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Abstract

We review our recent construction of the ¢*-model on four-dimensional
Moyal space. A milestone is the exact solution of the quartic matrix
model Z[E, J] = [ d® exp(trace(J® — E®? — 28*)) in terms of the solu-
tion of a non-linear equation for the 2-point function and the eigenvalues
of E. The B-function vanishes identically. For the Moyal model, the the-
ory of Carleman type singular integral equations reduces the construction
to a fixed point problem. Its numerical solution reveals a second-order
phase transition at A\, & —0.396 and a phase transition of infinite order at
A = 0. The resulting Schwinger functions in position space are symmet-
ric and invariant under the full Euclidean group. They are only sensitive
to diagonal matrix correlation functions, and clustering is violated. The
Schwinger 2-point function is reflection positive iff the diagonal matrix
2-point function is a Stieltjes function. Numerically this seems to be the
case for coupling constants A € [\, 0].

1 Introducfion

Perturbatively renormalised quantum field theory is an enormous phenomeno-
logical success, a success which lacks a mathematical understanding. The per-
turbation series is at best an asymptotic expansion which cannot converge at
physical coupling constants. Some physical effects such as confinement are out
of reach for perturbation theory. In two and partly three dimensions, meth-
ods of constructive physics [GJ87, Riv91], often combined with the Euclidean
approach [Sch59, OS73, OS75], were used to rigorously establish quantum field
theory models.

In four dimensions there was little success so far. It is generally believed that
due to asymptotic freedom, non-Abelian gauge theory (i.e. Yang-Mills theory) has
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the chance of a rigorous construction. But this is a hard problem [JW00]. What
makes it so difficult is the fact that any simpler model such as quantum electro-
dynamics or the A¢*-model cannot be constructed in four dimensions (Landau
ghost problem [LAK54a, LAK54b, LAK54c] or triviality [Aiz81, Fr682]).

One of the main difficulties is the non-linearity of the models under consider-
ation. Fixed point methods provide a standard approach to non-linear problems,
but they are rarely used in quantum field theory. In this contribution we review
a sequence of papers [GW12b, GW13b, GW14] in which we successfully used
symmetry and fixed point methods to exactly solve a toy model for a quantum
field theory in four dimensions.

1. Following [GW12b], we show in sec. 2 that the quartic matrix model Z =
[ D[®] exp(tr(J®—E®2*—2d%)) is exactly solvable in terms of the solution
of a non-linear equation. This can be traced back to a Ward identity for the
U(o0) group action. As by-product we find that any renormalisable quartic
matrix model has vanishing S-function. All these steps are completely
elementary.

2. Self-dual ¢3-theory on Moyal space [GW05b, GW05¢] is of that type. For
extreme noncommutativity § — oo, and after careful discussion of ther-
modynamic and continuum limit, the non-linear equation is reduced to
a fixed-point problem [GW12b] which has a unique non-perturbative and
non-trivial solution for A < 0 [GW14]. Sec. 3 reviews this work. The key
step is the observation that a certain difference function satisfies a linear
singular integral equation of Carleman type [Car22, Tri57]. We also present
some numerical results, contained in work in progress [GW14], which show
evidence for phase transitions.

3. Following [GW13b], we identify in sec. 4 a limit to Schwinger functions
for a scalar field on R*. Surprisingly for a highly noncommutative model,
these Schwinger functions show full Euclidean symmetry. Otherwise they
have unusual properties such as absent momentum transfer in interaction
processes. This seems to suggest triviality, but the numerical investigation
[GW14] of the 2-point function shows scattering remnants from a non-
commutative geometrical substructure. Most surprisingly, the Schwinger
2-point function seems to be reflection positive in one of its phases.

2 Exact solution of the quartic matrix model

For us a ‘matrix’ is a compact (Hilbert-Schmidt) operator on Hilbert space H =
L*(I, ). Such operators & € £L?(H) can be represented by integral kernel oper-
ators (dv), = [ 1 @up Papvp. Then all natural matrix operations such as product,
adjoint and trace have counterparts (®®')y, = [ 1At Pac®iy, (9%)ap = &, and
tr(®9') = [} du, (P9')qq in L2(H).



To define a Euclidean quantum field theory for a matrix ® € L2(H) we give
ourselves an action functional

S[®] = V tr(E3? + P[D]) . (1)

Here, P[®] is a polynomial in ¢ with scalar coefficients, and this alone would
be a familiar action in the theory of matrix models [DGZ95]. To be closer to
field theory on a (compact) manifold M we add the analogue of the kinetic term
[ v dr (—Ap)e, that is, we require the external matrix £ to be an unbounded
selfadjoint positive operator on H with compact resolvent. The volume V will
play a crucial role. The construction involves several regularisation and limiting
procedures. One such regularisation consists in a finite size A/ for the matrices,
and V will be a certain function of A/ which together with A is sent to oo.
Adding a source term to the action, we define the partition function as

2] = / D[®] exp(~S[] + V tx(J])) , 2)

where D[®] is the extension of the Lebesgue measure from finite-rank operators
to £L2>(H) and J a test function matrix. For absent P[®] — 0 in (1), Z[[()] would
be the Gauflian measure of covariance determined by E. What we want, and
what we achieve, is to construct 3%] for P[®] = 2®* in the limit V — oo. Such
a limit cannot be expected for Z. Instead, we pass to the generating functional

log Z[J] of connected correlation functions,

0N log Z[J]

WP - Pantnle = B3 o 10 ®)

2.1 Ward identity and topological expansion

Unitary operators U belonging to an appropriate unitisation of the compact oper-
ators on H give rise to a transformation ® — & = UDU*. Since UU* = U*U = id
and because the space of selfadjoint compact operators is invariant under the ad-
joint action, we have

/ D8] exp(—S[®] + V tr(®J)) = / D] exp(—S[d] + V tr(B)) .
Unitary invariance D[®] = D[®] of the Lebesgue measure implies
0= / D[® {exp(—S[@] +V t2(J)) — exp(—S[] + Vtr(é,}»} .

Note that the integrand {. ..} itself does not vanish because tr( E®?) and tr(®J)
are not unitarily invariant. Linearisation of U about the identity operator leads
to the Ward identity

0= / Do) {E®® - 80E ~ Jo + @7} exp(~S[8] + Vix(@]) . (4
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We can always place ourselves in an orthonormal basis of H where E is diagonal
(but J is not). Since E is of compact resolvent, E has eigenvalues E, > 0
of finite multiplicity u,. We thus label the matrices by an enumeration of the
(necessarily discrete) eigenvalues of E and an enumeration of the basis vectors
of the finite-dimensional eigenspaces. Writing ® in {...} of (4) as functional

derivative @, = V??aJ_,,a’ we have proved (first obtained in [DGMRO7)):

Proposition 1 The partition function Z[J] of the matriz model defined by the
external matriz E satisfies the |I| x |I| Ward identities

—((E.~E) &z 0z . 9%
0=3 (5 EY A ALY J"“Ban)' (5)

nel

Without loss of generality we can assume that the map I > m — E,, € R, is
injective. Namely, correlation functions will only depend on the set of eigenvalues
(Em) of E. Partitioning the index set I into equivalence classes [m] which have
the same E,,, the index sum over a function that only depends on E,, becomes
> omer F(m) = i i) f([m]). Therefore, at the price of adding a measure
pim) = dimker(E —~ E,,id), we can assume that m — E,, is injective.

In a perturbative expansion, Feynman graphs in matrix models are ribbon
graphs. Viewed as simplicial complexes, they encode the topology (B, g) of a
genus-g Riemann surface with B boundary components (or punctures, marked
points, holes, faces). Some simple examples for P[®] = ®* are:

Since F is diagonal, the matrix index is conserved along each strand of the ribbon
graph. We have to distinguish between internal faces (with constant matrix
index) and broken faces which constitute the boundary components. Such a
boundary face is characterised by N, > 1 external double lines to which we
attach the source matrix J. Conservation of the matrix index along each strand
implies that the right index of J,;, coincides with the left index of another Jy.,
or of the same Jy;. Accordingly, the k*" boundary component carries a cycle
Jg’f_ka = H;\;’“I Jpip;+1 Of Ny external sources, with Ny +1 = 1.

Being interested in a non-perturbative solution, we will not expand the par-
tition function into ribbon graphs. But we keep the topological information and



expand log Z[J] according to the cycle structure:
T s

V2-—B 5.
Z Sn..N Glzn P, |- IpF- pNB|H( ’ pNB) .

- ﬁ
pl, ’pNEEI =1

2V v %
log =
Z [O] 1; 1§N15Z <Np

(6)

The symmetry factor Sy, n, is obtained as follows: If v; of the B numbers Ng
in a given tuple (Ni,..., Ng) are equal to i, then Sy, Ny = vaﬁ y;l.
Next we turn the Ward identity (5) for injective m +— E,, into a formula

2] of the partition function. The J-cycle

for the second derivative »_, ;5= 37
an np

structure in log Z creates
e singular contributions ~ d,p,
e regular contributions present for all a, p:

Theorem 2

O Z[J] Jp - Jp GlaniPyl...1Pc] | GlalalPy]...|Px]
m:5a 2 1 K an|Py|...|Pg ala|P1|...| Pk
=7 0Jan3an p{V g{; S(K) (nzel VIK|+1 + VIKI+2

J7

Glqaq1...q0|PL).-. | Px]
v Qp q1...qr
+y > TR )

r>1 q1,...,qr€1

Jp. o Jp Jo - . Ga|Qy1..1Q
+V4Z PP JQu  JQ s Glalpy)..1Pk| Glalu 1QK|}ZM

(K),(K") S S VIKl+1 VIK+1
14 9ZlJ] . 02[J]
+ Ep - Ea %; (Jp’n. 6Jan —Jna aan ) . (7)

Proof. We identify the following four sources of a singular contribution ~ §,:

J J
1. Zaj aJ Z G o ( 9192 Q2¢11>HJ

91,492,
4 4
2 ZaJ 00 M; Colarl-laal. (qum)(Jqfqz)H‘]

4
0 0 oo Jaas * Jararsarsrao
OJan OJnp ZG-'»IQOqL..qquHL.,( PN e - +q2‘1 +174r414 ) H 7

qr41,.

Z G -|pg1...grm]... ( ‘]:lh JQ1112 Y qun) H J

.....
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3 g (56 () T[S (=) T

q2:--
All other types of derivatives, collected into (Zne 7 %’;)rey persist for a # p.
For p # a we clearly have

( 02 Z[J] ) _ 0?2 Z(J]

vV ( 7 0Z 0Z
vy 0Jan0Jnyp —~ 0Jgn0Jnp

a#p_—_ E'p_E'a p"&Jan “Jnannp) 9 (8)

where the last equality is the Ward identity (5), divided by I—EE;—E‘ # 0. By a con-
tinuity argument, the rightmost term in (8) must agree with (Zne I %ﬁ)mg
also in the limit p — a, and this finishes the proof. o

2.2 Schwinger-Dyson equations

We can write the action as S = % Za,b(Ea + Ep) Py @po + V St [®], where E, are
the eigenvalues of E. Functional integration yields, up to an irrelevant constant,

2] = e Vonlvalese (] T)p = —é]:j‘én .

m,nel

(9)

Instead of a perturbative expansion of e"vs""t[%i], we apply such J-derivatives
to (9) that they give rise to a correlation function G on the lhs. On the rhs of
(9), these external derivatives combine with internal derivatives from Smt[v%j]
to certain identities for GG.. These Schwinger-Dyson equations are often of little
use because they express an N-point function in terms of (N+2)-point functions.

In the field-theoretical matrix models under consideration, the Ward identity
(7) lets this tower of Schwinger-Dyson equation collapse. To see this we consider
the 2-point function G|es for a # b. According to (6), G|q is obtained by deriving
(9) with respect to Jp, and Jyp:

1 2]
VZ[O] 8Jba8Jab J=0

__1 0 VS| ta5] 9 ¥0ne
= VZ{O]{aJ,,ae -y } oo

— 1 6 —VSint [_8—] %(J,J)E
= (E. t En)Z[0) {aJ,,ae Vo1l Jue ¥ 0e

" E, Jlr E (Bt ;71,)2[0] { (q)“” a(;giint)) [VZJ] }Z[J]Lo - 10

3(—VSim) . . . 82
st contains, for any P[®], the derivative DI e y-

which we know from (7). In case of the quartic matrix model P[®] = 3®* we

(disconnected part of Z does
not contribute for a # b)

Glap =

Now observe that



have 2528 — AV S 8,8, Py, hence

G, in g
(‘Pa” (agi t)) {V&]J R Z 0J, bana 0J 0y’

and the Schwinger-Dyson equation (10) for G4 becomes with (7)

1 A 0?2

Glay = -
T B+ E, V3(E,+ Ey)2[0] p; 0510 Jpa =t 0T 4O | 10
_ A 52 {
- E,+ E, V(Ea + Eb)Z[O] 0J 10 Jpe

Gan Gan T J’I‘J’I‘ Gan r J, Jr'r
(Z___lv_i+ Z ]V2|q| q2 g }: IVLQH%J__I_

nel n,q,rel n,q,rel
Glalal Glalalqu Jor Irq Glala!tﬂrl Jog Jrr
PR T e et T T
q,rel q,rel
G gaqr| 2Glalal Jag Glalr| Jrr .
J, Jag —’I)z J }
R R e e W U N
q,rel J=0
82Z[J] 82 Z[J] 82Z[J)
_ A Z 07000Tba | 0Jaaddyy,  DJppBJbp (11)
VXE, + Ey)Z [O] v E,-E, o

Taking ;521 = (VG + 0pGipe) 2[0] + O(J) and gz = 0 for a # b into

account, we have proved:

Proposition 3 The 2-point function of a quartic matriz model with action S =
V tr(E®? + %CI)“) satisfies for injective m v E,, the Schwinger-Dyson equation

1 A1 Gy — Gla
Glapy = - —Z<GlablG|ap|—'—'p—bL—u-') } (12a)

E,+ E, Ea+EpreI Ep—Ea
A 1
—— |G ala G ab) t > G anla
VA, 7 5 CllClon + 7 2 G .
G G Gl = Glale
+ |aaab| + |babal Eb _ Ea
A

- . 12

VE(B, + By ollet } (12¢)

It can be checked that in a genus expansion G = Z;io V=9G9 (which is
probably not convergent but Borel summable), precisely the line (12a) preserves
the genus, the lines (12b) increase g — g+1 and the line (12c) increases g — g+2.
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Moreover, in a scaling limit V' — oo with % Zpe ; finite, the exact Schwinger-
Dyson equation for G| coincides with its restriction (12a) to planar sector g = 0,

a closed non-linear equation for Gl(c?gl alone:

© _ O
o _ 1 A1 0 A0 _ Ciol ~ Glay
o= E ~FrEv 2 (Gt “E,—E, ) 1w

We have derived in 2007/08 this self-consistency equation for the Moyal model by
the graphical method proposed by [DGMRO07]. In this form, (13) is meaningless
because Zpe ; diverges. In 2009 we solved the renormalisation problem, namely
the renormalisation of infinitely many Feynman graphs at once [GW09]. This
renormalisation increases the non-linearity. In [GW09] we have solved (13) per-
turbatively to O(\3). After several years of setbacks with the non-perturbative

solution, a breakthrough came in 2012: The equation (13) can be turned into

an equation which is linear in the difference G‘ bl GI( o tO the boundary and

non-linear only in G|(a3 !
A similar calculation gives the Schwinger-Dyson equation for higher N-point
functions:

G[abl...bN 1|
Gipby..by_1| = Glaby..by_1|\ )
= _ G G _ iph.bna 1..bN_1 )
E’ + Ebl (V |ap|“laby...by —1] Ep _E,
252 b (14a)
Z G G|b21+1-~bN~1al - Glbgz+1...bN_1b2,|
“— Ibl bzl] Ebzl _ Ea J
A N-1
__‘/—2(E—aI-E‘—S (G|a|a|G|ab1...bN_1| + ; G|b1...bkabk4..bN_1a,| W
+G|aaa61 byl T ZG|an|ab1 by 1] 3 (14b)
nEI
_ Z Glbl Dbp by by —1be| T Glbl...bklbk+1...bN_1a|)
T Ey, — E, )

A

N V4(E, +Eb1)GIalalab1.-.bN-1l : } (14c)

Again, the first lines (14a) preserve the genus, whereas g — g + 1 in (14b) and
g g+2in (14c). The planar sector GfgglmbN—ll’ exact for V — oo with 5; D pel
finite, is a linear inhomogeneous equation with inductively known parameters.
It turns out that a real theory with ® = ®* admits a short-cut which directly
gives the higher N-point functions without any index summation. Since the

equations for G are real and J,, = Jua, the reality Z = Z implies invariance



under orientation reversal

G lpapi.. (15)

le 1[ lpop1 pNB—ll —CJIP()PN1 1 pll IPQPNB 1 p1'

Whereas empty fOI" G,abl, in (Ea+Eb1)Gab1b2...bN_1 - (Ea+EbN_1)GabN-1...b2b1 the
identities (15) lead to many cancellations which result in a universal algebraic
recursion formula:

Proposition 4

Glb b b _ )\) Z G|b0b1 Doy 1|G|bzzb21+1 by T Glbzzbl~~b21—1|G|bob21+1mbN—1|
obu-bval = (Ebo Ebzz)(Ebl - EbN-l)
Z Glbobl br—1|bebrg1..by_1] T Glbkbl---bk—1Ibobk+1---bN—1l (16)
Ebo Ebk)(Ebl - EbN~1)
The last line of (16) increases the genus and is absent in G!b by..by_, - 1DStead of

giving the general proof, let us look at the case N = 4. Then ( 14) multiplied by
E, — E;,, reads

(Ea - Eb)GIabcd|
- al — G c
=(=A) (%: Z (Glap]Glabcd[ _ Clptea G]adel) — Gy Clael = Glag l)

e E, - E, E.—-FE,
A ' 1
- "72' (Gla[a|G|abcd| + Glbabcda\ + G|bcacda] + G|bcdada] + G|aaabcd| + T/—“ Z G|ap|abcd|
pel
_ Gipleas| = Gleledal _ Gloclde] = Glocldal  Gipedia] = Glbcdlal)
E,—FE, E.— FE, Ey—FE,
A
- WGla]alabcdl : (17)

Write down the same equation but with b <+ d, and take the difference between
these equations. Then most terms cancel because by (15) we have the equal-
ities G[abcd| = G]adcb]a G|pbcd| = G|pdcbla C';1|b¢zbcda| = G|dcbaba|7 G!bcacda| = G|dcacba|v
Glocdadal = Gldadebals Glaaabed] = Glaaades|s Glaplabed] = Glapladet)s Glplear] = Glachjp|s
Glocide) = Gldclpe)s Gloedld] = Glaicva) 80d Glajajabed) = Glajajaacsi- Altogether, the
difference (17)—(17)pq reads after cancellation

Glat|Gled) = Glad)Gen|
E.—E,

A Gca_Gac Gca“'Gac Gac -G ca
( |blcda] |acdb] + |beldal |bajdc] + lalbed| d|b I),
V2 Eb E Ec—Ea Ed—Ea

and this is (16) for N = 4.

(Ea — E)Glabea) = (—A)
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For completeness, we list in the appendix the Schwinger-Dyson equation for
B = 2 boundary components.

We make the following key observation: An affine transformation £ — ZE+C
together with an adjusted rescaling A — Z2) leaves the algebraic equatlons (16)
as well as (65) and (66) invariant:

Theorem 5 Given a real quartic matriz model with S = V tr(E®% + $®*) and

m — En, injective, which determines the set G\p1_p1 | _p8.p2 | of (N1+...+Ng)-
1 B

point functions. Assume that the basic functions with all N; < 2 are turned finite

by E, — Z(E, + "2—2 - E‘%’l) and X — Z2\. Then all functions with one N; > 3

1. are finite without further need of a renormalisation of A, i.e. all renormal-
isable quartic matriz models have vanishing B-function,

2. are gien by universal algebraic recursion formulae in terms of renormalised
basic functions with N; < 2. a

The theorem tells us that vanishing of the -function for the self-dual ®3-model on
Moyal space (proved in [DGMRO7] to all orders in perturbation theory) is generic
to all quartic matrix models, and the result even holds non-perturbatively!

The universal recursion formula (16) computes the planar N-point function
Glo..bn_1| & B =1 as a sum of fractions with products of 2-point functions in
the numerator and products of differences of eigenvalues of F in the denomin-
ator. This structure admits an interesting graphical interpretation. We draw the
indices by, ...by_1 in cyclic order on the circle S* and represent a factor Gop, as
a chord connecting b; with b; and a factor Eb»i o as an arrow from b; to b;:

o
7
&
3 -

Gboblezbs_Gbobaszb1 _
(Esy — Eu,)(Es, — Evy)

*[@ O
(i

GO = (=)

[bob1b2b3|




The chords form the non-crossing chord diagrams counted by the Catalan num-
ber Cz;z (—WN—, The arrows form two disjoint trees, one connecting the even

vertices ans one connecting the odd vertices. By rational fraction expansion it
is possible to achieve that each tree intersects the chord only in the vertices.
The assignment of trees to a given chord diagram is, in general, not unique. A
canonical choice is not known to us.

2.8 Digression: Quantum gravity in two dimensions

Two-dimensional quantum gravity (see [DGZ95, ADJ97] for reviews) can be in-
terpreted as the enumeration of random triangulations of surfaces. Its asymptotic
behaviour is captured by the matrix model partition function

= / D[®] exp ( -NY tr(é”)) : (19)

where the integral is over (M x N)-Hermitean matrices ® and the ¢, are scalar
coefficients. In the limit /' — oo, this series in (¢,) is evaluated in terms of
the 7-function for the Korteweg-de Vries (KdV) hierarchy. There is another
approach to topological gravity in which the partition function is a series in
(t,) with coefficients given by intersection numbers of complex curves. Witten
conjectured [Wit91] that the partition functions of the two approaches coincide.
This conjecture was proved by Kontsevich [Kon82] who achieved the computation
of the intersection numbers in terms of weighted sums over ribbon graphs (fat
Feynman graphs), which he proved to be generated from the Airy function matrix
model (Kontsevich model)

/D[@] exp (— tr(E®?) + 1tr(9?))

: (20)
/D[q)] exp ( — 1tr(E®?))

Z[E] =

where E = E* > 0 is related to the series (¢,) by t, = (2n— 1)!tr(E-?"=1), The
limit N' = oo of Z[E] gives the KdV evolution equation, thus proving Witten’s
conjecture.

We have proved that also the quartic matriz model

/D exp ( — tr(E®?) + tr(J®) — 3tr(®*))

(21)
/D ] exp ( — tr(E®?) — 2tr(®%))

Z[E, J )\ =
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is in the large-A limit exactly solvable in terms of the solution of a non-linear
equation (13). Any triangulation can be subdivided into a quadrangulation

TN

(and vice versa). From Witten’s uniqueness argument [Wit91], 2D quantum
gravity should have equivalent descriptions as cubic (20) and quartic (21) matrix
model. Understanding the precise relation between (20) and (21) would be of
high interest:
1. In contrast to (21), the cubic action (20) lacks manifest positivity due to
its purely imaginary coupling constant.
2. A quartic action admits a Hubbard-Stratonovich transform which is the key
ingredient of a new approach to constructive quantum field theory [Riv07b]
that avoids the cluster expansion.

3. Conversely, the integrability of (20) might provide valuable information
about the sclution of the self-consistency equation (13).

Coloured tensor models (see [GP12, Riv13] for recent reviews) extend these
methods to quantum gravity in D > 3. They became a very active domain of
research after understanding [Gur10] of the analogue of the large-N behaviour of
matrix models [tHo74]. They have Schwinger-Dyson equations (see e.g. [Bon12])
and action of the U(oo) group. It might be promising to extend our techniques
to coloured tensor models.

3 ®}-theory on Moyal space as a fixed point problem
3.1 Preliminaries

Taking the renormalisation group [WK74] serious, we would expect that Gen-
eral Relativity, because not renormalisable, is marginal and hence scaled away.
Presence of gravity tells us that the scaling must stop at some length scale, and
from the weakness of the gravitational coupling constant one deduces the value
of that scale: the Planck length 10735m. There, the geometry of nature is ex-
pected to differ from the familiar structure of a differentiable manifold. One of
many candidates for Planck scale physics is noncommutative geometry [Con94],
a vast reformulation of geometry and topology in the language of operator al-
gebras. The focus is shifted from manifolds to generalisations of the algebra of
functions. This concept proved very successful in understanding the geometry of
the Standard Model of particle physics as Riemannian geometry of a space which
is the product of a manifold with a discrete space [Con96, CC96].

A large class of examples of noncommutative geometries comes from deform-
ations of the algebra of functions on manifolds. Schwartz functions on Euclidean
space R* admit an R*-group action by translation. As shown by Rieffel [Rie93],



this group action induces a noncommutative associative product on the space of
Schwartz functions, the Moyal product:
(Fra)@) = [ EErHIOn gty Y, 6= -6' € M(®) . (22)
R4 xR4 (27r )4 2
Whether or not the Moyal space (R*,*) is relevant for Planck scale physics
is pure speculation (although a refinement can be justified by uncertainty rela-
tions for position operators [DFR95]). In any case the Moyal space is a nice toy
model on which it is easy to formulate and to study (quantum) field theories. To
formulate a Euclidean quantum field theory on Moyal space it is, at first sight,
enough to replace in the action of a usual field theory the pointwise product of
functions by the -product. The simplest example is the ¢j-model with action

Stg)= [ do (5o (-a+w)o+ Jororono)@). @)

The resulting Feynman rules [Fil96] lead to situations where a multiple insertion
of non-planar subgraphs gives rise to divergences of arbitrarily high degree (ul-
traviolet /infrared mixing [MVS00]). See [CR00] for a thorough investigation of
this problem. Relativistic quantum field theories on noncommutative Minkowski
space are much more difficult [BDFP02]. Here the UV/IR-mixing problem occurs

in different types of graphs [Bah10].
The Moyal algebra (S(R*),*) has matrix basis [GV88, VG88, GGISV03]

¢($) = Z q)mnfmn(x)v fmﬂ(x) = fmlnl (Io’wl)fmznz (3337374) )

m,nEN?

frnt, ') = 2(—1>m\/—3§ (v 20) "L (D) (24)

where L7 are Laguerre polynomials and y = ¢°+iy'. Without loss of generality
we assume the only non-vanishing components of © to be 8 := 0, = —0y; =
O34 = —O43. The functions f,,, satisfy

(ferx fun) (%) = Ot fin () dz fun(T) = (27"0)25mn .

R4

Therefore, the ¢;*-interaction in (23) becomes a matrix product (we write ¢ for
a function and ® for a matrix):

A
S[‘b] = (ZWG)Q Z (%q)kl(Akl;r_nﬂ + /Lz(sl_m‘slm)(bmn + Zq)lslq)lm(bmnq)nls) : (25)

k.lm,neN?

The matrix kernel Ay, of the Laplacian (—A), viewed as map from N* to N4,
consists of a local interaction plus nearest neighbour interaction.
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In [GWO05b] we studied the renormalisation group flow of the ¢}*-model in
matrix representation (making use of a power-counting theorem [GWO05a] for
matrix models with kernel Agypy,). We noticed that the marginal parts of the
local term and of the nearest neighbour term in Agm, have different flows. To
absorb these different flows a 4 relevant/marginal operator in the action func-
tional is necessary. This operator corresponds to a harmonic oscillator potential:

2
S[g] = 647r2/d4a:(-‘§—¢*(—A+Q2(2@‘1x)2 + Higre) ® + %Z—¢*¢*¢*¢) (z) . (26)

We proved in [GW05b] that the corresponding Euclidean quantum field theory is
renormalisable to all orders in perturbation theory. This result was reestablished
by various methods, see [Riv0T7a] for a review.

Presence of the harmonic oscillator term € # 0 breaks translation invariance.
Conversely, this term achieves covariance under Langmann-Szabo duality trans-
formation [LS02] which consists in exchanging z <> p and ¢(x) ¢ ¢(p) followed
by Fourier transform back to the original variables. Remarkably, this trans-

formation leaves | dx ¢xgxdx¢ invariant, and it exchanges [dz ¢(—A)¢ with

[ dz ¢|2071z|%¢. Presence of the oscillator term gives rise to an interesting spec-
tral noncommutative geometry [GW13a] (see also [GW12a]) which is conceptually
simpler than the isospectral deformation [GGISV03] of R*. Most importantly, the
oscillator term cures the Landau ghost problem [LAK54a, LAK54b, LAK54c] of
usual ¢3-theory: We have discovered in [GW04] that the one-loop renormalisation
group flows of 2 and A influence each other in such a way that the running coup-
ling constant A(A) remains finite at any scale A. Even more, at the self-duality
point €2 = 1 the B-function of the A®}-coupling vanishes to all orders in perturb-
ation theory [DGMRO7]. This result was obtained by an ingenious combination
of Ward identities and Schwinger-Dyson equations (see [DRO7] for an explicit
three-loop calculation). In [GW12b] we have generalised the method of Disertori-
Gurau-Magnen-Rivasseau [DGMROT] to the whole class of quartic matrix models
(reviewed in sec. 2). Vanishing of the S-function is often connected with integ-
rability, and together with the absent Landau ghost problem a non-perturbatively
constructed ¢4-model on Moyal space came into reach. The first milestone was
the derivation of the self-consistency equation (13) and the understanding of its
renormalisation in [GW09]. It took us several years to fully understand this
equation, and it is only recently that we finished the solution/construction of the
Moyal space ¢j-model [GW12b]. In the sequel we review this construction.

3.2 Renormalisation and integral representation

At the self-duality point @ = 1, the matrix kernel AJ7"  of the Schrodinger

operator H = —A + [|2071z||* becomes purely local and turns the action (26) in



matrix basis (24) into a (field-theoretical matrix) quartic model with action

Z2\
S[®] = v( Y En®pn®pm+ == Y @m,l@@&@,ﬂ%) , (27)
m, nEN2 m, r_L,I_c,LeNi,
m| | Hare _ _ (%Y
E, Z(W 5 ), lm| :==my +mg <N, V—(4)

Our general results on quartic matrix models imply that the planar 2-point func-
tion G{ p| Satisfies the self-consistency equation (13),

(0) (0)
(0) _ 1 _ ZQ/\ 1 (G(o) (0) Gll_ﬂ_’! - Gl@b] ) (28)
@ T E, 1B, E,tEV @le " "F, " F, /)

pENE,

We have introduced a cut-off N3, in the matrix size; the index sum diverges for
N3, — N2. As usual, the renormalisation strategy consists in adjusting Z, tpare in
such a way that the limit N3, — N? exists. This will be achieved by normalisation
conditions for the 1PI function 'y, defined by GI o = (Ha — I'g)~!, where
Hy, = E; + Ey. We express (28) in terms of Iy,

AZ? 1 1 1 pr — T
gy = — + _ I O
Ve, (H@B Lo Hp— Ty (Hp—Tp) %(lz_)[~|c_ll)>

and write I'y as first-order Taylor formula with remainder I';",
ab = Zgare — 17+ E(la| + B]) + The", Tge =0, (OI™")gg =

Equation (29) for I'y[ T Uaares 2] together with I'56" = 0 and (OI'™*")gg consti-
tute three equations to determine the three functions [78", Wpore, Z. Eliminating
U2.e, Z thus gives rise to a closed equation for renormalised function I35 alone.
For this elimination it is important to note that the equations for ', uZ, ., Z
depend on g, b only via the norms |al, || which parametrise the spectrum of E.
Therefore, Iy, is actually a function only of |a|, |b|, and consequently the index
sum reduces to e F(1p)) = SN _o(lpl+1)(lp).

We study a particular scaling limit in which matrix size N/ and volume V
are simultaneously sent to oo such that the ratio —& = = A?(1+Y) is kept fixed.

Note that V' = (%)2 — 00 is a limit of extreme noncommutativity! The new
parameter (1+))) corresponds to a finite wavefunction renormalisation, identified
later to decouple our equations. The parameter A? represents an ultraviolet cut-

off which is sent to A — oo in the very end (continuum limit). In the scaling
limit, functions of _I% =: u%(1+ Y)p converge to functions of “continuous matrix
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indices” p € [0,A?). In the same way. [';;" converges to a function w2l with
a,b € [0, A?], and the discrete sum converges to a Riemann integral

1
Y

M=

A2
i+ D) — e+ 37 [ pap 120+ 9p).

|=0

This limit makes the restriction to the planar sector (13) of (12) exact.
After elimination of uZ,., but before elimination of Z, our equation for Iy
becomes

(Z-1)(1+Y)a+b)+Ty
) A? Z2 Z2
= -\(14Y) /0 pdp ((a +p)(1+Y) +1-Top pA+Y)+1- 1‘0,,)

A2 Z Z
2
A1+)) /0 pdp ((b+p)(1+y)+1—1‘pb p(1+Y) + 1 — Tpo
Z | R
G+p)(1+Y)+1-Tp (1+V)(p—a)
" VA FpO )
p(1+Y)+1-Tp p(1+Y)/

(30)

Applying -;—b |a=b=0 we get Z in terms of 'y, (and its derivative). Inserted back one
gets a highly non-linear integro-differential equation. Fortunately we can reduce
the non-linearity by subtracting from (30) the same equation taken at b = 0.
This subtraction eliminates the second line of (30) containing Z2?. In terms of

Ga = ((a+b)(14+Y) + 1 — T) ", this difference equation reads

z-' 1 1 A g G
(1+y>(Gab‘Ga0>‘b"A/o L (31)

Differentiation a‘%|a=b=0 of (31) yields Z in terms of G, and its derivative. The
resulting derivative G’ can be avoided by adjusting
2
A G — Go

Y= —Alim ) dp ——

-1 A?

=1-A dp G, which is a perturbatively di-

vergent integral for A — oo. Inserting Z~! and ) back into (31) we end up in
a linear integral equation for the difference function Dgp := £(Gap — Gao) to the
boundary:

This choice leads to

b1 A* Dy — Dang
(— + )Dab + G = )\/ dp (—‘———pb 2Gao
a aGg 0 p—a

) . (32)



The non-linearity restricts to the boundary function G,y where the second index
is put to zero. Assuming a — G, Holder-continuous, we can pass to Cauchy
principal values. In terms of the finite Hilbert tmnsform

sl = b ([ )10, (33

the integral equation (32) becomes

b 1+ dmaHA [G.o] A .
(5 " s )Dab — MHA D) = —Glap - (34)

3.3 The Carleman solution

Equation (34) is a well-known singular integral equation of Carleman type [Car22,
Tri57):

Theorem 6 ([Tri57], transformed from [-1,1] to [0,A?]) The singular lin-
ear integral equation

h(a)y(a) = ArHlyl = f(a),  a€]0,A7[,

is for h(a) continuous on ]0,A?|, Holder-continuous near 0,A2, and f € LP for
some p > 1 (determined by ¥(0) and 9(A?)) solved by

y(a) = Saldl@)e T (a e o)
-I—HA[ "~9] o £(e)sin(d(s ))} +C) (35a)
* sin(l‘/‘(izr)e”a ] (f(a)e‘”éw} cos(d(a))
+HY [ (o) sim9(@)] + ). (35b)
AT . At , .
where ¥(a) = ar[octz]m (m), sin(?¥(a)) = —W(J—)m >0 and C,C" are arbit-

rary constants.

The possibility of C,C’ # 0 is due to the fact that the finite Hilbert transform
has a kernel, in contrast to the infinite Hilbert transform with integration over
R. The two formulae (35a) and (35b) are formally equivalent, but the solutions
belong to different function classes and normalisation conditions may (and will)
make a choice.

In principle, (35) provides the solution Gy of (34), where the angle function

ATa
W(a) = ali(t):t:]m (b+ o v ) (36)
Gao
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plays a key role. This solution involves multiple Hilbert transforms which are
difficult to control. A better strategy starts from the observation that the angle
(36) satisfies, for b = 0, again a Carleman type singular integral equation

AT cot 99 (a)Gao — ATH[Ga] = .

with solution

e~Halr=%l 5in(y(a))

Gao = S (e™217=%9] cos(do(a))
A [ ingay(e)] 4 O) 57)
« eMalPl sin(9,(a)) (B_H‘/’\ Pol cos(d(a))
B AT a
~H[Do] gj /
NG sin(dg(e)) C
+H“[ o ]+A2—-a)' (37b)

Tricomi’s identities [Tri57, §4.4(28+18)], which can be arranged as
o EHAD] cos(Pp(a)) F HA [e:!:’)-lﬁx[ﬂb], sin(dy(e))] =1,

and rational fraction expansion 'Hﬂﬂfl] = L(H2[f(e)] — HE[f(e)]) simplify
(37) to
—H3[m—0] gj
G = © ol sin(dy(a)) (€ -1) (38a)

ATa
L« el sin(9y(a))

ATa

(38b)

Azcl—aa> )

Both lines are formally equivalent, but we have to guarantee the normalisation

0 for)\ZO}

(e"”g o] cos(1,(0)) +

lim, 0 Ggo = 1. From (36) one concludes lim,_,o ¥o(p) = { r for A <0

A<0
Consequently, e~ *31%] = exp ( — fOAZ %3190(1))) — 0, which means that (38b)

reduces for A < 0 to (38a), with C’ — C — 1. Similarly, lim,_,o e~*a7=%] 20
so that (38a) is only consistent with A < 0. The normalisation lim,_,0 Goo = 1
leads with lim,_,o 5‘%’%@ =1to1—C = e "lm%) in (38a), whereas (38b) stays

as it is for A > 0. These results can be summarised as follows:

A
Lemma 7 The angle function 1,(a) := ar[&tﬂalm (b+ I-E-ALZZA[G.O]> is forb =0
Ga
reverted to °
Sin(70(0)) _sign(3)(#4lro(e)1—HAlro(#)) 1 for A <0,
— sign T 2 7 9
GaO |)\|7l'(1; © 1+Agga) fOT >‘ > O ) (3 )

where C is an arbitrary constant.



Recall that G, forms the inhomogeneity in the Carleman equation (34). We
insert (39) into the Carleman solution (35) for (34) and obtain with the addition
theorem |A|7a sin (74(a) — 7(a)) = (b — d) sin 7p(a) sin 74(a) after essentially the
same steps as in the proof of (39):

Theorem 8 ([GW14]) The full matriz 2-point function Gg of self-dual ¢j-

theory on Moyal space is in the limit & — oo given in terms of the boundary
2-point function Gy by the equation

SIN(75(a)) cign(3)(#A ro(o)]~HAm () ! for A <0,
— D \T0\")) sign T Ay (e 4
Co=Nra ¢ (14+95250)  fora>0, 40

where C is a undetermined constant and b F(b) an undetermined function of b
vanishing at b = 0.

Some remarks:

e We have proved this theorem in 2012 for A > 0 under the assumption C’ =0
in (35b), but knew that non-trivial solutions of the homogeneous Carleman
equation parametrised by C’ # 0 are possible. That no such term arises for
A < 0 (if angles are redefined ¢ — ) is a recent result [GW14].

e An important observation is Gy, > 0, at least for A < 0. This is a truly non-
perturbative results because individual Feynman graphs show no positivity
at all!

e Asin [GWO09], the equation for G4 can be solved perturbatively. Matching

a—A2

at A = 0 requires C, F to be flat functions of A\. Because of H2[Geo]
—00, the naive arctan series is dangerous for A > 0. Unless there are
cancellations, we expect zero radius of convergence!

e From (40) we deduce the finite wavefunction renormalisation

y e _1_ % _/A2 dp _{0 for A <0,
db la=b=0 [ (Amp)? + (1+)\7r1(7;7:O£ [G.o])2 F(0)for A >0.
(41)

e The partition function Z is undefined for A < 0. But the Schwinger-Dyson
equations for G, and for higher functions, and with them log Z, extend
to A < 0. These extensions are unique but probably not analytic in a
neighbourhood of A = 0.

It remains to identify the boundary function G,9. The Carleman equation
(34) for G, was obtained from the difference (30)—(30)p—o. Consequently, (30)p=¢
gives the second relation between Gy, and G,y from which both are determined.
Combining them we obtain a single consistency equation for G, which in terms
of T, := |A|wa cot 79(a) reads

T.=14+a+ /\ﬂaHQ[lj
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+f " (e (2 [ogpan]) 2 owe (1 [ogpan 5] (42)
0 Ve +(p+ T by

This equation is, unfortunately, of little use. The integrals are individually di-
vergent for A—o00 so that we have to rely on cancellations on which we have no
control.

We compensate this lack by a symmetry argument. Given the boundary
function G4, the Carleman theory computes the full 2-point function G, via
(40). In particular, we get G as function of G,o. But the 2-point function is
symmetric, G, = Gpq, and the special case b = 0 leads to the following self-
consistency equation:

Proposition 9 The limit 6 — oo of ¢3-theory on Moyal space is determined by
the solution of the fixed point equation G = TG,

{ 1 for A<0
Gio =

1+bF(b) for )\>0} dp
T4 exp / dt / Ew—vI o . (43)
(Amp)? + (t+——L—G )

At this point we can eventually send A — co. Any solution of (43) is automat-
ically smooth and (for A > 0 but F' = 0) monotonously decreasing. Any solution
of the true equation (30) (without the difference to b = 0) also solves the master
equation (43), but not necessarily conversely. In case of a unique solution of (43),
it is enough to check one candidate.

Existence of a solution of (43) is established (for A > 0 but F'(b) = 0) by the
Schauder fixed point theorem. We consider the following subset of continuously
differentiable functions on R, vanishing at oo:

= {f QR fO) =1, 0<f0) <

0< —f(b) < ( 1+b+c& b)}

where C) is defined via 2 AP (1+C,)eP =1 at Py = %i;ﬁ— Then [GW12b):
1. Ky convex,
2. TKy C ’C)\,
3. (Tf)'(b) < (B + 2 + B 5y ) (T)(b) for any f € K,
4. T : Ky = K, is continuous.

The properties 1.-3. imply that TKC, is relatively compact in K, by a variant of
the Arzeld-Ascoli theorem. Together with 4. the Schauder fixed point theorem
then guarantees that (43) has a solution G, € K,.

This solution provides G, via (40) and all higher correlation functions via
the universal algebraic recursion formulae (16), (65), (66), etc, or via the linear



equations for the basic (N;+ ...+ Ng)-point functions such as (63) and (64). The
recursion formula (16) becomes after transition to continuous matrix indices

N-2
Gy s _ - Gbobl'~'b21—1Gb2lb2l+1~-~bN—l - sztbln-bzl—lGb0b21+1---bN—1
0Nt (1 + y 2 p (bo — b)) (b1 — bn-1)
(44)
It involves the finite wavefunction renormalisation 1+ ) = ﬁ“‘h'a _pp 8iven by

(41). Of particular interest is the effective coupling constant A,y = —Goooo. This
limit of coinciding indices is not so easy; therefore we directly solve the integral
equation for Gygo9 before using the reality condition. We find [GW12b]

((11 +§) G”O) Gro

(1+)) Jo P (AﬂpGPO) (1+)\7rpH‘;,°[G.o])2}' (43)

Aeﬁ = )\{1-}-

The equation for the basic function Ggpjeq arising from (64) is solved in two
steps. A first summation over b € I in (64) yields after passage to the integral
representation a Carleman equation

Gy - A /;q Gaqsin 74(a) cos (14(a) — To(a)) }

sin 1o(a)

Xa|cd{1 + )‘/dq (Gaq

0

+ /Hw[ ®led /q dg sin® Tq(O)Gaq]
0

o
= A dq (F, + F, Gacict+G
/[; q Q( ag|edeg aq|dcdq) (1 n y) ( acdc adcd)
where Fp,(cicocscq i= G“”101°2°3"4G";::;GC::’I’:I”C“G““%““. Inserted back into (64) gives

(after passage to the integral representation) a familiar Carleman equation for
Gaplca With solution
Galed = Fapjcdeb + Fabldeas
sin 7 (a) [sin2 75(e)
A Sl X o — A A
g €O 75(a)GayXajed — GasHy e

The (2+2)-point function Ggpeq turns out to be the most interesting part of the
4-point function in position space (see sec. 4).

X.,cd] . (46)

3.4 Perturbation theory

The master equation (43) can, for F(b) = 0, be iteratively solved. To lowest

order one has Gg9 = m + O()), from which the next order becomes

_ 1 log(1l+a) 0
Ga0—1+a A 1+a) + O(X?) . (47)
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If we put in Ggp = =15 +0O()\?) the index a — ﬁi—, see (58), we get

(14a)
/ P s, - 2 Kialz—yl)
e (2mp)* 20 4m(14 ) (pllz -yl
g0 27BT(1 = A) 1

4m?T(1+ ) (plle —yl))>~>*

We thus conclude that the anomalous dimension is 7 = —2, i.e. negative for the
stable sign A > 0 of the coupling constant. We shall see in the next section that
this result excludes a Wightman theory for A > 0. It is worthwhile to mention
that this wrong sign is a consequence of renormalisation. The divergent bare
2-point function would lead to the opposite sign. Removing the divergence at
a = 0 overcompensates for a > 0 and gives n = —2\. In two dimensions, n would
be non-negative for A > 0.

From (47) we get:

e Hilbert transform: AMmHP[Gao] = —AEE 4 O(X2),

1+a
e angle function: 7(a) = {i\-l;—“b (1 pye. l‘zfg_l:fg)_“bga) + O(X3),
e wavefunction renormalisation: 1+ ) = ——d—i:ﬂ w0 = L+ A0
Inserted into (40) one finds
1 (1+a)log(l+a)+(1+0b)log(l+10) 0
= — A 002 . (48
Gor = T as0 (1+a+b)2 +OX) (48)

This result coincides with renormalised 1-loop ribbon graph computation.
From the action functional (27) one obtains in the infinite volume limit to con-

tinuous matrix indices the following Feynman rules:

1
[ J ,_a_ =
—5 14+ (a+b)(1+Y)
>
* = —Z2X (index conserved at every corner)
e .
o = (1+Y)? / pdp for every closed face
0

1
1+ (a+b)(1+Y)—Tren’

To lowest order we have G, = where [77 is the

Taylor remainder of



A2 A2
(—)) / (=) :
= d d + O\,
/Opp1+a+p+ Opp1+b+p (X%

=I"" + /OApdp =Y + /OApdp () +(a ) + O(N?), (49a)

l+p (I+p)?
(Z:rl)a
A2 1 1 a
T = (= d - b O\? 49b

in agreement with (48). This shows that the fixed point solution for G4y and the
Carleman solution for G,;, provide the resummation of infinitely many renormal-
ised Feynman graphs!

From (44) and Y = A + O()\?) we obtain for the 4-point function

(_)‘) G1achd -G

Ged
Gac:‘ ad C::GaGchGa'—Fac ,
e (1+Y)2 (a—c)b—d) bGlocGedGaal( bed)
Fabcd:)\(1—)\a~(1+a)10g(1+a(3:cc+(1+C)10g(1+0)
—/\b_(1+b)log(1+b2):ill+(1+d)10g(1+d))+(9()\3), 50

which agrees with

AZ
= —(-3) (1+2) : (fji)z,)
———e
(Y pdp (Y pdp
_(_’\)/0 (14+p+a)(1+p+c) _(_)‘)/0 (14+p+b)(1+p+d) (51)

The singularities of Z2 and of the 4-point graphs cancel exactly!

3.5 Computer simulations [GW14]

A numerical investigation of 43), for F(b) = 0, can reveal interesting properties
of the ¢}-theory on Moyal space. Our strategy is to approximate G, as piecewise
linear function on [0, A?] sampled according to a geometric progression. We view
(43) as iteration GT3! = (TG™)4p for some initial function G°. In this way we find
numerically that T satisfies, for any A € R, the assumptions of the Banach fixed
point theorem for Lipschitz functions on [0, A?%], i.e. T' is contractive and (G™)
converges to a fixed point which we view as approximation for G,o. Whereas
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(G™) converges for any sign of A (without discontinuity at A = 0), the necessary
consistency condition G, = Gy, for (40) turns out to be maximally violated for
A > 0 (assuming C = 0 = F(b)) and satisfied (within numerical error bounds)
for A < 0. The observed relative asymmetry sup, |g4:i-}g-§:‘ of nearly 100 % for
A > 0 signals that the parameters C, F'(b) in (40) which reflect the non-trivial
solution of the homogeneous Carleman equation are definitely non-zero. Taking
C,F(b) # 0 for A > 0 into account is not feasible at the moment so that our
numerical results are reliable only for A < 0. For A = 107 and only 2000 sample
points in [0, A?], the relative asymmetry for A < 0 is of the order of 5 %.

The most striking outcome of our computer simulations concerns the finite
wavefunction renormalisation (1 + )) given by (41). Figure 1 shows both Y and
the effective coupling constant A.g given by (45) as functions of A. We find clear

R T i =R T .
Galag...aN F Gab 7£ Gba
singular | (solution of =
homogeneous
r Carleman -
L equation =
neglected
05 & ) -
| | ..
[ |
'-* 0o ®*® ° ¢ ¢
.l.'.
ug®
=.
'l
| I 1 1 1 | AO \AC 1 1 | ..' I 1 | I | I | I I |
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[ |
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] i
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° .y:717(da0 a=—0
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m A = —Goooo
° ° ° oJ 10 o

Figure 1: ), A5 based on Gy for A2=107 with 2000 sample points.
evidence for a second-order phase transition: ) is discontinuous at A, = —0.396,
and we have in reasonable approximation a critical behaviour

AN =A)Y for A,
1+y—{ 0 for A < A, (52)



for some A, a > 0. To be precise, we find 1+ = 0 only at A\g= — 0.455, but this
seems to be due to the discretisation. Of course, there cannot be a discontinuity
in ' for finite A, but Figure 1 is strong support for a critical behaviour (52) in
the limit A? — oco. It is worthwhile to mention that nothing particular happens
at the expected pole A\, = —L = 0.014 of Borel resummation! Since 1 +) = 0
(within numerical error bounds) in the phase A < A., we see from (44) that higher
N-point functions will not exist for A < \.. Most surprisingly, as we discuss at
the end of section 4.2, a key property of the Schwinger 2-point function S.(z,y)
in position space is precisely realised in [A., 0], not outside! To be more precise,
Figure 2 suggests G, = 0 for 0 < a,b < A%, where A2 increases with A, — A > 0.

L L L L L
10 log(14a) 15 F = Tog(T+a) 15

log G0 log G

=0.5

log Gaq

A= —0.477

Figure 2: Plots of log G40 and log G, over log(1 + a) for A < A..

This could leave the possibility of meaningful higher functions (44) for matrix
indices 0 < a; < A2, but not for larger indices. Such a picture could have the
interpretation of a maximal momentum cut-off of the Euclidean particles.

4 Schwinger functions and reflection positivity

In the previous section we have constructed the connected matrix correlation
functions qu ah, |--1aP g5 | of the (6—00)-limit of ¢}-theory on Moyal space.
1

These functions arise from the topological expansion (6) of the free energy

[oe] o0 Jﬁ B
Z|J INg A1
log Z[[O]] =Z Z S Zqul a, |-1g? . qNB'HN6< ie.. qug )

B=11<N;<--<Np N 5€N2

(53)

Since limy 4,00 G|q a2, | is finite, the limit limy_, o V - log -—Lol of the

qul Iql
naturally expected free energy den51ty removes (in addition to the removal of
higher-genus contributions) all contributions from B > 2. As shown in previous
sections, this planar limit is an exactly solvable and (without any doubt) non-

trivial matrix model.
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4.1 Schwinger functions

We are interested here in another limit to Schwinger functions [Sch59] in position
space. For this end we revert the matrix representation (24) and take the infinite
volume limit Vu* — oo, where we carefully have to pass to densities. Absolute
position z € R* have no meaning, only uz can be used. This means that we
consider

<¢(NCU1) Iy ¢(M$N)> = Z Frmyme (HT1) * fraymy (NIN)<‘I)m1m ce (I)mzmzv%

m1,n1,....,mN, 0N EN2

where the matrix correlation functions (®mn, - - - @myny ) are obtained by deriv-
atives of (53) with respect to Jyns---> Jmyny- We shall see in this section that
the additional index summation over m;,n; € N? gives a meaningful limit only
if we redefine the volume factor in the free energy density to F = (7‘17)—2- log %.
The occurrence of V2 as the volume has its origin in the spectral geometry of
the Moyal plane with harmonic propagation [GW13a, GW12a] which has a finite

volume (¥)2.

Definition 10 The connected Schwinger functions associated with the action
(26) are

IU'NSC(M:EL s 7/‘I‘IN)

- uNoN FLJ]
=Jm Y fwe () S (BN g (6)
m1,n1,....mN,nNEN? mnn
D (I) —S[®]+V 32, pen2 PabJba
.F[J] 64r 21‘/' —2[18 lOg (f ]fD (I>] —S[®] 3
Z“barc‘_)“z

Z+(1+Y)

where S[¢] is given by (27) and fun by (24). By () z.2,__...2 we symbolise the
Z—(14Y)
renormalisation of sec. 3.2. "

Note that by construction the J-derivatives, and hence the Schwinger functions,
are fully symmetric in uz;...,uxn. Applying the J-derivatives the the topo-
logical expansion (53) into J-cycles produces an fn,-cycle for each of the B
boundary components:

1
Sc(ﬂ'xla SRS uxN) V,}i—)oo 6472 Z Z G|g%...g}vll...|gf...gﬁBl

N1+---+NB=N 'ﬁeNZ

f(nqz HIo(Ny+..4Ng_ 1+1)) ngﬁt_n(/'l'xa(N1+,..+N,3))
ST |

4
o€SN =1 V“ Nﬁ



We compute the sum over the indices qf € N2 by Laplace-Fourier transform of
G. For that we temporarily assume that G has, for every boundary component, a
representation as Laplace transform in the total sum of index norms and Fourier
transform in differences of index norms. This transform will be reverted in the end
so that the analyticity assumption is not necessary (future analytic continuation
to Minkowski space would imply representation as Laplace transform):

Gigt..qh, |--laf-aR g

d(tl,-- .’tB) d(w%, .. ’(.U}Vl__l,.. .,(.U].B,. .o ’wﬁB"‘l)
B RN-B

x Gt wi,. .., wy|.. |tB wf,...,wf,B)

xHeXp( \/WZ'% ﬁ}: el -lafal) . 69

Note that the 1-norms |(_Jf | = qf 1—|~qf o imply a factorisation of the exponential,
: I,
exp(. .. ):I—I(ziﬁ(tﬁ,(I)'ﬂ))q’*1 (zf(tﬂ,wﬁ))q 2

(2
For every boundary component 8 =1,..., B, we thus need to compute

Z fqu(ﬂyl) fQN"II (MgN’)qu cee N
RN 1 N’
gL, qnr=0 VN

= 2N,§: €hl(r1+ +ryr) Lgi - (7“1) Lg}v’ ™ (TNI) (_El)ql U (_Z)qu (56)
VustN' v
ql""’qN/:O \/——

= 5. = Tzl gyny(— ol wi-1) ,
where r; i and %; - exp( T ), with ¢; € C, %o = yn and
wo = wpnr = 0. One has

Lemma 11 ([GW13b]) For |Z;| < 1, a cyclic product of Laguerre polynomials
(i.e. N'+j = j) is summed to

exp <_ Zﬁ:l ri(—Zk+j) - (’EN’+J'))
- O 5\ T 95+1—4; 1- (_51) - (-EN’)
> =) Lgnury) = 1= (=7) - (=) O

q1,-q =0 j=1

The denominators in (57) become

: 't o [E for N’ even,
—(21) - ()= ()Y enp (- ) T SR T
Vi 2  for N' odd .

, the sum (56) converges for Vu* — oo to

Together with the prefactor

zero if N’ is odd, whereas if N’ is even the limit is non-zero and finite, depending
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only on ¢ but no longer on w;. Recombining the two N2-components we produce
_M ! 2
€x 7 d —i N't
factors exp (— s = / B exp( Il ) for every even N'.
(N't)? re 4m2pt 2u2
Altogether we arrive at

lim Z fg1g2 (uxl) e ng;g1 (Nle)zq1]1+ql,2 . qu/,1+qN/'2
Vit oo R V,M4N' 1 N
N’ 2
B 4_ dp e—i(ﬁ,u(zl—w2+...+zN;_1—a:N/)) exp ( _ N’thH ) for N’ even ,
- N’ R4 47'['2/.1,4 2:“‘2
0 for N’ odd .

, 8118 12
Integration of G(¢!,wl,... ,wy,|...|tB,wP,... ,wk,) against exp(— e 21!;’ Iy in

(55) returns to the original function G, gl |--lgP g8, | but with

1. for each 8, all ‘qf | coincide (no w-dependence),

Ng B 8
2. _Z_:\/‘%_I = 2MszHQ hence \}—-—%’/J——Z Ve (1+Y)q = ’:; in limit to integral
7 I
representation.

We have thus proved:

Theorem 12 The connected N-point Schwinger functions of the ¢j-model on
extreme Moyal space 8 — oo are given by

Sc(/-‘l’xl, ce 3/-1“/EN)

64 2 Z Z(H%Nﬁ/ 4d2pﬂ i<£'{i’2’{v=ﬁl(_l)i1"75¢'(1\’1+‘..+Na—1+i)>)
T g8 Jrs 4T

Ni+..+Np=N geSy

Nﬁ even
X G e lesl> ... _lesl® - (58)
2#2(1+y)’ 1 2p2(14Y) 171 242 (14Y) ' 2u2(14Y)

-~ -

Ny Ng

Some comments:

e Only a restricted sector of the underlying matrix model contributes to po-
sition space: All strands of the same boundary component carry the same
matrix index.

e Schwinger functions are symmetric and invariant under the full Euclidean
group. This comes truly surprising since § # 0 breaks both translation
invariance and manifest rotation invariance. The limit § — oo was expected
to make this symmetry violation even worse!

e The most interesting sector is the case where every boundary component
has Ns = 2 indices. It is described by the (2+...+2)-point functions

G 2 2 2 2
ez ll llpg Il legll lrglls -
2u%(14Y) 2p2(1+Y) I"'|2u (14+Y) 2p4(1+))



e This sector describes propagation and interaction of B particles without
any momentum exchange. This is acceptable for a 2D-model. In four
dimensions, absence of momentum transfer is a sign of triviality.

e However, typical triviality proofs rely on clustering, analyticity in Mandel-
stam representation or absence of bound states. All this needs verification.

It is already clear that clustering is maximally violated. Looking for instance

at the (2+2)-sector, we have

lim S2*2(uxy, pxa, p(zs + a), u(zs + a))

Ha—00

ei(p,wl—Z2)+i(q,m3 —x4) (59)

. / dpdq G

)t T sk e
independent of the distance between {z1,z2} on one hand and {z3,z4} on the
other hand. Absence of clustering means that the vacuum state (of a hypothetical
continuation to a Wightman theory) is not a pure state. Non-pure states can be
decomposed into pure states which describe different topological sectors.

Let us give an intuitive explanation why the limit § — oo of extreme non-

commutativity is so close to an ordinary field theory expected for § — 0. The
interaction term in momentum space

/(R4)4 (ﬁ (;lp;4) (p1+ -+ p4) exp (12 pz,@pj ) f[

leads to the Feynman rule Aexp (i 3, _,(pi, ©p;)), plus momentum conservation.
For 8 — oo, this converges to zero almost everywhere by the Riemann-Lebesgue
lemma, unless p;,p; are linearly dependent. This case of linearly dependent mo-
menta might be protected for topological reasons, and these are precisely the
boundary components B > 1 which guarantee full Lebesgue measure!

4.2 Reflection positivity

Under conditions found by Osterwalder-Schrader [0S73, OS75], Schwinger func-
tions [Sch59] possess an analytical continuation to Wightman functions [Wig56,

SW64] of a true relativistic quantum field theory. Roughly speaking, the Osterwalder-

Schrader reconstruction theorem says:

Theorem 13 ([OS73, OS75]) If the Schwinger functions S(x1,...,zn) satisfy
0. growth conditions,
1. Euclidean covariance,
2. reflection positivity: for each assignment N + fy € SN of test functions,

Z/d(l?dy S(xlv"'7xN7y17~'-yM)fN(x{»'"7x§v)fM(yla-~'7yM) 203
M,N .

U L=

where (x
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3. permutation symmetry,
then the S(&1,. . .§N_1)[€Q>0, with & = x;—x;41, are Laplace-Fourier transforms
of Wightman functions in a relativistic quantum field theory. If in addition the
S(zy,...,zN) satisfy

4. clustering

then the Wightman functions satisfy clustering, too.

Representation as Laplace transform in £° requires analyticity in Re(£%) > 0.
For the Schwinger 2-point function (58), such analyticity in £° is a corollary of
analyticity of the function a — G,, in C\]—00,0]. We will show that analyticity
and reflection positivity boil down to Stieltjes functions, i.e. functions f : R, = R
which have a representation as a Stieltjes transform (see [Wid38])

f(a:):w/(f”’ff’—f% c=f(o0) 20, (60)

where p is non-negative and non-decreasing. We prove:

dp
Proposition 14 The Schwinger function S.(u€) = / e’G e |2
P I ( ) R4 (2Wﬂ)4 2u ?1+y) 202 (14Y)

identified in (58) is the analytic continuation of a Wightman 2-point function if
and only if a — Gg, is Stieltjes.

Proof. This is verified by explicit calculation. If a — G, is Stieltjes, we have in
terms of wx(t) = \/p* + 2u2(1 + V)t

4= [ o [ B et [0
>0 Jgs (2mp) 27ru o t+ EE
dﬁ ei;b‘{ 0o dp ¢ oodpo eip(l{o eip%o
:Z,u(l—l-y)/ 3/ ()/——(0 - = )
r3(2m)3 Jo 2ws(t) J_o2mi \pP—iws(t)  pC+iws(t)
= 21+Y) / 27w)3 /o

2wp(t)
> 2 1 + y dp 0 e 0e01ig @ a
/ 2 / d \/]quw Q) ) (61 )
X 0 0
Wi(q) := (02(5)) 6((q ) Mf" (1+))t ) (61b)

The step from the second to third line is the residue theorem. We observe that
Wi(q) is precisely the Kallén-Lehmann spectral representation [Kal52, Leh54] of
a Wightman 2-point function. O

Remarkably, the Stieltjes property can be tested by purely real conditions:



Theorem 15 (Widder [Wid38]) A function f : R,—R is Stieltjes iff it is

smooth, non-negative and satisfies Ly ([f(o)] > 0, where

("'t)k_l d2k—-1
Ck dt2k-1

Lis[f(e)] := @), a1 =1, cgsy = Kl(k-2)! .

In that case, the measure is recovered by p'(t) = limg—yo Lis[f(®)] (weakly and
almost everywhere).

The perturbatively established anomalous dimension 7 = —2) implies that a —
Goe cannot be Stieltjes for A > 0. The restriction to negative coupling constant
is reminiscent of the planar wrong-sign A¢3-model [tHo82, Riv83]. Recall that
our matrix model also reduces to the planar sector, but as result of the infinite
volume limit and not by hand. We nonetheless keep a non-trivial topology in
form of B > 1 boundary components. Moreover, we have an exact solution for
S(z1,...,zN), not only an existence proof.

Whether or not a — G, is a Stieltjes function for A < 0 is a highly interesting
question. A first idea can be obtained by computer simulations, see sec. 3.5. We
show in Figure 3 interpolation results for A near the critical coupling constant.
We find clear evidence that a — Gy, is not a Stieltjes function for A < ., where

0.25 -

,'~\\ \ 0.382 03-  ,7~—0.350
——0. N
om0 el A= 0.398 S o —0.398
! N S e 1 TN, Tt P 00
| N L ~aa 02 1 ¢ . . R L
[ 2 s e Py N L T
01511 " ", \~ ~ B ;..-: Ll '.'L—.-: -t ,-'A S~ e
I' ! /’/ ~~~ -‘.’,.-—--' e | 'I ’.I /.- ~~~~~~~~ e .o
ST 0.1-1 ? e S e e oL
ot0fy 7 LT Tea L g s T b
v L LTS 1L POy
- e A=-0.350 Lt s L o
005 Fa i 2 3 4 5 6
e A=—0.414 1
s ‘ . %0414
1 2 3 4 5 6 —0.1 v
1 i ‘__—‘il'~‘- :“-V{\I
U3 : ‘i’— .,. \\
- .
s Lt . . . .
. e i \ e based on interpolation of discrete
- P H 1 .
i —0:350,-7 4 i Foondl data, noisy for k > 4
JRe H H -""'i.:".\‘l " \ . . .
o1r s P 0382 e Stieltjes property clearly violated
i RSN TP Lol B i
IINEILLAR SYLL R BN M g for A < A,
n 0.1 0.2 QAo 04y 0.5 Treg Fet -_‘IJ.7
i i ! ! I —0.398
Bt —0.414} i ;

Figure 3: Widder’s criteria Ly, ,[Gae] := ﬁ%di:%(akGaa) >0for A= .

Ac & —0.396 locates the discontinuity of }’()A). For A € )., 0] the results are not
conclusive (as & is too small). Since G,, and Gy show a very similar behaviour
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(see e.g. Fig. 2), the functions Ly ¢[Gso] (which are easy to compute) give some
indications about L ;[Ges] (Which we are interested in). From (43) one can prove
the following identity [GW14]:

(log Gao)® — (=1)*
-1 (1+a)

+ (—1) sign(\) #3 [ sin (£7,(e)) (Sin Ta('))e] . (62)

| Ao

The resulting integrated “mass densities” pi(m?) = meZ dt Li+[Ge)] are shown
in Figure 4. We find clear evidence for a mass gap, limj_c gr(u?) = 0 for

1 P16
10|
n.s; ﬁ5

0.4 1

close to step function

o2 expected for A =0
10 20 3‘0 . 40 0

! P16

6 A= —1.15

sk P5

.

3 critical behaviour:

T - 0 w<m

2\ _ <
. p(ps)= {(MQ_mZ)—oz ©w>m

I L [ P L Ll L T
4 10 20 30 40 50

Figure 4: pp(m?) = f0m2 dt Ly :[Geo] as approximation for the mass density of
a — Gaq. In each row, the left picture is zoomed into small y, showing evidence
for a mass gap. The right pictures show the global behaviour, close to a step
function for A 0, close to criticality for A \, A..

0 < p? < m? For A 7 0 the integrated mass density approaches (as expected)
a step function, whereas for A \, A\ we notice a power-law behaviour typical for
critical phenomena. In particular, for A, < A < 0 there is no further gap in the
support of 7/, which signals scattering right away from m? (not only from the
two-particle threshold on). We interpret this as scattering of a massive particle
with an infrared cloud. This scattering would be a remnant of the underlying
non-trivial matrix model before the projection to diagonal matrices.



4.8  Summary

We have shown that the ¢}-model on noncommutative Moyal space, considered
in the limit § — oo of extreme noncommutativity, is an exactly solvable and non-
trivial matrix model. Euclidean symmetry is violated in the beginning, but we
identified a limit which projects to diagonal matrices where Euclidean symmetry
is restored. One would not expect such that such a brutal projection can respect
any quantum field theory axioms. Surprisingly, the first consistency checks, pos-
itivity of the lowest Widder criteria Ly :[Ges], are passed for the only interesting
interval [\, 0] of the coupling constant!

If these miracles continue and all Osterwalder-Schrader axioms (except for
clustering) hold, we would get a relativistic quantum field theory in four dimen-
sions. This theory is somewhat strange as “particles” keep their momenta in
interaction processes. Nevertheless, the theory is not completely trivial. We
find scattering remnants from the noncommutative geometrical (i.e. matricial)
substructure. Only the external matrix indices are put ‘on-shell’, internally all
degrees of freedom contribute.

We have seen that clustering is maximally violated. The interaction is insens-
itive to positions in different boundary components. In particular, “particles” are
never asymptotically free.

A Schwinger-Dyson equations for B = 2
We find for the (1+1)- and (2+2)-point functions

- A 1 Gl =Glale)\  Gle] —Glacl
Clakl = 53 E. (V pie; (GlaplGlalcl E,—F, ) E._E. (63a)

A 1
— == ==|3 ala ale alcac claaa puges Gacan 3b
Vz(Ea+Ea)(GIIIGIII+GII |+ G 'ﬂ/% lale |) }(6 )
A
Gabled]
_ A 1 Gippicd| =Glabled]) )
= "E1E (V ; ((GronGratea+Gras Grapea) E, ~ L, ) (o
Gcbed) = Gicbad)  Gldvde] ~Gdbac|
+Glap| (G|cacd|+Gldadcl) T E I_ E]a N Edl_ E, J
(Gt Grave + CrGlaaea + = 3G ’
B T7SY2 Y ala|“7|ablc a alale 17 anlab|c
V2(E, + E;) |ala|*|ablcd] b lalalcd VneI lan|ab|cd] | (64b)
G ale _G c
+G|cd|aaab]+G|cd]baba|+G|ablcacd|+G|ab|cddadl Sl ‘IE:I_ Ejlblbl dl)

/

A
— e . 4
VA(E, + E) G lalafabled] } (64c)
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These are basic functions which are not simplified by reality. As before, (63a)
and (64a) preserve the genus, whereas g — g+1 in (63b)+(64b) and g — g+2 in
(63c)+(64c). The higher (N;+N,)-point functions with one N; > 3 simplify by
reality to universal recursion formulae. For N; odd we have

G|b0-~-52!’cl---CN—2l—1|

N-=-21-1 G _G
. _)\ Z |Cln-Ck—1b0b1---bleka+1---CN—2l—1| Icl...ckﬁlckbl...bglbock‘;,l...cN_21_1

(Ebl - Ebzl)(Ebo - Eclc)

_/\§ :Glbobl bgj—2le1..en—21- 1|G|b23 1b2;..bar| T Glb2] 1b1..boj—2lc1...on—2i- 1|Glbob2J -bai
(Eb1 Ebzl)(Ebo Eb21—1)

. )\E :Glbob1 boj— 1|G|b23b2,+1 Daferenoaio1| T G|bng1 baj— 1{G|bobzg+1 bailer...en—21-1
(Eb1 Ebzz)(Ebo Esz)

= ZGlboIn br—1]brbry1.barler.en—ai-1] G]bkbl -bi—1]bobi+1.--bailer...on—21-1] . (65)
V (Ebl Ebzz)(Ebo Ebk)

The last line increases the genus and is absent in GO For N; even

one finds

|bob1...batler...en ~21-1]

Glabl- bzz iler..en—2i)

_)\E :Glbl .baj—1afcr...en— 2t|G|b23b21+1 bar-a| T G|b1 .boj1bojlcr..en - 21|G|asz+1 b2
(Eb1 Eb2z—1)(Ea Esz)

_)\E :G|bl boj 1alGlbng2g+1 bor_gleren—a| T Glbl boj 1623|G|abzg+1 boj-1ler...en 21
(Ebl Ebzl—l)(Ea Eij)

N-2 ~ e
_ A z : |01...ck_labl..,bzz_lckck_._l...cN-gll |cl...ck_lckbl...bgl_lack+1...cN_gl

(Eb1 - Ebzt—1)(Ea - Eck)

211
_LZG[blmbk—lalbkbk+1--'b2l—1Iclch—ZlI—G|b1--~bk—1bk'abk+1---b2l—1lcl---CN—Ql (66)
2 _ — .
V2 i~ (Ey, — Ey,,_,)(Eq — Ey,)

Again, the last line increases the genus and is absent in el
[bob...bor—1]c1...CNn—21]"
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