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SOME RESULTS ON SET-VALUED STOCHASTIC INTEGRALS WITH
RESPECT TO POISSON JUMP IN AN M-TYPE 2 BANACH SPACE

JINPING ZHANG*, ITARU MITOMA, AND YOSHIAKI OKAZAKI

1. INTRODUCTION

Probability theory is an important tool of modeling randomness in a practical problem. But
besides randomness, in the real world, there exists other kind of uncertainties such as impre-
ciseness or vagueness. Set-valued functions are employed to model the impreciseness in ap-
plied field such as in Economics, control theory (see for example [1]). Integrals of set-valued
functions have been received much attention with widespread applications, see for example
[2, 7, 9, 10] etc. Recently, stochastic integrals for set-valued stochastic processes with re-
spect to the Brownian motion and martingales have been received much attention, e.g. see
[12, 13, 18, 23, 32, 37]. Correspondingly, the set-valued stochastic differential equations are
studied, e.g. see [23, 25, 33, 34, 35, 36]. Michta (2011) [22] extended the integrator to a larger
class: semimartingales. But the integrably boundedness of the corresponding set-valued sto-
chastic integrals are not obtained since the semimartingales may not be of finite variation. In
such cases, the set-valued stochastic integrals may not be well defined as Ogura pointed out [25].

The Poisson stochastic processes are special. They play important roles both in the random
mathematics (c.f. [11, 8, 17]) and in applied fields, for example, in the financial mathematics
[17]. If the characteristic measure v of a stationary Poisson process p is finite, then both of the
Poisson random measure N(dsdz) (where z € Z, the state space of p) and the compensated
Poisson random measure N (dsdz) are of finite variation a.s. We will give some results (without
giving proof since the page limitation) on the set-valued stochastic integrals with respect to
the Poisson random measure N(dsdz), N(dsdz). For the detail proof, the reader can refer to
[31, 38]. For example, the stochastic integrals for set-valued .#-predictable (see Definition 3.2)
processes with respect to N(dsdz) and N(dsdz) are L*-integrably bounded. For Brownian or
Martingale integrator with continuous part, the integrable boundedness are not obtained until
now. Furthermore, if the o-algebra F is separable, then the integral {I;(F)} of convex set-valued
stochastic process will not become a set-valued martingale, which is very different from single
valued case. We would like to pointed out that there is a gap in the proof of Theorem 3.7 in
[31] about the set-valued martingale property of set-valued stochastic integral with respect to
the compensated Poisson measure, which is corrected and proven in [38].
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This paper is organized as follows: In Section 2 we give the notations and the preliminaries
in the set-valued theory. Section 3 is on the definitions and results of stochastic integrals for
set-valued .-predictable processes with respect to N(dsdz) and N(dsdz).

2. PRELIMINARIES

Let (2, F, P) be a complete probability space, {F;}:>0 a filtration satisfying the usual con-
ditions, that is: JFy includes all P-null sets in F, the filtration is non-decreasing and right
continuous. Let B(E) be the Borel field of a topological space E, (X, || - ||) a separable Ba-
nach space equipped with the norm || - || and K(X) (resp. Kp(X), Kc(X)) the family of all
nonempty closed (resp. closed bounded, closed convex) subsets of X. Let 1 < p < 400 and
LP(Q), F,P; X) (denoted briefly by LP(€); X)) be the Banach space of equivalence classes of
X-valued F-measurable functions f : 2 = X such that the norm

171 = { fa I @) 1pap} "

is finite. An X-valued function f is called LP-integrable if f € LP(2; X).

A set-valued function F' : @ — K(X) is said to be measurable if for any open set O C X, the
inverse F~1(0) := {w € Q : F(w)NO # 0} belongs to F. Such a function F is called a set-valued
random variable. Let M (2, F, P; K(X)) be the family of all set-valued random variables, which
is briefly denoted by M (Q; K(X)).

For any open subset O C X, set

Zo = {EcK(X): ENO # 0},

C:={Z20:0 C X, O is open},

and let o(C) be the o-algebra generated by C.
A set-valued function F :  — K(X) is measurable if and only if F' is F/o(C)-measurable.
For A, B € 2% (the power set of X), H(A, B) > 0 is defined by

H(A, B) := max{sup inf ||z — y||, sup inf ||z — .
(4,B) = max{sup if [l vl sup ot Iz~ ]}
H(A, B) for A, B € Kp(X) is called the Hausdorff metric. It is well-known that K, (X) equipped

with the H-metric denoted by ((Ky(X), H)) is a complete metric space.
The following results are also well-known. (see e.g. [9], [19], [24]).

ProposITION 2.1. (i) For A, B,C, D € K(X), we have
H(A+ B,C + D) < H(A,C) + H(B, D),

H(A®B,C®D)=H(A+B,C+D),

where A® B :=cl{a+b;a € A, be B}.
(ii) For A, B € K(X), 1 € R, we have

H(pA, pB) = |u|H(A, B).
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For F € M(Q, K(X)), the family of all LP-integrable selections is defined by
SE(F) = {f € LP(Q, F,P;X) : f(w) € F(w) a.s.}.

In the following, S%.(F) is denoted briefly by S%. If S% is nonempty, F' is said to be L?-

integrable. F is called LP-integrably bounded if there exits a function h € LP(), F, P;R) such

that ||z|| < h(w) for any z and w with £ € F(w). It is equivalent to that ||F|x € LP(§};R),

where | F(w)|lk = su%) ) la]l. The family of all measurable K(X)-valued LP-integrably bounded
€F(w

a
functions is denoted by LP((2, F, P; K(X)). Write it for brevity as L?(; K(X)).
The integral (or ezpectation) of a set-valued random variable F' was defined by Aumann in
1965 ([2]):
E[F]:={E[f]: f € Sg}.

PROPOSITION 2.2. ([35]) Let F € M(£};X), 1 < p < +o0. Then F is LP-integrably bounded
if and only if S%. is nonempty and bounded in LP(); X).

Let R, be the set of all nonnegative real numbers and B, := B(R;). N denotes the set of
natural numbers. An X-valued stochastic process f = {f; : t > 0} (or denoted by f = {f(t) :
t > 0}) is defined as a function f : Ry X — X with the F-measurable section f;, for t > 0. We
say f is measurable if f is B, ® F-measurable. The process f = {f: : t > 0} is called F;-adapted
if f; is Fi-measurable for every t > 0. f = {f; : t > 0} is called predictable if it is P-measurable,
where P is the o-algebra generated by all left continuous and F;-adapted stochastic processes.

In a fashion similar to the X-valued stochastic process, a set-valued stochastic process F' =
{F; : t > 0} is defined as a set-valued function F : Ry x @ — K(X) with F-measurable section
F; for t > 0. It is called measurable if it is By ® F-measurable, and F;-adapted if for any fixed
t, Fy(-) is Fi-measurable. F' = {F; : t > 0} is called predictable if it is P-measurable.

DEFINITION 2.3. (see [9]) An integrable bounded convex set-valued F;-adapted stochastic
process {Fy, F; : t > 0} is called a set-valued F;-martingale if for any 0 < s < ¢ it holds that
E[F|F] = F, in the sense of Spp, 7\ (Fs) = S}, (Fs)-

It is called a set-valued submartingale (supermartingale) if for any 0 < s < t, E[F|F;] D F;s
(resp. E[Fi|Fs] C Fy) in the sense of S}J.[m}-‘](}'s) > S}ps(fs) (resp. S}s{mrs)(fs) C S,l—.-s(}'s)).

3. STOCHASTIC INTEGRALS WITH RESPECT TO P0OISSON POINT PROCESSES

3.1. Single Valued Stochastic Integrals w.r.t. Poisson Point Processes. Let X be a
separable Banach space and Z be another separable Banach space with o-algebra B(Z). A point
function p on Z means a mapping p : Dp = Z, where the domain D, is a countable subset
of [0,T]. p defines a counting measure Np(dtdz) on [0,T] x Z (with the product o-algebra
B([0,T]) ® B(Z)) by

Np((0,t],U) : = #{r € Dp : 7 < t,p(1) € U},
8.1) te (0,T), U € B(2).

For0<s<t<T,

(3.2) Np((s,t],U) := Np((0,t],U) — Np((0, 5], U).
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In the following, we also write Np((0,¢],U) as Np(¢,U).

A point process is obtained by randomizing the notion of point functions. If there is a con-
tinuous Fi-adapted increasing process Ny such that for U € B(Z) and t € [0,T], Np(t,U) :=
Np(t,U) — Ny(t,U) is an Fi-martingale, then the random measure {Np(t,U)} is called the
compensator of the point process p (or {Np(t,U)}) and the process {Np(t,U)} is called the
compensated point process.

A point process p is called the Poisson Point Process if Np(dtdz) is a Poisson random measure
on [0,T]x Z. A Poisson point process is stationary if and only if its intensity measure vp (dtdz) =
E[Np(dtdz)] is of the form
(3.3) vp(dtdz) = dtv(dz)
for some measure v(dz) on (Z,B(Z)). v(dz) is called the characteristic measure of p.

Let v be a o- finite measure on (Z, B(Z)), (i.e. there exists U; € B(Z),1 € N, pairwise disjoint
such that v(U;) < oo for all i € N and Z = UR,U;), p = (pt) be the Fi-adapted station-
ary Poisson point process on Z with the characteristic measure v such that the compensator
Ny(t,U) = E[Ny(t,U)] = tv(U) (non-random).

The above definitions and notations of Poisson point processes come from [11] and [30].

For convenience, we will omit the subscript p in the above notations.

PROPOSITION 3.1. ([31]) Assume v(Z) is finite. Then for any U € B(Z), both {N(t,U),t €
[0,T]} and {N(t,U),t € [0,T]} are stochastic processes with finite variation a.s.

For convenience, from now on, we suppose v is a finite measure in the measurable space
(2,B(2)).

DEFINITION 3.2. An X-valued mapping f(t,2z,w) defined on [0,T] x Z x € is called &-
predictable if the mapping (¢, z,w) — f(t, z,w) is #/B(X)-measurable, where .# is the smallest
o-algebra on [0, 7] x Z x  with respect to which all mappings g : [0,T] x Z x 2 — X satisfying
(i) and (ii) below are measurable:

(i) for each t € [0, T, the mapping (z,w) — ¢(t,z,w) is B(Z) ® Fi-measurable;

(ii) for each (z,w) € Z x (), the mapping ¢ — g(¢, z,w) is left continuous.

REMARK 3.3. (seee.g. [30]) ¥ = P®B(Z), where P denotes the o-field on [0, ] x §? generated
by all left continuous and F;-adapted processes.

Set
= {f(t,z,w) : f is F—predictable and

B| /0 ’ /Z 17t 2,0) P(dz)de] < oo}

Iflle = (E] /0 i /Z £tz Puaz)ar] ).

Let S be the subspace of those f € .Z for which there exists a partition 0 = <t; < -+ <
tn, =T of of [0,T] such that

equipped with the norm

75
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f(t, z,w) = £(0, z,w)x (0} (t) + Z X(tio1,ts) &) f (ti-1, 2,w).

i=1
Let f be in S and
(34) f(ta Z,w) = f(01 va)X{O}(t) + Z X(ti_l,tgl(t)f(ti—la Z’w)i
i=1

where 0 =tg <t < --- < t, =T is a partition of [0,T]. Define

T+
Jr(f) = /0 /Z f(s—, 2 w)N(dtdz)

(3.5) n
= ;Lf(ti—l’ 2y w)N((ti—lati]a dZ),
and
T+ 5
In(f) = /0 /Z f(s—, 2,w) N (dtdz)
(3.6)

- ; /Z Fltiot, 2,w)N((ti-1, 3, d2),

where fz f(ti-1, z,w)N((ti-1,ti},dz) and fz Fti-1, z,w)N((ti_l,ti]dz) are the Bochner integrals.
. ¢ T+ ) ‘ b
The notation ‘f; means f(o m
For any integer 0 < k < n, let

k
M, = ; L f(t,'_l, z,w)N((ti_1,ti],dZ)
then My is F;, -measurable, E[M;] = 0, E[I7(f)] = E[M,] = 0 and
E[My|Fi,_,] = E[(Mg-1+ /Z £ (tk1, 20) N ((tr-1, th], d2) | Fi, ]
(3.7) = M1+ E| /Z Fteot, 2 0)N (teo, ta, d2)| Fip_,]

=M1+ Lf(tk—la Z,W)E[N((tk_l,tk], dZ)] = M.

For any t € (0,T], define

Jt(f)=/0t+/;f(s—,z,w)N(dzds)

(3.8) n
- ;1 /Z Ftiot, 2,0)N((tio1 Ayt A L], d2),
and
t+ -
L(f) = / / (5=, 2,w) N (dzds)
(3.9) 0 7z

= ;/Zf(ti—l,z,w)ﬁ((ti_l At,t; At),dz).
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LEMMA 3.4. ([31]) For any f € S, both {I;(f)} and {J:(f)} are Fi-adapted integrable pro-
cesses. Moreover, {I;(f)} is an X -valued right continuous martingale. And for any t € (0,T],

12
(3.10) E] [0 ’ /Z f(s—, z,w)N(dsdz)] = 0,

(3.11) E| /0 ’ fz (5=, 2,w)N(dsdz)] = /0 " /Z E[f(s—, 2,w)]dsw(dz),

In order to extend the integrand from the step function which belongs to S to a more general
case ( belongs to .%), it is necessary to add some assumption in the Banach space X. Now we
assume X is of M-type 2 below.

DEFINITION 3.5. ([5]) A Banach space (X, || - ||) is called M-type 2 if and only if there exists
a constant Cx > 0 such that for any X-valued martingale {My}, it holds that

(3.12) sup E[IMg]?] < Cx > E[IMy — Mi_1]1%).
k

THEOREM 3.6. ([31]) Let X be of M-type 2 and (Z,B(Z)) a separable Banach space with finite
measure v. Let p be a stationary Poisson process with the characteristic measure v and let f be
in S. Then there exists a constant C such that

E[ sup H /03+/Zf(r—,z,w)]\~/'(d7'dz)H2]

(3.13) ocest
<c [ [ Bllsez ) idsvtas),
and
s+ )
(3.14) E[Oiggt“/O ./zf (7= 0)N(draz)|[ |

t
<c [ [ Blif(s,z,)|Pdsw(d2),
0 Jz
where C depends on the constant Cx in Definition 3.5.
LEMMA 3.7. ([31]) S is dense in £ with respect to the norm || - || .

By Lemma 3.7, for any f € .2, there exist a sequence {f™ : n € N} in S such that {f"}
converges to f with respect to || - || ¢ and the sequence

{/OH/an(S—,Z,w)N(dsdz),nEN}

converges to a limit in L2-sense. We denote the limit by

’= [ [ fomz)Wdsde),

which is called the stochastic integral of f with respect to the compensated Poisson random
measure N (dsdz). Similarly, we can define the stochastic integral of f with respect to the

Poisson random measure N(dsdz), denoted by

t
= [ ' [ #6620 (asdo)
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Similarly, for any 0 < s <t < T,

/s t /Z F(r= 2,w0) Ny(drdz)

/s t /Z f(r—,2,w)N(drdz)

can be well defined.

REMARK 3.8. When the measure v is finite, for any U € B(Z), the processes {N(t,U)}
and {N(t,U} are both of finite variation a.s. Then the stochastic integrals coincide with the
Lebesgue-Stieltjes integrals.

COROLLARY 3.9. ([31]) Let X be of M-type 2 and (Z,B(Z)) a separable Banach space with
finite measure v. Let p be a stationary Poisson process with the characteristic measure v and
let f be in . Then there ezists a constant C such that

E[Osél:gtu/(;H/;f(r—,z,w)ﬁ(dfdz)“z]

(3.15) :
<o [ [ Bilfts, ) Plasvtas)
and
s+ )
(3.16) E[Oitzfs)t“A Lf(T—,z,w)N(dez)|’]

<of ’ | Blls(s,2,0) Pldsv(as),

where C depends on the constant Cx in Definition 3.5.

COROLLARY 3.10. ([31]) For any f € &, both {I,(f)} and {J;(f)} are Fi-adapted square-
integrable processes. Moreover, {I;(f)} is an X -valued right continuous martingale. And for
any t € (0,T),

(3.17) E| /0 t+ /Z (5=, 2, w) N (dsdz)] = 0,

(3.18) E| /0 " /Z (5=, 2,w)N(dsdz)] = /0 t /Z E[f(s, 2 w)|dsv(dz),

3.2. Set-Valued Stochastic Integrals w.r.t. Poisson Point Processes. A set-valued sto-
chastic process F = {F} : [0,T] x Z x @ — K(X) is called &-predictable if F(z,t,w) is
& /o(C)-measurable.

Set

M= {F(t,z,w) : F is ¥ —predictable and

E[ /0 ' /Z ||F(t,z,w)||%<dtu(dz)] < oo}
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Given a set-valued stochastic process {F(t,z,w)}, the X-valued stochastic process {f(t,z,w)}
is called an .#-selection if f(t,2,w) € F(t,z,w) for all (t,z,w) and f € .. By Proposition ??,
for F' € #, the #-selection exists and satisfies E[ fOT 711 (¢, z,w)”2dtu(dz)] < 0o since

E[ /0 . /Z I f(t,z,w)“?dty(dz)} < E[ /0 ’ /Z 17, z,w)ll%{dtu(dz)] < o0,

which means f € . The family of all f which belongs to . and satisfies f(t,z,w) €
F(t,z,w) for a.e. (t,z,w) is denoted by S(F), that is

S(F)={feZ: f(t,z,w) € F(t,zw) for ae. (tzw)}

Set
. i+ .
fy={ fo /Z Fls—, 2,w)N(dsdz) : (F(®))seozy € S},

t
T, = { /0 /Z f(s=,2,w)N(dsdz) : (f())eepo.z) € S(F)}-

REMARK 3.11. It is easy to see for any ¢ € [0, T}, I'; and Ty are the subsets of L, F, P; X].
Furthermore, if {F;, F; : t € [0, T]} is convex, then so are I'; and T';.

Let del; (resp. del';) denote the decomposable set of I (resp. T';) with respect to F, del’;
(resp. del';)the decomposable closed hull of T'; (resp. I';)with respect to F;, where the closure is
taken in L'(Q, X). That is to say, for any g € del'; (resp. del';)and any given € > 0, there exists
a finite Fy-measurable partition {4y, ..., An} of @ and (f1(t))scio 1), s (F™())tepo,r) € S(F)
such that

m t+
—_ k S—,2Z,WwW V S 1 €.
lo =3 xa /0 /Z f*(5—, 2, w) N (dsd)| 12 <

m t+
resp. g =Y xa, [ [ 146,20V (dsds)ls < o
k=1 0
Similar to Theorem 4.1 in [32], we have

THEOREM 3.12. Let {F},F;:t € [0,T)} € .#, then for anyt € [0,T], del'y C L}(Q, Fi, P; X).
Moreover, there exists a set-valued random wvariable J(F) € M(R,F, P;K(X)) such that
S.lk( F) (Ft) = del's. Similarly, there ezists a set-valued random variable I,(F) € M(), F;, P; K(X))
such that SIIt(F) (Ft) = dely. If F is conves, then so are S}i(F) (F) and S},(F) (F)-

DEFINITION 3.13. The set-valued stochastic processes (J;(F));cpo,r] and (It(F))sefo,) defined
as above are called the stochastic integrals of {F;, F; : t € [0,T]} € .# with respect to the Pois-
son random measure N(ds, dz) and the compensated random measure N (dsdz) respectively. For
each t, we denote I(F) = [;* [, F(s—,2,w)N(dsdz), Jy(F) = 5 [, F(s—,z,w)N(dsdz). Sim-
ilarly, for 0 < s < t,we also can define the set-valued random variable I ;(F) = f: Jp F(r—, 2, w)N (drdz),
Jst(F) = f J7 F(t—, z,w)N(drdz).

For brev1ty, the integral f;* fZ h(s ,z,w)N(dsdz) (fi* [, h(s—, z,w)N(dsdz)) also will be de-
noted by [ [, hs—N(dsdz) ( J5t [, hs—N(dsdz) resp.), where h is an X-valued or K(X)-valued

integrand.
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PROPOSITION 3.14. ([38]) Assume set-valued stochastic processes {Fy, F; : t € [0,T]} and
{Ge, Ft : t € [0,T|} € #. Then
Ji(F + G) = cl{Jy(F) + J¢(G)} a.s and I;(F + G) = c{Ii(F) + It(G)} a.s.,
where the cl stands for the closure in X.

THEOREM 3.15. ([31]) Assume a set-valued stochastic process {Fy, F; : t € [0,T]} € .#. Then
{J:(F)} and {I,(F)} are integrably bounded.

THEOREM 3.16. ({31, 38]) Let a convez set-valued stochastic process {Fi, F :t € [0,T)} € A,
then the stochastic integral {I;(F),F : t € [0,T]} is a set-valued submartingale but not a set-
valued martingale.

REMARK 3.17. With the assumption of F being separable with respect to the probability
measure P, Theorem 3.7 in [31] pointed out that the integral {I;(F)} is a set-valued martingale.
But unfortunately, now we found there is a gap in the proof. In fact, {I;(F)} is not a set-valued
martingale except for special case (the singletons). The counterexample and rigorous proof are
given in [38].

THEOREM 3.18. ([38)) Assume a set-valued stochastic process {F;, F; :t € [0,T]} € #. Then
both {J;(F)} and {I;(F)} are L?-integrably bounded.

THEOREM 3.19. ([31])(Castaing representation of set-valued stochastic integral)
Assume F 1is separable with respect to the probability measure P. Then for a set-valued stochastic

process {Fy, Fi : t € [0,T]} € M, there ezists a sequence {(f{)icor) : 8 = 1,2,-..} C S(F) such
that for each t € [0,T),z € Z, F(t,z,w) = d{(fi(z,w)):i=1,2,..} a.s., and

t+ . -
L(F)(w) = df /0 /Z fi(2w)N(dsdz)(w) i =1,2,...} a.s.

and

t+
J(F)(w) = o /0 /Z fi(zw)N(dsdz)(w) : i = 1,2,...} a.s.

THEOREM 3.20. ([38]) Assume F is separable with respect to P. Let {F;}icjo1) and {Gt}iepo,m
be set-valued stochastic processes in # . Then for all t, it follows that

E[H( /0‘+ /Z F(s—, z,w)N(dsdz), /0t+ /Z G(s—, 2,w)N(dsdz))]
(3.19) <E[ /t+ / H(F(s—,2,w),G(s—,2,w))N(dsdz))
0 VA

t
:E[/0 /ZH(F(s,z,w),G’(s,z,w))dsudz]

and
E[H2(/0t+/ZF(s—,z,w)N(dsdz),/OH/ZG(S—,z,w)N(dsdz))]

(3.20) < CE[/OH/ZH2(F(s—,z,w),G(s—,z,w))N(dsdz)]

=CE[/Ot/;H2(F(s,z,w),G(s,z,w))dsu(dz)]
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where C is the constant appearing in Corollary 3.9.
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