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Abstract

The classical $O(N)$ spin models in two dimensions have been believed free from
any phase transitions if $N$ is larger than or equal to 3. We show that if $N$ is large,
then the block-spin-type transformations can be applied through Fourier (duality)
transformation. This enables us to prove the result claimed in the title of this paper.

PACS Numbers $05.50+q$, 11. $15Ha$ , 64. $60-i$

1 Introduction

Though quark confinement in 4 dimensional (4D) non-Abelian lattice gauge theories and
spontaneous mass generations in $2D$ non-Abelian sigma models are widely believed [1],
we still do not have a rigorous proof. These models exhibit no phase transitions in the
hierarchical model approximation of Wilson-Dyson type or Migdal-Kadanov type [12].

In ref. [14], we considered a transformation of random walk (RW) which appears in
the $0(N)$ spin models [3, 4]. This was extended by the cluster expansion [5, 11, 19, 20],
and we showed in the $2DO(N)$ sigma model that :

$\frac{\beta_{c}}{N}\geq$ const $\log N$ (1.1)

In this paper, we apply a block-spin transformation to the functional integral of the
system, and establish the following theorem:
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Main Theorem. There exists no phase transition in two-dimensional $0(N)$ invariant
Heisenberg model for all $\beta$ if $N$ is large enough.

To appeal to the $1/N$ expansion [17], we scale the inverse temperature $\beta$ by $N.$ $(N\beta$

is denoted simply $\beta$ or $\beta_{c}$ in [14] and in our bound (1.1).) The $\nu$ dimensional $O(N)$ spin
(Heisenberg) model at the inverse temperature $N\beta$ is defined by the Gibbs expectation
values

$\langle f\rangle\equiv\frac{1}{Z_{\Lambda}(\beta)}\int f(\phi)\exp[-H_{\Lambda}(\phi)]\prod_{i}\delta(\phi_{i}^{2}-N\beta)d\phi_{i}$ (1.2)

Here
$\Lambda=\Lambda_{0}=[-(L/2)^{M}, (L/2)^{M})^{\nu}\subset Z^{\nu}$

is the large square with center at the origin, where $L$ is chosen odd $(e.g. L=3)$ and
$M$ is a large integer. Moreover $\phi(x)=(\phi(x)^{(1)}, \cdots, \phi(x)^{(N)})$ is the vector valued spin

at $x\in\Lambda,$ $Z_{\Lambda}$ is the partition function defined so that $<1>=1$ . Moreover $H_{\Lambda}$ is the
Hamiltonian given by

$H_{\Lambda} \equiv-\frac{1}{2}\sum_{|x-y|_{1}=1}\phi(x)\phi(y)$ , (1.3)

where $|x|_{1}= \sum_{i=1}^{\nu}|x_{i}|.$

First substitute the identity $\delta(\phi^{2}-N\beta)=\int\exp[-ia(\phi^{2}-N\beta)]da/2\pi$ into eq.(1.2)
with the condition [3, 4] that ${\rm Im} a_{i}<-\nu$ . We set

${\rm Im} a_{i}=-( \nu+m^{2}/2) , {\rm Re} a_{i}=\frac{1}{\sqrt{N}}\psi_{i}$ (1.4)

where $m^{2}>$ will be determined soon. Thus we have

$Z_{\Lambda} = c^{|\Lambda|} \int\cdots\int\exp[-W_{0}(\phi, \psi)]\prod\frac{d\phi_{j}d\psi_{j}}{2\pi}$

$= c^{|\Lambda|} \det(m^{2}-\triangle)^{-N/2}\int\cdots\int F(\psi)\prod\frac{d\psi_{j}}{2\pi}$ (1.5)

where

$W_{0}( \phi, \psi) = \frac{1}{2}\langle\phi, (m^{2}-\triangle+\frac{2i}{\sqrt{N}}\psi)\phi\rangle-\sum_{j}i\sqrt{N}\beta\psi_{j}$ (1.6a)

$F(\psi) = \det^{-}N2(1+i\alpha G\psi)\exp[i$
(1.6b)

$\alpha = 2/\sqrt{N}$ (1.6c)

Here $c$ ’s are constants being different on lines, $\Delta_{ij}=-2\nu\delta_{ij}+\delta_{|i-j|,1}$ is the lattice Lapla-
cian, $G=(m^{2}-\triangle)^{-1}$ is the covariant matrix. The two point functions are given by

$\langle\phi_{0}\phi_{x}\rangle = \frac{1}{\tilde{Z}}\int\cdots\int(m^{2}-\triangle+i\alpha\psi)_{0x}^{-1}F(\psi)\prod\frac{d\psi_{j}}{2\pi}$ (1.7)
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where $\tilde{Z}$ is the obvious normalization constant. Choose the mass parameter $m=m_{0}>0$

so that $G(O)=\beta$ , where

$G(x) = \int\frac{e^{ipx}}{m_{0}^{2}+2\sum(1-\cos p_{i})}\prod_{i=1}^{\nu}\frac{dp_{i}}{2\pi}$ (1.8)

This is possible for any $\beta$ if and only $\nu\leq 2$ , and we find that $m^{2}\sim 32e^{-4\pi\beta}$ as $\betaarrow\infty$

for $v=2$ , which is consistent with the renormalizaiton group analysis, see e.g. [6]. Thus
we can rewrite

$F(\psi) = \det_{3}^{-N/2}(1+i\alpha G\psi)\exp[-\langle\psi, G^{02}\psi\rangle]$ (1.9)

for $\nu\leq 2$ , where $\det_{3}(1+A)=\det[(1+A)e^{-A+A^{2}/2}]$ and $G^{02}(x, y)=G(x, y)^{2}$ so that
$R(G\psi)^{2}=\langle\psi,$ $G^{02}\psi\rangle$ . Moreover $F(\psi)$ is integrable if and only if $N>2$ , and thus $\nu\leq 2$

and $N>2$ are required.
If $m$ is so chosen, the determinant $\det_{3}(1+i\alpha G\psi)^{-N/2}$ may be regarded as a small

perturbation to the Gaussian measure $\sim\exp[-\langle\psi, G^{02}\psi\rangle]\prod d\psi$ . This is the case if $N$ is

very large or if $\beta$ is very small $(e.g. N\log N>\beta)$ , in which case $\Vert|\alpha G||\ll 1$ and we can

disregard $\det_{3}^{-N/2}(1+i\alpha G\psi)$ and the model is exactly solvable in this limit. Thus we have

$\langle\phi_{0}\phi_{x}\rangle = \frac{1}{Z}\int(m_{0}^{2}-\triangle+i\alpha\psi)_{0x}^{-1}\exp[-R(G\psi)^{2}]\prod d\psi$

$\leq (m_{0}^{2}-\triangle)_{0x}^{-1}\leq c\exp(-m_{0}|x|)$ (1.10)

But this argument fails for large $\beta$ since $G$ is of long-range and the expansion of the
determinant is not justified at all.

On the other hand, this argument can be justified if the main part of the $\psi$ integral
consists of $|\psi|<N^{\epsilon}\beta^{-1/2}$ such that $\sum_{x}\psi_{x}\sim$ O. In this case, the expansion of the
determinant is justified. Our main argument in this paper is to justify this argument.

The renormalization group (RG) method is the method to integrate the functional
integration recursively introducing block spin operators $C$ and $C’$ defined by

$\phi_{1}(x) = (C\phi)(x)$

$\equiv$

$\frac{1}{L^{2}}\sum_{\zeta\in\triangle 0}f(Lx+\zeta)$ (l.lla)

$\psi_{1}(x) = (C’f)(x)$

$\equiv$ $L^{2}(Cf)(x)$ (l.llb)

where $x\in\Lambda\cap L\Lambda$ and $\triangle_{0}$ is the square of size $L\cross L(L\geq 2)$center at the origin. $C$ and
$C’$ consist of averaging over the spins in the blocks and the scaling of the coordinates,

i.e., $\Lambda=\Lambda_{0}arrow\Lambda_{1}$ . We integrate out the remaining degrees of freedom which we call
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fluctuation fields ( $\xi$ and $\tilde{\psi}$ ) and continue these steps, $\phi_{n}arrow\phi_{n+1}arrow\cdots,$ $\psi_{n}arrow\psi_{n+1}arrow\cdots$

and $\Lambda_{n}arrow\Lambda_{n+1}arrow\cdots(n=0,1,2, \cdots)$ . We repeat this process by finding matrices $A_{n}$

and $\tilde{A}_{n}$ such that

$\phi_{n} = A_{n+1}\phi_{n+1}+Q\xi_{n}$ (1.12a)
$\psi_{n} = \tilde{A}_{n+1}\phi_{n+1}+Q\tilde{\psi}_{n}$ (1.12b)

and

$\langle\phi_{n}, G_{n}^{-1}\phi_{n}\rangle = \langle\phi_{n+1}, G_{n+1}^{-1}\phi_{n+1}\rangle+\langle\xi_{n}, \Gamma_{n}^{-1}\xi_{n}\rangle$ (1.13a)

$\langle\psi_{n}, H_{n}^{-1}\psi_{n}\rangle = \langle\psi_{n+1}, \hat{H}_{n+1}^{-1}\psi_{n+1}\rangle+\langle\tilde{\psi}_{n}, Q^{+}H_{n}^{-1}Q\tilde{\psi}_{n}\rangle$ (1.13b)

where $G_{n}^{-1}$ and $H_{n}^{-1}$ are the main Gaussian parts in $W_{n}$ , and

$G_{n} = CG_{n-1}C^{+}=C^{n}G_{0}(C^{+})^{n}$ (1.14a)

$(Q\xi)(x)$ $=$ $\{\begin{array}{ll}\xi(x) if x\in\Lambda_{n}’-\sum_{\zeta\in\Delta(x),\zeta\neq x}\xi(\zeta) if x\not\in\Lambda_{n}’\end{array}$ (1.14b)

$\Lambda_{n}’ = \Lambda_{n}\backslash L\Lambda_{n}$ (1.14c)

where $\Delta(x)$ is the square of size $L\cross L$ center at $x(\in\Lambda_{n}\cap L\Lambda_{n})$ . Namely $Q$ : $R^{\Lambda_{n}’}arrow R^{\Lambda_{n}}$

$(n=0,1,2, \cdots)$ is the operator to make zero-average fluctuations $Q\xi_{n}$ from $\{\xi_{n}(x)$ : $x\in$

$\Lambda_{n}’\}.$

In our case, we start with

$G_{0} = (-\triangle+m_{0})^{-1}(x, y)$

$\sim \beta-\frac{1}{2\pi}\log|x-y|$

$H_{0} = \frac{1}{G^{02}}(x, y)$

$\sim \frac{1}{|x-y|^{4}}$

where $H_{0}^{-1}$ is derived from the formal $Narrow\infty$ limit of $F(\psi)$ . Thus we see that

$G_{1}(x, y) = (CG_{0}C^{+})(x, y) \sim\frac{1}{L^{4}}\sum_{\zeta_{)}\xi\in\triangle 0}\log(Lx-Ly+\zeta-\xi)$

$\sim G_{0}(x, y)$

$H_{1}(x, y) = (C’H_{0}C^{\prime+})(x, y) \sim\sum_{\zeta_{)}\xi\in\triangle 0}(Lx-Ly+\zeta-\xi)^{-4}$

$\sim H_{0}(x, y)$

as $|x-y|\gg 1$ . This means that the main Gaussian terms are left invariant by $C$ and $C’$

(self-similarity).
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Define

$\mathcal{A}_{n} = A_{1}A_{2}\cdots A_{n}$ (1.15a)
$\tilde{\mathcal{A}}_{n} = \tilde{A}_{1}\tilde{A}_{2}\cdots\tilde{A}_{n}$ (1.15b)
$\varphi_{n} = \mathcal{A}_{n}\phi_{n}$ (1.15c)

$z_{n} = \mathcal{A}_{m}Q\xi_{n}$ (1.15d)

$\mathcal{G}_{n} = A_{\eta}G_{n}\mathcal{A}_{n}^{+}$ (1.15e)
$\mathcal{T}_{n} = \mathcal{A}_{n}Q\Gamma_{n}Q^{+}\mathcal{A}_{n}^{+}$ (1.15f)

so that

$\varphi_{n} = \varphi_{n+1}+z_{n}$ (1.16a)

$\mathcal{G}_{n} = \mathcal{G}_{n+1}+\mathcal{T}_{n}$ (1.16b)

$G_{0} = \sum \mathcal{T}_{n}$ (1.16c)

$\mathcal{G}_{0}^{02} = \sum_{n}(\mathcal{G}_{n}^{02}-\mathcal{G}_{n+1}^{02})$
(1.16d)

$= \sum_{n}(\mathcal{T}_{n}^{02}+2\mathcal{G}_{n+1}\circ \mathcal{T}_{n})$
(1.16e)

Since $R(G\psi)^{2}=\langle\psi,$ $G^{02}\psi\rangle$ in (1.9), we will see that

$H_{n}^{-1}\sim \mathcal{T}_{n}^{02}+2\mathcal{G}_{n+1}\circ \mathcal{T}_{n}\sim2\beta_{n+1}\mathcal{T}_{n}$ (1.17)

Here we use the following notation (Hadamard product)

$(A oB)(x, y)=A(x, y)B(x, y) , T^{02}=ToT$

2 Hierarchical Model Revisited

Before beginning our BST, we study some remarkable features in this model by the
hierarchical approximation of Dyson-Wilson type [13] in which the Gaussian part

$\exp[-(1/2)\langle\phi_{n}, (-\triangle)\phi_{n}\rangle]$

is replaced by the hierarchical one:

$\exp[-(1/2)\langle\phi_{n+1}, (-\triangle)_{hd}\phi_{n+1}\rangle-(1/2)\langle\xi_{n}, \xi_{n} n=0, 1,$

Put $g_{0}(\phi)=\delta(\phi^{2}-N\beta)$ . Choosing a box of size $\sqrt{2}\cross\sqrt{2}$ at the nth step including two
spins $\phi+and\phi_{-}$ (two $\phi_{n}$ ’s in the box), we put $\emptyset\pm\equiv\phi\pm\xi$ , where $\phi=\phi_{n+1}$ and $\xi=\xi_{n}.$
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Then $2\xi^{2}=\phi_{+}^{2}+\phi_{-}^{2}-2\phi^{2}$ and put $\phi=(\varphi, 0)\in R+\cross R^{N-1},$ $\xi=(s,u)\in R\cross R^{N-1}$ and
$f(x)=g_{n}(x)e^{-x/4}$ . Then putting $x=\phi^{2}$ , we have

$g_{n+1}(x) = e^{x/2} \int f((\phi+\xi)^{2})f((\phi-\xi)^{2})d_{\mathcal{S}}d^{N-1}u$

$= e^{x/2} \int f((\varphi+s)^{2}+u^{2})f((\varphi-s)^{2}+u^{2})dsd^{N-1}u$

$= \frac{e^{x/2}}{\sqrt{x}}\int_{\mathcal{D}}f(p)f(q)\mu(p, q, x)^{(N-3)/2}dpdq$

$\mu(p, q, x) = \frac{p+q}{2}-x-\frac{(p-q)^{2}}{16x}$

where $\mathcal{D}\subset[0, N\beta]^{\cross 2}$ is defined so that $\mu(p, q, x)\geq 0$ and

$\frac{(p-q)^{2}}{16x}=\frac{(\phi_{+}^{2}-\phi_{-}^{2})^{2}}{16\phi^{2}}=\frac{\langle\phi,\xi\rangle^{2}}{\phi^{2}}$ (2.1)

This is a part of the probability that two spins $\emptyset\pm\equiv\phi\pm\xi$ form the block spin $\phi$ such
that $\phi^{2}=x$ . If $f(p)$ has a peak at $p=N\beta,$ $\exp[x/2+(1/2)(N-3)\log(p-x)]$ has a peak
at $x=N(\beta-1+O(N^{-1}))$ .

What we learn from this model is the following which will appear in the real system:

1. The curvature of $V_{n}=-\log g_{n}$ at its bottom $x=N\beta_{n}$ is $N^{-1}$ , and then the
deviation of $x=\phi_{n}^{2}$ from $N\beta_{n}$ is $N^{1/2}.$

2. $\beta_{n}\sim\beta-O(n)$

3. The deviation $|\phi_{n}(x)\phi_{n}(y)-N\beta_{n}|$ is given by the Gaussian variables $u\in R^{N-1}$ of
short correlation. In fact $|\phi_{n,+}\phi_{n,-}-N\beta_{n}|=|\phi_{n+1}^{2}-N\beta_{n+1}+:u^{2}:_{1}|\simN^{1/2}$

4. One block spin transformation yields the factor $x^{-1/2}\sim\beta_{n}^{-1/2}$ The factor $x^{-1/2}$ is
relevant but logarithmic in the action. Thus its effects are negligible.

5. $g_{n+1}(x)$ in analytic in $0<x<N\beta(N\geq 3)$ if so is $g_{n}(x)$ . $(g_{1}=(e^{x/2}/\sqrt{x})(N\beta-$

$x)^{(N-3/2)})$

6. The probability such that $x=\phi^{2}>N\beta_{n0}$ tends to zero rapidly as $(n_{0}<)narrow\infty,$

and $g_{n}(x)arrow\delta(x)$ . This is the mass generation in the hierarchical model.

Though this model is very much simplified, it is very surprising that this model con-
tain almost all properties and problems which the real system has. The property (3) is
important and related to the $N^{-1}$ expansion since this means that $\varphi_{n}(x)\varphi_{n}(y)/N$ can
replaced by $\mathcal{G}_{n}(x, y)$ .
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One serious problem is that the factor $(x)^{-1/2}=\exp[-\log(\phi^{2})]$ and $\log(\phi^{2})$ is relevant
in the terminology of renormalization group analysis, i.e., the coefficient may grow expo-
nentially fast as $narrow\infty$ . To controll this, we introduce an artificial relevant potential
$\delta_{n}(\phi_{n}^{2}-N\beta_{n})^{2}$ which absorb the effects of $\log(\varphi^{2})$ . We note that $(\phi_{0}^{2}-N\beta)^{2}=0$ by the
initial condition $\delta(\phi_{0}^{2}-N\beta)$ . Thus one of the main tasks in this paper is to show that $\delta_{n}$

are uniformly bounded in $n.$

Remark 1 It is helpful to see the the asymptotic behavior of the partition function $Z_{\Lambda}$

$Z_{\Lambda}( \beta) = \int\exp[-\frac{1}{2}\langle\phi_{1}, G_{1}^{-1}\phi_{1}\rangle-\frac{1}{N}\sum(\phi_{1}^{2}(x)-N\beta_{1})^{2}]\prod_{x\in\Lambda}d^{N}\phi_{1}(x)$ (2.2a)

$\sim\exp[-\frac{1}{2}|\Lambda|\log\beta+O(|\Lambda|N)]$ (2.2b)

which holds for very large $\beta$ . This is obtained by putting $\phi_{i}=r_{i}\omega_{i},$ $\omega_{i}\in S^{N-1}$ and used the

fact that the size of the $(N-1)$ unit sphere $\int d\omega=|S^{N-1}|$ is $2(2\pi)^{(N-1)/2}/\Gamma((N-1)/2)=$

$\exp[-(N/2)\log N+O(N)].$

3 RG Flow of the Real System

We combine two types of block transformations to $W_{0}(\phi, \psi)$ which is the $\nu$ dimensional
boson model of $\phi^{2}\psi$ type interaction with pure imaginary coupling. In this approach, we
can expect all coefficients are bounded and small through the block spin transformations.
Thus perturbative calculations are useful. We have two types of block spin transforma-
tions. One is the block spin transformation of the $N$ component boson model of mass
$m_{0}^{2}$ , and the other is the block spin transformation of the auxiliary field $\psi$ . The two
dimensional boson field $\phi$ is dimensionless and the auxiliary field $\psi$ has the dimension
$1ength^{-2}$ , and they have different scalings. The $\psi$ field keeps $\phi_{0}=\phi$ on the surface of the
$N$ dimensional ball of radius $(N\beta)^{1/2}$ . We will see that by one step of the BSTs of $\phi$ and
$\psi$ , the radius is shrinked to $(N\beta_{1})^{1/2}$ , where $\beta_{1}=\beta-O(1)$ .

We turn to our model and sketch our main ideas and procedures. Our method of
analysis depends on $n$ . For $n<\log\beta$ we can forget the term $\log\phi^{2}$ , but for $n>\log\beta$ this
term is rather large and we cannot disregard $V_{n}^{(1)}$ . Assume $n>\log\beta$ and assume that
the Gibbs factor at the step $n$ is given by

$\exp[-W_{n}(\varphi_{n}, \psi_{n})-\sum_{X}\delta W_{n}(X;\varphi_{n}, \psi_{n})]$
(3.1)

where $W_{n}(\varphi_{n}, \psi_{n})$ is the main term which controls the system and $\delta W_{n}(X;\varphi_{n}, \psi_{n})$ are
polymers whose supports spread over paved set $X\subset\Lambda.$ $\delta W_{n}(X;\varphi_{n}, \psi_{n})$ are very small

153



but analytic domain of $\varphi_{n}$ may be small for large $X$ . Our basic induction assumption is
that the main part $W_{n}(\phi_{n}, \psi_{n})$ is given by

$W_{n}( \phi_{n}, \psi_{n}) = \frac{1}{2}\langle\phi_{n)}G_{n}^{-1}\phi_{n}\rangle+\frac{i}{\sqrt{N}}\langle(:\phi_{n}^{2}:_{G_{n}}, \psi_{n}\rangle+\langle\psi_{n}, H_{n}^{-1}\psi_{n}\rangle$

$+V_{n}^{(1)}+V_{n}^{(2)}$ (3.2a)

$V_{n}^{(1)} = \frac{1}{2N}\langle:\phi_{n}^{2}:_{G_{\mathfrak{n}}}, \delta_{n}:\phi_{n}^{2}:_{G_{n}}\rangle$ (3.2b)

$V_{n}^{(2)}$ $=$ $\frac{\gamma_{n}}{2}$
$\langle$ : $\phi_{n}^{2}:c_{n},$ $\tilde{A}_{n-1}E^{\perp}G_{n-1}^{-1}E^{\perp}\tilde{A}_{n-1}^{+}$ : $\phi_{n}^{2}:c_{n}\rangle$ (3.2c)

where $\tilde{A}_{n}$ is a constant matrix discussed later, $E^{\perp}$ is the projection operator to the set
of block-wise zerxaverage functions, i.e. $\mathcal{N}(C)=\{f\in R^{\Lambda} : (Cf)(x)=0, \forall x\in\Lambda_{1}\}$ , and
: $\phi_{n}^{2}:c_{n}$ is the Wick product of $\phi_{n}^{2}$ with respect to $G_{n}.$

The point is that $E^{\perp}$ acts as a differential operator and $G_{n}^{-1}\sim-\Delta$ . Thus $E^{\perp}(-\triangle)E^{\perp}$

contains $\prod_{i=1}^{4}\nabla_{\mu_{i}}$ . The term $V_{n}^{(2)}$ corresponds to $(p-q)^{2}/16x$ and is irrelevant.

The relevant terms $V_{n}^{(1)}$ is a dummy and is not necessary in principle since $\langle$ : $\varphi_{0}^{2}:_{G_{0}}$ , :
$\varphi_{0}^{2_{:_{G_{0}}}}\rangle=0$ at the beginning. The term $V_{n}^{(1)}$ is artificially inserted to control $\log\phi^{2}$ . This
is relevant, but we can show that the coefficient stays bounded. In the case of hierarchical
model, we do not need any information of $W_{n}$ or $g_{n}$ for $\phi_{n}^{2}<N\beta_{n}$ since the hierarchical
Laplacian is local and (then) we have some a priori bound for $g_{n}$ which are locally defined.

But in the present model, however, it seems to be convenient to have the term $V_{n}^{(1)}$ to
control $\log\varphi_{n}^{2}.$

We show that the change of the action $W_{n}$ is absorbed by the parameters $\beta_{n},$ $\delta_{n}$ and
$\gamma_{n}$ . Here

$\beta_{n}$ $=$ $\beta$ -const. $n+o(n)$ (3.3a)
$\delta_{n}$ $=$ 0(1) (3.3b)

$\gamma_{n} = O((\beta_{n}N)^{-1})$ (3.3c)

$H_{0}^{-1}=0,$ $\gamma_{0}=0$ and $\beta_{0}=\beta$ and we discarded irrelevant terms.

4 Outline of the Proof

We here sketch our proof which consists of several steps:

[step 1]
Let $\Lambda_{n}=L^{-n}\Lambda\cap Z^{2}$ and let $\phi_{n}$ be the nth block spin $(\phi_{n+1}=C\phi_{n})$ : Set $\phi_{n}=A_{n+1}\phi_{n+1}+$

$Q\xi_{n}$ , where $\xi_{n}(x)$ are the fluctuation field living on $\Lambda_{n}’=\Lambda_{n}\backslash LZ^{2}$ and $Q:R^{\Lambda’}arrow R^{\Lambda}$ is
the zero-average matrix so that the block averages of $Q\xi$ are O.

$\langle\phi_{n}, G_{n}^{-1}\phi_{n}\rangle=\langle\phi_{n+1}, G_{n+1}^{-1}\phi_{n+1}\rangle+\langle\xi_{n}, \Gamma_{n}^{-1}\xi_{n}\rangle$
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where $G_{n+1}^{-1}=A_{n+1}^{+}G_{n}^{-1}A_{n+1}$ and $Q^{+}G_{n}^{-1}Q=\Gamma_{n}^{-1}$ . Namely $A_{n+1}=G_{n}C^{+}G_{n+1}^{-1}.$

[step 2]
We have a relevant term, and then it is convenient to consider the Gaussian integral by
$q(z)\equiv 2\varphi_{n}z_{n}+:z_{n}^{2}$ : (not by z) since : $\varphi_{n}^{2}:c_{n}=:\varphi_{n+1}^{2}:c_{n+1}+q(z)$ . Define

$P(p) = \int\exp[i\langle\lambda, (p-q)\rangle]d\mu(\xi)\prod d\lambda$

$z_{n} = \mathcal{A}_{n}Q\tilde{\Gamma}_{n}^{1/2}\xi$

$d \mu(\xi) = \exp[-\frac{1}{2}\langle\xi, \xi\rangle]\prod\frac{d\xi}{\sqrt{2\pi}}$

Then we have

$P(p)$ $=$ $\int\exp[i\langle\lambda, p\rangle]\exp[-i\langle\lambda,$ $(2\varphi_{n+1}(\mathcal{A}_{n}Q\Gamma_{n}^{1/2}\xi)+:(\mathcal{A}_{n}Q\Gamma_{n}^{1/2}\xi)^{2}$ $d \mu(\xi)\prod d\lambda$

$= \int\exp[-2i\langle\xi, \Gamma_{n}^{1/2}Q^{+}\mathcal{A}_{n}^{+}(\lambda\varphi_{n+1})\rangle-\frac{1}{2}\langle\xi, [1+2i\Gamma_{n}^{1/2}Q^{+}\mathcal{A}_{n}^{+}\lambda \mathcal{A}_{n}Q\Gamma_{n}^{1/2}]\xi\rangle]$

$\cross\exp[i\langle\lambda, p\rangle+iN\langle\lambda, \mathcal{T}_{\eta}\rangle]\prod\frac{d\xi_{x}d\lambda(x)}{\sqrt{2\pi}}$

namely

$P(p)$ $=$ $\int\exp[i\langle\lambda,p\rangle+iN\langle\lambda, \mathcal{T}_{n}\rangle]\det^{-N/2}(1+2i\mathcal{T}_{n}\lambda)$

$\cross\exp[-2\langle\lambda, (\varphi_{n+1}\varphi_{n+1})\circ(\mathcal{A}_{n}Q\frac{1}{\Gamma_{\overline{n}^{1}}+2iQ^{+}\mathcal{A}_{n}^{+}\lambda \mathcal{A}_{n}Q}Q^{+}\mathcal{A}_{n}^{+})\lambda\rangle]\prod d\lambda(x)$

(4.1)

We assume that we are outside of the domain wall region $D_{w}(\varphi_{n})$ and large field region
defined $D(\varphi_{n})$ by

(1) $D_{w}(\varphi_{n})=$ paved set such that

$|\varphi_{n}(x)\varphi_{n}(y)-N\mathcal{G}_{n}(x, y)|\geq k_{0}N^{1/2+\epsilon}\exp$ [ $\frac{c}{10L^{n}}|x-y$ $\forall x\in D_{w},$ $\exists y\in D_{w}$

(2) $D(\varphi_{n})=minima1$ paved set such that

$|$ : $\varphi_{n}^{2}(x):_{G_{n}}|\leq k_{0}N^{1/2+\epsilon}\exp[\frac{c}{10L^{n}}|x-y$ $\forall x\in D(\varphi)$ , $\forall y\in D(\varphi)^{c}$

where $0<\epsilon<1/2$ and paved set is a collection of squares $\{\square \}$ each of which consists
of squares $\triangle\subset\Lambda$ of size $L\cross L$ . The power $N^{1/2}$ is related to the central limit theorem
applied to the sum of $N$ independent Gaussian variables $\sum_{i=1}^{N}$ : $\xi_{i}^{2}$ :. To imagine why,
consider spins $\varphi_{n}(x)$ located on the bottom of $(\varphi_{n}^{2}-N\beta_{n})^{2}$ and put $\varphi_{n}=\varphi_{n+1}+z_{n}.$

Thus the parallel component of the fluctuation $z_{n}$ is suppressed and only the orthogonal
fluctuations occur.
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We thus replace $\varphi_{n+1}\varphi_{n+1}$ by $N\mathcal{G}_{n+1}$ and expand the determinant up to the second
order:

(4.1) $=$ $\int\exp[i\langle\lambda,p\rangle-N\langle\lambda, (\mathcal{T}_{n}^{02}+2\mathcal{G}_{n+1}\circ \mathcal{T}_{n})\lambda\rangle]$

$\cross\det_{3}^{-N/2}(1+2i\Gamma_{n}^{1/2}Q^{+}\mathcal{A}_{n}^{+}\lambda \mathcal{A}_{n}Q\Gamma_{n}^{1/2})$

$\cross\exp[-2\langle\lambda, (: \varphi_{n+1}\varphi_{n+1}:)\circ \mathcal{T}_{n})\lambda\rangle+$ (higher order terms)] $\prod d\lambda(x)$

$\sim \exp[-\frac{1}{4N}\langle p, \frac{1}{2\mathcal{G}_{n+\mathring{1}}\mathcal{T}_{n}+\mathcal{T}_{n^{02}}}p\rangle]$ (4.2)

The terms: $\varphi_{n+1}\varphi_{n+1}$ : are treated by polymer expansion and yields relevant terms
$\langle$ : $\varphi_{n+1}^{2}$ :, $\delta_{n}$ : $\varphi_{n+1}^{2}$ which are fractions of $\log(\varphi_{n}^{2})$ .

Putting $p=Ap_{1}+\tilde{Q}\tilde{p}$ with $p_{1}=C^{n}p$ and $C^{n}A=1$ , we see that $P(p)$ is given by

$\exp[-\frac{1}{4N}\langle p_{1},$ $\frac{1}{C^{n}[2\mathcal{G}_{n+1}\circ \mathcal{T}_{n}+\mathcal{T}_{n}^{02}](C^{+})^{n}}p_{1}\rangle-\frac{1}{4N}\langle\tilde{Q}\tilde{p},$
$\frac{1}{2\mathcal{G}_{n+1}\circ \mathcal{T}_{n}+\mathcal{T}_{n}^{02}}\tilde{Q}\tilde{p}\rangle]$ (4.3)

Here it is important to remark that

$C^{n}\mathcal{T}_{n}(C^{+})^{n} = 0$

$C^{n}\mathcal{T}_{n}^{02}(C^{+})^{n} \sim 1$

$\mathcal{G}_{n+1}\circ \mathcal{T}_{n} \sim \beta_{n}\mathcal{T}_{n}$

since $\mathcal{T}_{n}=\mathcal{A}_{m}Q\Gamma_{n}Q^{+}\mathcal{A}_{n}^{+},$ $C^{n}\mathcal{A}_{n}=1,$ $CQ=0$ and $\mathcal{T}_{n}$ decays much faster than $\mathcal{G}_{n}$ . This
means that the blockwise constant part $p_{1}$ of $p$ remains and the zero-average fluctuation
part $\tilde{Q}\tilde{p}$ of $p$ is almost absent.
[step 3]

In the present case, however, $\delta_{n}$ can be large $(\sim L^{2})$ and then we choose $p$ which
minimizes

$F(p)$ $=$ $\frac{1}{4N}\langle p,$ $\frac{1}{2\mathcal{G}_{n+1}\circ \mathcal{T}_{n}+\mathcal{T}_{n^{02}}}p\rangle+\frac{1}{4N}\langle(:\varphi_{n+1}^{2}:_{G_{n+1}}+p)$ , $\delta_{n}(:\varphi_{n+1}^{2}:_{G_{n+1}}+p)\# 4.4)$

$= \langle p, \frac{1}{D}p\rangle+\frac{1}{N}\langle(:\varphi_{n+1}^{2}:_{G_{n+1}}, \delta_{n}p\rangle+\frac{1}{2N}\langle(:\varphi_{n+1}^{2}:_{G_{n+1}}, \delta_{n}:\varphi_{n+1}^{2}:_{G_{n+1}}\rangle$ (4.5)

where
$\frac{1}{D}=\frac{1}{4N}\frac{1}{2\mathcal{G}_{n+1}\circ \mathcal{T}_{n}+\mathcal{T}_{\mathring{n}}^{2}}+\frac{1}{2N}\delta_{n}$ (4.6)

To diagonalize this, we again set $p=\mathcal{A}p_{1}+\tilde{Q}\tilde{p}$ where

$\mathcal{A}=D(C^{+})^{n}[C^{n}D(C^{+})^{n}]^{-1}, C^{n}\tilde{Q}=0$ (4.7)
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and

$F(p) = F_{1}(p)+F_{2}(p)$ (4.8a)

$F_{1} = \langle p_{1}, \frac{1}{C^{n}D(C^{+})^{n}}p_{1}\rangle+\frac{1}{N}\langle(:\varphi_{n+1}^{2}:_{G_{n+1}}, \delta_{n}p\rangle$

$+ \frac{1}{2N}\langle(E:\varphi_{n+1}^{2}:_{G_{n+1}}, \delta_{n}E:\varphi_{n+1}^{2}:_{G_{n+1}}\rangle$ (4.8b)

$F_{2} = \langle\tilde{Q}\tilde{p}, \frac{1}{D}\tilde{Q}\tilde{p}\rangle+\frac{1}{N}\langle(E^{\perp_{:\varphi_{n+1}^{2}:_{G_{n+1}}}}, \delta_{n}\tilde{Q}\tilde{p}\rangle$

$+ \frac{1}{2N}\langle(E^{\perp_{:\varphi_{n+1}^{2}:_{G_{n+1}}}}, \delta_{n}E^{\perp}:\varphi_{n+1}^{2}:c_{n+1}\rangle$ (4.8c)

where $E$ is the projection to blockwise constant functions (block of size $L^{n}\cross L^{n}$ ) and
$E^{\perp}=1-E$ . We moreover assume that $\delta_{n}$ is a constant diagonal matrix. Then $F_{1}$ and
$F_{2}$ take their minima at the following points:

$p_{1} = - \frac{1}{N}C^{n}D\delta_{n}:\varphi_{n+1}^{2}:_{G_{n+1}}$

$= [-1+ \frac{1}{L^{2n}\delta_{n}}\frac{1}{C^{n}[2\mathcal{G}_{n+\mathring{1}}\mathcal{T}_{n}+\mathcal{T}_{n}^{02}](C^{+})^{n}}]C^{n}:\varphi_{n+1}^{2}:c_{n+1}$ (4.9)

$\tilde{Q}\tilde{p} = -\frac{1}{2N}E^{\perp}D\delta_{n}:\varphi_{n+1}^{2}:c_{n+1}$

$= [-1+ \frac{1}{\delta_{n}}\frac{1}{2\mathcal{G}_{n+1}\circ \mathcal{T}_{n}+\mathcal{T}_{n}^{02}}]E^{\perp}:\varphi_{n+1}^{2}:c_{n+1}$ (4.10)

Since $Q\xi$ have $L^{2}-1$ degrees of freedom in each blocks, $\tilde{Q}\tilde{p}$ have $L^{2}-2$ degrees of freedom
in each block. Anyway, we obtain

$\min F_{1} = \frac{k}{4N}\langle C^{n}:\varphi_{n+1}^{2}:, \frac{1}{C^{n}[2\mathcal{G}_{n+\mathring{1}}\mathcal{T}_{n}+\mathcal{T}_{n^{02}}](C^{+})^{n}}C^{n}:\varphi_{n+1}^{2}:\}$

$\min F_{2} = \frac{1}{4N}\langle E^{\perp}:\varphi_{n+1}^{2}:, \frac{1}{2\mathcal{G}_{n+1}\circ \mathcal{T}_{n}+\mathcal{T}_{n^{02}}}E^{\perp}:\varphi_{n+1}^{2}:\rangle$

We integrate over $p_{1}$ and $\tilde{p}$ around the points (4.9) and (4.10) (steepest descent
method) and we get some small terms coming from the integrations over $p_{1}$ and $E^{\perp}\tilde{p}.$

The term $\min F_{1}$ means that the $\delta$ term disappears and the coefficient of the relevant
term $(: \varphi_{n+1}^{2}:)^{2}$ can be regarded as a constant for $n>\log\beta$ since $C^{n+1}:\varphi_{n+1}^{2}:\sim:\phi_{n+1}^{2}$ :
(field on $\Lambda_{n}$ ) and $C^{n}[2\mathcal{G}_{n+1}\circ \mathcal{T}_{n}+\mathcal{T}_{n}^{02}](C^{+})^{n}\sim 1$ (on $\Lambda_{n}$ ). This also implies that

$\langle$ : $\varphi_{n+1}^{2}:_{G_{n+1}}+p,$ $\psi_{n}\rangle$ $arrow$ $\frac{1}{L^{2n}}$ $\langle$ : $\varphi_{n+1}^{2}:c_{n+1},$ $E\psi_{n}\rangle$ (4.11)

which is consistent with our choice of the scaling of $\psi$ and $\tilde{A}_{n}$ . The term $\min F_{2}$ is essen-
tially $\mathcal{F}_{n}$ which is irrelevant. We remark that the $\log$ term is expanded and: $\varphi_{n+1}\varphi_{n+1}$ :
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is absorbed by $V_{n}^{(1)}$ and the Hamiltonian part of $\phi_{n+1}$ through

$2 :\varphi_{n+1}(x)\varphi_{n+1}(y) \varphi_{n+1}^{2}(x):+:\varphi_{n+1}^{2}(y):-:(\varphi_{n+1}(x)-\varphi_{n+1}(y))^{2}$ :

The shifts of the variables $p_{1}$ and $\tilde{Q}\tilde{p}$ are in the admissible deviations of $\varphi_{n+1}$ and $q_{n}.$

[step 4]
Thus we can iterate these steps. The most important point is that $q=:\varphi_{n}^{2}$ : –: $\varphi_{n+1}^{2}$ :

obeys the Gasussian distribution uniformly in $n$ (CLT) and the coefficient $\delta_{n}$ is kept as a
constant on the shell: $\varphi_{n}^{2}:c_{n}=0$ near which the functional integrals have supports. This
ensures our scenarlo.

5 Remaining Problems

The following problems remain:

1. Prove this for small $N.$

2. Prove this for quantum spins.

3. Solve the Millennium problem of quark confinement.

The present author hopes that the reader is ambitious enough to attack these problems.
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