$-thickening of a given link $L$ in $\mathbb{R}^{3}$ , that is, the set of
points that are at distance at most $\epsilon$ from $L$ . The realization theorem can then be
stated as follows:

Theorem 6.1. Let $L$ be a finite link in $\mathbb{R}^{3}$ . For small enough $\epsilon$ , one can transform
the collection of pairwise disjoint thin tubes $\mathcal{T}_{\epsilon}(L)$ by a diffeomorphism $\Phi$ of $\mathbb{R}^{3},$

arbitrarily close to the identity in any $C^{m}$ norm, so that $\Phi[\mathcal{T}_{\epsilon}(L)]$ is a set of vortex
tubes of a Beltrami field $u$ , which satisfies the equation curl $u=\lambda u$ in $\mathbb{R}^{3}$ for some
nonzero constant $\lambda$ . Moreover, the field $u$ decays at infinity as $|D^{j}u(x)|<C_{j}/|x|.$

Indeed, the proof of this theorem also yields information on the structure of
the vortex lines inside each vortex tube. This structure is extremely rich: there
are infinitely many nested invariant tori (which bound vortex tubes) and a set of
elliptic periodic trajectories diffeomorphic to the link $L$ near the core of the vortex
tubes. It should be emphasized that the vortex tubes we construct are not‘infinitely
thin’: the construction is valid for all $\epsilon$ smaller than some constant $\epsilon_{0}(L)$ that only
depends on the geometry of the link.

The proof of Theorem 6.1 also relies on the combination of a robust local con-
struction and a global approximation result, as in the case of Theorem 5.1. Indeed,
this global approximation result was tacitly used in the statement of Theorem 5.1 to
ensure that our Beltrami fields fall off at infinity. However, the construction of the
robust local solution (which takes most of the paper) is much more sophisticated
than in the case of vortex lines and requires entirely different ideas.

Basically, the robustness of the tubes follows from a KAM-theoretic argument
with two small parameters: the thinness of the tubes and the constant $\lambda$ . The $10$cal
solution must now be defined in the whole tubes, not just on a neighborhood of the
boundary. This makes it impossible to construct the local solution using a theorem
of Cauchy-Kowalewski type, as we did in Step 2 of Theorem 5.1. Instead, we need
to consider a boundary value problem for the curl operator in which the tangential
part of the field cannot be prescribed. As a consequence of this, one cannot directly
take local Beltrami fields which satisfy the non-degeneracy conditions of the KAM-
type theorem: these conditions must be extracted from the equation using fine PDE
estimates. This is in great contrast with the prescription of the Cauchy datum that
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we made in Step 1 of Theorem 5.1, which readily ensures the hyperbolicity of the
periodic trajectory, and leads to very subtle problems with a deep interplay of PDE
and dynamical systems techniques.

We shall not give any further details concerning the proof of this result, which is
beyond the scope of this review. However, to conclude we would like to mention an
important property of the structure of the vortex lines inside the vortex tubes whose
existence is established in Theorem 6.1: this structure is stable in the following
sense. On the one hand, it is robust under small perturbations of the field $u,$

meaning that the trajectories of any field which is close enough to $u$ in the $C^{k}$

norm have the same structure. On the other hand, the boundary of each vortex
tube is Lyapunov-stable under the flow of the Beltrami field $u$ . In particular, from
Theorem 6.1 we recover Theorem 5.1 and improve it by ensuring that the set of
vortex lines diffeomorphic to the given link is linearly stable, while in Theorem 5.1
is unstable.
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