
Stochastic differential

equations with set-valued solutions

by

Michal Kisielewicz

Faculty of Mathematics Computer Science and Econometrics,
University of Zielona G\’ora, Poland

1. Introduction

The first papers dealing with differential equations with compact convex set-
valued solutions due.to Francesco De Blasi and others (see [1], [2]). Latter
on, such equations have been also investigated by the author of this lecture
(see [3]). The present lecture is devoted to set-valued stochastic differential
equations of the form

(1) $x_{t}=x_{0}+ \int_{0}^{t}F(\tau, x_{\tau})d\tau+\int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau},$

where $F$ : $[0, T]\cross Xarrow C1(\mathbb{R}^{d})$ and $G$ : $[0, T]\cross Xarrow C1(\mathbb{R}^{d\cross m})$ are
given convex valued Carath\‘eodory multifunctions, and integrals are defined
as some set-valued random variables with values in the space $C1(\mathbb{R}^{d})$ . They
are considered on a complete filtered probability space $\mathcal{P}_{\mathbb{F}}=(f2, \Sigma_{\mathbb{F}}, \mathbb{F}, P)$

with a filtration $\mathbb{F}=(\mathcal{F}_{t})_{t\geq 0}$ satisfying the usual conditions. Let us recall
that for given $\mathbb{F}$ -nonanticipative set-valued process $\Phi=(\Phi_{t})_{t\geq 0}$ defined
on $\mathcal{P}_{\mathbb{F}}$ with values in the space $C1(\mathbb{R}^{d})$ of all nonempty closed subsets of
$\mathbb{R}^{d}$ , a set-valued stochastic integral $\int_{0}^{t}\Phi_{\tau}d\tau$ is defined to be a set-valued

random variable such that $S_{\mathcal{F}_{t}}( \int_{0}^{t}\Phi_{\tau}d\tau)=\overline{dec}J_{t}(S_{\mathbb{F}}(\Phi))$ , where $S_{\mathbb{F}}(\Phi)$ )
denotes the set of all square integrable $\mathbb{F}$ -nonanticipative selectors of $\Phi,$

$J_{t}(f)( \omega)=\int_{0}^{t}f_{\tau}(\omega)d\tau$ for every $\omega\in\zeta l$ and $f\in S_{\mathbb{F}}(\Phi)$ ), and $S_{\mathcal{F}_{t}}( \int_{0}^{t}\Phi_{\tau}d\tau)$

contains all $\mathcal{F}_{t}$ -measurable selectors of $\int_{0}^{t}\Phi_{\tau}d\tau$ . In a similar way (see [4])
for an IF-nonanticipative set-valued process $\Psi$ with values in $C1(\mathbb{R}^{d\cross m})$
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and an $m$ -dimensional $\mathbb{F}$ -Brownian motion $B=(B_{t})_{t\geq 0}$ , a set-valued

integral $\int_{0}^{t}\Psi_{\tau}dB_{\tau}$ is defined as a set-valued random variable such that

$S_{\mathcal{F}_{t}}( \int_{0}^{t}\Psi_{\tau}dB_{\tau})=\overline{dec}\mathcal{J}_{t}(S_{\mathbb{F}}(\Psi))$ , where $\mathcal{J}_{t}(g)(\omega)=(\int_{0}^{t}g_{\tau}dB_{\tau})(\omega)$ for every
$\omega\in r\iota$ arld $g\in S_{\mathbb{F}}(\Psi)$ ). Unfortunalely, a set-valued integral $\int_{0}^{t}\Psi_{\tau}dB_{\tau}$ is not

in the general case integrably bounded (see [12]). Therefore, we shall apply

in (1) a generalized set-valued stochastic integral $\int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau}$ defined (see

[9]) for a nonempty set $\mathcal{G}_{G}(x)=co\{g\circ x : g\in \mathcal{G}\}\subset L^{2}(\mathbb{R}^{+}\cross f1, \Sigma_{\mathbb{F}}, \mathbb{R}^{d\cross m})$ ,

where $\mathcal{G}$ is a nonempty set of Carath\‘eodory selectors of $G$ , and for every
$g\in \mathcal{G}$ and an $\mathbb{F}$ -nonanticipative process $x=(x_{t})_{t\geq 0}$ with values in $X,$ $a$

process $g\circ x$ is defined by $(g\circ x)_{t}(\omega)=g(t, x_{t}(\omega))$ for $(t,\omega)\in \mathbb{R}^{+}\cross fl.$

A set-valued stochastic integral $\int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau}$ is defined as a set-valued ran-

dom variable such that $S_{\mathcal{F}_{t}}( \int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau})=\overline{dec}\mathcal{J}_{t}(\mathcal{G}_{G}(x))$ . Such set-valued
stochastic integrals are in some cases integrably bounded. In particular, it is

the case if $\mathcal{G}_{G}(x)$ is defined by a finite set $\mathcal{G}=\{g^{1}, g^{p}\}$ of Carath\‘eodory

selectors of an square integrably bounded Carath\‘eodory multifunction $G.$

It can be verified (see [9]) that for every sequence $(g^{n})_{n=1}^{\infty}$ of Carath\‘eodory

selectors of an square integrably bounded Carath\‘eodory multifunction $G$

such that $\sum_{n=1}^{\infty}\Vert g^{n}\Vert^{2}<\infty$ , a generalized set-valued stochastic integral
$\int_{0}^{t}co\{g^{n} : n\geq 1\}dB_{\tau}$ is also square integrably bounded. A generalized set-

valued stochastic integral $\int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau}$ covers with a set valued stochastic

integral $\int_{0}^{t}\Psi_{\tau}dB_{\tau}$ , if $\mathcal{G}_{G}(x)$ is such that $\mathcal{G}_{G}(x)=S_{\mathbb{F}}(\Psi)$ .

2. Properties of set-valued stochastic integrals

Let $(X, \rho)$ be a metric space, and $F$ : $[0, T]\cross Xarrow C1(\mathbb{R}^{d})$ and $G$ :
$[0, T]\cross Xarrow C1(\mathbb{R}^{d\cross m})$ convex valued Carath\‘eodory multifunctions. For an

$\mathbb{F}$ -nonanticipative stochastic process $x=(x_{t})_{t\geq 0}$ with values in a metric

space $(X, \rho)$ , we shall consider a set-valued stochastic process Fox and a
set $\mathcal{G}_{G}(x)$ defined by $(F\circ x)_{t}(\omega)=F(t, x_{t}(\omega))$ and $\mathcal{G}_{G}(x)=co\{g\circ x : g\in \mathcal{G}\},$

where $\mathcal{G}$ is a set of Carath\‘eodory selectors of $G$ and $(g\circ x)_{t}(\omega)=g(t, x_{t}(\omega))$

for every $g\in \mathcal{G}$ and $(t,\omega)\in \mathbb{R}^{+}\cross\zeta$}. A set-valued integral $\int_{0}^{t}(F\circ x)_{\tau}d\tau$ is

defined such as above for $\Phi=F\circ x$ . It is denoted by $\int_{0}^{t}F(\tau, x_{\tau})d\tau$ . If $F$

is integrably bounded then (see [10]) the set-valued integral $\int_{0}^{t}F(\tau, x_{\tau})d\tau$ is

integrably bounded and a set-valued process $( \int_{0}^{t}F(\tau, x_{\tau})d\tau)_{t\geq 0}$ is uniformly

integrably bounded and continuous. If $G$ is uniformly square integrably

bounded then (see [9]) for every finite set $\mathcal{G}=\{g^{1}, f\}$ of Carath\‘eodory

selectors of $G$ the generalized set-valued stochastic integral $\int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau}$ is
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square integrably bounded and a set-valued process $( \int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau})_{t\geq 0}$ is uni-
formly integrably bounded and continuous set-valued submartingale. More
precisely, we have

$E \Vert\int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau}\Vert^{2}\leq p\cdot E\int_{0}^{t}\max_{1\leq k\leq p}|g^{k}(\tau, x_{\tau})|^{2}d\tau.$

In particular case, if $\Vert G(t, z)\Vert\leq K$ then $E \Vert\int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau}\Vert^{2}$ ) $\leq p\cdot K.$

Having given two uniformly square integrably bounded Carath\‘eodory
multifunctions $G$ : $[0, T]\cross Xarrow C1(\mathbb{R}^{dxm})$ and $\tilde{G}$ : $[0, T]\cross Xarrow C1(\mathbb{R}^{d\cross m})$

and families $\mathcal{G}=\{g^{1}, g^{p}\}$ and $\tilde{\mathcal{G}}=\{\tilde{g}^{1}, g^{\tilde{p}}\}$ , of Carath\‘eodory selectors
of $G$ and $\tilde{G}$ , respectinely we obtain

$Eh^{2}( \int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau},$ $\int_{0}^{t}\mathcal{G}_{\tilde{G}}(x)dB_{\tau})\leq p\cdot E\int_{0}^{t}\max_{1\leq k\leq P}|g^{k}(\tau, x_{\tau})-\tilde{g}^{k}(\tau, x_{\tau})|^{2}d\tau.$

Similar results can be obtained (see [9]) for every infinite farnilies $\mathcal{G}=\{g^{n}$ :
$n\geq 1\}$ and $\tilde{\mathcal{G}}=\{\tilde{g}^{n} : n\geq 1\}$ of Carath\‘eodory selectors of $G$ and $\tilde{G}$ , respec-
tively such that $\sum_{n=1}^{\infty}|g^{n}(t, z)|^{2}<\infty$ and $\sum_{n=1}^{\infty}|\tilde{g}^{n}(t, z)|^{2}<\infty$ uniformly
with respect $(t, z)\in[0, T]\cross X$ . In particular, in such a case we get

$Eh^{2}( \int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau},$ $\int_{0}^{t}\mathcal{G}_{\tilde{G}}(x)dB_{\tau})\leq E\int_{0}^{t}\sup_{k\geq 1}|g^{k}(\tau, x_{\tau})-\tilde{g}^{k}(\tau, x_{\tau})|^{2}d\tau.$

If the above multifunction $G:[0, T]\cross Xarrow C1(\mathbb{R}^{d\cross m})$ possesses a finite fam-
ily $\mathcal{G}=\{g^{1}, g^{p}\}$ of Lipschitz continuous with respect to $z\in X$ selectors,
then there is a number $D>0$ such that

$Eh^{2}( \int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau}, \int_{0}^{t}\mathcal{G}_{G}(\tilde{x})dB_{\tau})\leq p\cdot DE\int_{0}^{t}\rho^{2}(x_{\tau},\tilde{x}_{\tau})d\tau$

for every $\mathbb{F}$ -nonanticipative processes $x=(x_{t})_{t\geq 0}$ and $\tilde{x}=(\tilde{x}_{t})_{t\geq 0}$ with
values in a metric space $X$ . Similar result can be obtained, by some addi-
tional assumptions, if $G$ possesses an infinite family of Lipschitz continuous
selectors.

3. Generalized stochastic differential equations

Let (X, h) be a complete metric space of all nonempty compact convex
subsets of $\mathbb{R}^{d}$ with the Hausdorff metric $h,$ $F$ : $\mathbb{R}^{+}\cross Xarrow C1(\mathbb{R}^{d})$ and
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$G$ : $\mathbb{R}^{+}\cross Xarrow C1(\mathbb{R}^{d\cross m})$ Carath\’eodory set-valued mappings, arld $\mathcal{G}a$

nonempty family of Carath\’eodory selectors of $G$ . By a stochastic diffrential

equation $SDE(F, \mathcal{G}_{G})$ with set-valued solutions we mean a relation

(2) $x_{t}=x_{0}+ \int_{0}^{t}F(\tau, x_{\tau})d\tau+\int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau},$

which has to be satisfied a.s. for every $t\geq 0$ by a system $(\mathcal{P}_{\mathbb{F}}, x, B)$ , called
a weak solution of $SDE(F, \mathcal{G}_{G})$ , consisting of a complete filtered probability

space $\mathcal{P}_{\mathbb{F}}$ with a filtration $\mathbb{F}=(\mathcal{F}_{t})_{t\geq 0}$ satisfying the usual conditions,

an $\mathbb{F}$ -adapted continuous set-valued process $x=(x_{t})_{t\geq 0}$ with values in

the space $X$ and an $m$ -dimensional $\mathbb{F}$ -Brownian motion $B=(B_{t})_{t\geq 0}$

defined on $\mathcal{P}_{\mathbb{F}}$ such that $S_{\mathbb{F}}(F\circ x)\neq\emptyset$ and $\mathcal{G}_{G}(x)$ is a nonempty subset

of $L^{2}(\mathbb{R}^{+}\cross fl, \Sigma_{\mathbb{F}}, \mathbb{R}^{d\cross m})$ , where $(F\circ x)_{t}(\omega)=F(t, x_{t}(\omega))$ and $\mathcal{G}_{G}(x)=$

$co\{gox : g\in \mathcal{G}\}$ , for every $(t, \omega)\in \mathbb{R}^{+}\cross fl$ . A weak solution $(\mathcal{P}_{\mathbb{F}}, x, B)$ of
$SDE(F, \mathcal{G}_{G})$ is said to be unique in law if for every weak solution $(\tilde{\mathcal{P}}_{\tilde{\mathbb{F}}},\tilde{x},\tilde{B})$

of $SDE(F, \mathcal{G}_{G})$ we have $Px^{-1}=P\tilde{x}^{-1}$ , where $Px^{-1}$ and $P\tilde{x}^{-1}$ denote
distributions of set-valued random variables $x$ : $flarrow C(\mathbb{R}^{+}, X)$ and $\tilde{x}$ :
$\zeta]arrow C(\mathbb{R}^{+}, X)$ . In particular, if apart from the above multifunctions $F,$ $G$

and a family $\mathcal{G}$ of Carath\‘eodory selectors of $G$ , we have also given a filtered
probability space $\mathcal{P}_{\mathbb{F}}$ and an $m$ -dimensional $\mathbb{F}$ -Brownian motion $B=$

$(B_{t})_{t\geq 0}$ defined on $\mathcal{P}_{\mathbb{F}}$ , then an $\mathbb{F}-non$-anticipative continuous set-valued
process $x=(x_{t})_{t\geq 0}$ with values in the space $X$ such that $(\mathcal{P}_{\mathbb{F}}, x, B)$ is a
weak solution of $SDE(F, \mathcal{G}_{G})$ , is said to be a strong solution of $SDE(F, \mathcal{G}_{G})$ .

Similarly as in the classical theory of stochastic differential equations we
can define initial value problems for $SDE(F, \mathcal{G}_{G})$ . In particular, for given

a filtered probability space $\mathcal{P}_{\mathbb{F}}$ , an $m$ -dimensional $\mathbb{F}$ -Brownian motion
$B=(B_{t})_{t\geq 0}$ and an $\mathcal{F}_{0}$ -measurable set-valued random variable $\xi$ : $\Omegaarrow X$

we can look for a strong solution $x$ for $SDE(F, \mathcal{G}_{G})$ such that $x_{0}=\xi$ a.s.
Such defined problem is written in the differential form

(2) $\{\begin{array}{l}dx_{t}=F(t, x_{t})dt+\mathcal{G}_{G}(x)dB_{t}x_{0}=\xi.\end{array}$

Apart from the existence problems for stochastic differential equations
with set-valued solutions we can look for their relations with stochastic dif-
ferential inclusions $SDI(\Phi, \Psi)$ written as relations of the form

$z_{t}-z_{s} \in\int_{s}^{t}\Phi(\tau, z_{\tau})d\tau+\int_{s}^{t}\Psi(\tau, z_{\tau})dB_{\tau}$
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that has to be satisfied, for given set-valued measurable mappings $\Phi$ :
$\mathbb{R}^{+}\cross \mathbb{R}^{d}arrow C1(\mathbb{R}^{d})$ and $\Psi$ : $\mathbb{R}^{+}\cross \mathbb{R}^{d}arrow C1(\mathbb{R}^{d\cross m})$ , by a system $(\mathcal{P}_{\mathbb{F}}, z, B)$ ,
called a weak solution of $SDI(\Phi, \Psi)$ , consisting of a complete filtered proba-
bility space $\mathcal{P}_{\mathbb{F}}$ with a filtration $\mathbb{F}=(\overline{J_{t}-})_{t\geq 0}$ satisfying the usual conditions,
an $d$ -dimensional $\mathbb{F}$ -adapted continuous process $z=(z_{t})_{t\geq 0}$ and an m-
dimensional $\mathbb{F}$ -Brownian motion $B=(B_{t})_{t\geq 0}$ defined $or1\mathcal{P}_{\mathbb{F}}$ such that
$S_{\mathbb{F}}(\Phi\circ x)\neq\emptyset$ and $S_{\mathbb{F}}(\Psi ox)\neq\emptyset$ . Solutions of stochastic differential equa-
tions with set-valued solutions can be applied in the thory of fuzzy differential
equations.

We shall present now the skech of the proof of the existence and unique
ness theorem for an initial value problem (2) with $\mathcal{G}_{G}(x)$ defined by a finite
family $\mathcal{G}$ of Lipschitz continuous selectors of $G.$

Theorem 1. Let $T>0$ , and $F:[0, T]\cross Xarrow C1(\mathbb{R}^{d})$ and $G:[0, T]\cross$

$Xarrow C1(\mathbb{R}^{dxm})$ be Carath\’eodory set-valued mappings with convex-valued and
assume there are numbers $C>0$ and $D>0$ such that

(i) $\Vert F(t, x)\Vert+\Vert G(t, x \leq C(1+\Vert x\Vert)$ for $x\in X$ and $t\in[0, T],$

(ii) $h(F(t, x), F(t, y))\leq Dh(x, y)$ for $x,$ $y\in X$ and $t\in[0, T],$

(iii) $G$ possesses a finite Lipschitz continuos with respect to $z\in X$ fam-
$ily\mathcal{G}=\{g^{1}, g^{p}\}$ of selectors with Lipschitz constants $D_{1},$ $D_{p}$

bounded above by $D.$

If $\mathcal{P}_{\mathbb{F}}$ is a filtered complete separable probability space with a filtration
$\mathbb{F}=(\mathcal{F}_{t})_{t\geq 0}sati_{\mathcal{S}}fying$ the usual conditions and $B=(B_{t})_{t\geq 0}i\mathcal{S}$ an
$m$ -dimensional $\mathbb{F}$ -Brownian motion defined on $\mathcal{P}_{\mathbb{F}}$ , then for every $\mathcal{F}_{0}-$

measurable set-valued random variable $\xi$ : $flarrow X$ such that $E\Vert\xi\Vert^{2}<\infty$

there exists exactly one strong solution of the initial value problem (2).

Proof (Skech of the proof). Similarly as in the classical theory of stochas-
tic diffrential equations, in the first step of the proof, we define a sequence
$(x^{n})_{n=1}^{\infty}$ of successive approximations of the form: $x_{t}^{0}=\xi$ a.s. for every
$t\in[0, T]$ and

(3) $x_{t}^{n+1}= \xi+\int_{0}^{t}F(\tau, x_{\tau}^{n})d\tau+\int_{0}^{t}\mathcal{G}_{G}(x^{n})dB_{\tau}$ a.s.
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for every $t\in[0, T]$ and $n=1$ , 2, . It is clear that a sequence $(x^{n})_{n=1}^{\infty}$

is well defined, because for $n=0$ set-valued processes $(F(t, \xi))_{0\leq t\leq T}$

and $(G(t, \xi))_{0\leq t\leq T}$ are $\mathbb{F}-non$-anticipative and square integrably bounded
by a random variable $k=C(1+\Vert\xi\Vert)$ . Therefore, set-valued process
$( \int_{0}^{t}F(\tau, \xi)d\tau)_{0\leq t\leq T}$ is continuous uniformly square integrably bounded. By

finitness of the family $\mathcal{G}$ , the set-valued stochastic process $( \int_{0}^{t}\mathcal{G}_{G}(\xi)dB_{\tau})_{0\leq t\leq T}$

is continuous uniformly square integrably bounded. This, together with con-
vexity of the set-valued stochastic integrals $\int_{0}^{t}F(\tau, \xi)d\tau$ and $\int_{0}^{t}\mathcal{G}_{G}(\xi)dB_{\tau}$

implies that $x_{t}^{1}\in X$ a.s. for every $t\in[0, T]$ . Hence also follows that a
set-valued process $(x_{t}^{1})_{0\leq t\leq T}$ is square integrably bounded. By continuity of

set-valued processes $( \int_{0}^{t}F(\tau, \xi)d\tau)_{0\leq t\leq T}$ and $( \int_{0}^{t}\mathcal{G}_{G}(\xi)dB_{\tau})_{0\leq t\leq T}$ it follows
that a set-valued process $(x_{t}^{1})_{0\leq tleT}$ is continuous. Immediately from the
definition of $x^{1}$ it follows that $(x_{t}^{1})_{0\leq t\leq T}$ is $\mathbb{F}$ -adapted, and hence $\mathbb{F}$ -non-
anticipative. Thus set-valued processes $(F(t, x_{t}^{1}))_{0\leq t\leq T}$ and $(G(t, x_{t}^{1}))_{0\leq t\leq T}$

are $\mathbb{F}-non$-anticipative and square integrably bounded. Then $\mathcal{G}_{G}(x^{1})$ is a
nonempty subset of $L^{2}(\mathbb{R}^{+}\cross fl, \Sigma_{\mathbb{F}}, \mathbb{R}^{d\cross m})$ . By the inductive procedure

it can be easily verified that all set-valued processes $(x_{t}^{n})_{0\leq t\leq T}$ are well de-
fined with values in $X$ , and are continuous and uniformly square integrably
bounded.

The second steps of the proof deals with the estimations of the
$Eh^{2}(x_{t}^{n+1}, x_{t}^{n})$ for every $n\geq 1$ and $0\leq t\leq T$ . By the properties of
set-valued stochastic integrals presented above, and the definition of $x_{t}^{0}$ and
$x_{t}^{1}$ for $t\in[O, T]$ we get

$[Eh^{2}(x_{t}^{1}, x_{t}^{0})]^{1/2} \leq[TE\int_{0}^{t}\Vert F(\tau, \xi)\Vert^{2}d\tau]^{1/2}+[pE\int_{0}^{t}\max_{1\leq k\leq p}|g^{k}(\tau, \xi)|^{2}d\tau]^{1/2}$

$\leq[TC^{2}E(1+\Vert\xi\Vert)^{2}t]^{1/2}+[C^{2}pE(1+\Vert\xi\Vert)^{2}t]^{1/2}=$

$(\sqrt{T}+\sqrt{p})C[E(1+\Vert\xi\Vert)^{2}]^{1/2}\sqrt{t},$

which can be written in the form $Eh^{2}(x_{t}^{1}, x_{t}^{0})\leq KL\cdot t$ where $K=(\sqrt{T}+$

$\sqrt{p})^{2}$ and $L=C^{2}E(1+\Vert\xi\Vert)^{2}$ . By the definition of a sequence $(x^{n})_{n=1}^{\infty}$

and properties of set-valued stochastic integrals presented above, for every
$t\in[O, T]$ we obtain

$[Eh^{2}(x_{t}^{n+1},x_{t}^{n})]^{1/2} \leq[Eh^{2}(\int_{0}^{t}F(\tau, x_{\tau}^{n})d\tau,$ $\int_{0}^{t}F(\tau, x_{\tau}^{n-1})d\tau)]^{1/2}+$
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$[Eh^{2}( \int_{0}^{t}\mathcal{G}_{G}(x^{n})dB_{\tau}, \int_{0}^{t}\mathcal{G}_{G}(x^{n-1})dB_{\tau})]^{1/2}\leq$

$[TDE \int_{0}^{t}h^{2}(x_{\tau}^{n}, x_{\tau}^{n-1})d\tau]^{1/2}+[pDE\int_{0}^{t}h^{2}(x_{\tau}^{n}, x_{\tau}^{n-1})d\tau]^{1/2}=$

$( \sqrt{TD}+\sqrt{pD})[E\int_{0}^{t}h^{2}(x_{\tau}^{n}, x_{\tau}^{n-1})d\tau]^{1/2},$

which can be wrirtten in the form $Eh^{2}(x_{t}^{n+1}, x_{t}^{n}) \leq KDE\int_{0}^{t}h^{2}((x_{\tau}^{n}, x_{\tau}^{n-1})d\tau.$

The third step of the proof is connected with convergence of the sequence
$(x^{n})_{n=1}^{\infty}$ with respect to the metric topology of the metric space $(C, d)$ defined
by $C=:C([O, T], \mathcal{L}^{2})$ with $d(u, v)=\sup_{0\leq t\leq T}\sqrt{Eh^{2}(u_{t},v_{t})}$ for continuous
set-valued processes $u=(u_{t})_{0\leq t\leq T}$ and $v=(v_{t})_{0\leq t\leq T}$ with values in the Pol-
ish space $\mathcal{L}^{2}=:L^{2}(S2, \mathcal{F}, P, X)$ consisting of all set-valued random variables
(equivalence casses of) $z:r$] $arrow X$ such that $E\Vert z\Vert^{2}<\infty.$

Immediately from the results of the above two steps, we obtain

$\sup_{0\leq t\leq T}Eh^{2}(x_{t}^{n+1}, x_{t}^{n})\leq L\frac{K^{n+1}D^{n+1}T^{n+1}}{(n+1)!}$

for every $n=0$ , 1, 2, . Hence it follows that $(x^{n})_{n=1}^{\infty}$ is a Cauchy sequence of
the complet metric space $(C, d)$ . Then there is $x\in C$ such that $d(x^{n}, x)arrow 0$

as $narrow\infty$ . Let us observe that $x$ is IF-non-anticipative, i.e., that it is $\mathbb{F}-$

adaptive and $\beta([0, T])\otimes \mathcal{F}$ -measurable. Indeed, $\mathbb{F}$ -adaptness follows imme-
diately from $\mathbb{F}$ -adaptness of $x^{n}$ for every $n\geq 1$ and the result $d(x^{n}, x)arrow 0$

as $narrow\infty$ . Let $f$ : $fl\cross([O, T]\cross C)arrow X$ be defined by $f(\omega, (t, z))=z_{t}(\omega)$

for $\omega\in rl$ and $(t, z)\in[0, T]\cross C$ . It is clear that $f(\cdot, (t, z))=z_{t}(\omega)$ is
$\mathcal{F}$ -measurable for fixed $(t, z)\in[0, T]\cross C$ . Furthermore, $f(\cdot, (t, z))\in \mathcal{L}^{2}$

and the set-valued mapping $[0, T]\cross C\ni(t, z)arrow f(\cdot, (t, z))\in \mathcal{L}^{2}$ is con-
tinuous, because for every sequence $\{(t_{n}, z^{n})\}_{n=1}^{\infty}$ , such that $t_{n}arrow t_{0}$ and
$\sup_{0\leq t\leq T}Eh^{2}(z_{t}^{n}, z_{t}^{0})arrow 0$ we have

$Eh^{2}[f(\cdot, (t_{n}, z^{n} f(\cdot, (t_{0}, z^{0} =Eh^{2}(z_{t_{n}}^{n}, z_{t_{0}}^{0})\leq Eh^{2}(z_{t_{n}}^{n}, z_{t_{n}}^{0})+$

$Eh^{2}(z_{t_{n}}^{0}, z_{t_{0}}^{0}) \leq\sup_{0\leq t\leq T}Eh^{2}(z_{t}^{n}, z_{t}^{0})+Eh^{2}(z_{t_{n}}^{0}, z_{t_{0}}^{0})$ .

Then $Eh^{2}[f(\cdot,$ ( $t_{n},$ $z^{n}$ $f(\cdot,$ $(t_{0},$
$z^{0}$ $arrow 0$ as $narrow 0$ . Therefore, a set-valued

mapping $g$ : $[0, T]\cross\Omega\cross Carrow X$ defined by $g(t,\omega, z)=f(\omega, (t, z))$ for $(t, \omega)\in$
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$[0, T]\cross fl$ and $z\in C$ is $\mathcal{F}\otimes\beta([0, T]\cross C)$ -meaeurable. But $\mathcal{F}\otimes\beta([0, T]\cross C)\subset$

$\mathcal{F}\otimes\beta_{T}\otimes\beta(C)$ , where $\beta_{T}$ and $\beta(C)$ denote the Borel a-algebras on $[0, T]$ and
$C$ , respectively. Therefore, $g(\cdot, \cdot, z)$ is $\mathcal{F}\otimes\beta_{T}$ -measurable, which implies

that for every $z\in C$ a set-valued process $(z_{t})_{0\leq t\leq T}$ with values in $X$ such

that $E\Vert z_{t}\Vert^{2}<\infty$ is $\mathcal{F}\otimes\beta_{T}$ -measurable, because $z_{t}(\omega)=g(t,\omega, z)$ .

In the fourth step we verify that $Eh^{2}(x_{t}, \xi+\int_{0}^{t}F(\tau, x_{\tau})d\tau+\int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau})$

$=0$ for every $0\leq t\leq T$ . It follows from inequalities

$Eh^{2}(x_{t}, \xi+\int_{0}^{t}F(\tau, x_{\tau})d\tau+\int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau})\leq 2Eh^{2}(x_{t}, x_{t}^{n+1})+$

$2Eh^{2}( \int_{0}^{t}F(\tau, x_{\tau}^{n})d\tau+\int_{0}^{t}\mathcal{G}_{G}(x^{n})dB_{\tau},$ $\int_{0}^{t}F(\tau, x_{\tau})d\tau+\int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau})$

$\leq 2Eh^{2}(x_{t}, x_{t}^{n+1})+4T^{2}D^{2}Eh^{2}(x_{t}, x_{t}^{n})+4pD^{2}Eh^{2}(x_{t}, x_{t}^{n})$

for every $n\geq 1$ and $0\leq t\leq T$ . Immediately from the equality $x_{t}=$

$\xi+\int_{0}^{t}F(\tau, x_{\tau})d\tau+\int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau}$ a.s. for every $0\leq t\leq T$ and continuity

of the set-valued processes $( \int_{0}^{t}F(\tau, x_{\tau})d\tau)_{0\leq t\leq T}$ and $( \int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau})_{0\leq t\leq T}$ it

follows that $(x_{t})_{0\leq t\leq T}$ is continuous.
Similarly as above we can verify that for two continuous set-valued

processes $(x_{t})_{0\leq t\leq T}$ and $(y_{t})_{0\leq t\leq T}$ satisfying conditions (2) we obtain
$Eh^{2}(x_{t}, y_{t})=0.$

$\square$

Remark 1. In a similar way we can consider the case with a set $\mathcal{G}$ con-
$taini_{7}\iota g$ an infinity many Lipschitz continuous selectors of $G$ satisfying some
additional conditions implying integrable $boundednes\mathcal{S}$ of a set-valued integral
$\int_{0}^{t}\mathcal{G}_{G}(x)dB_{\tau}$ and boundedness from above of Lipschitz constants of the above
selectors. $\square$
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