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1. Introduction

The first papers dealing with differential equations with compact convex set-
valued solutions due .to Francesco De Blasi and others (see [1], [2]). Latter
on, such equations have been also investigated by the author of this lecture
(see [3]). The present lecture is devoted to set-valued stochastic differential
equations of the form

t t
(1) 20 = 70 + / F(r,z,)dr + / Ge(x)dB,,
0 0

where F : [0,7] x X — CI(IR%) and G : [0,T] x X — CI(IR¥*™) are
given convex valued Caratheéodory multifunctions, and integrals are defined
as some set-valued random variables with values in the space CI(IR%). They
are considered on a complete filtered probability space Pg = (@, Zp, IF, P)
with a filtration IF = (F;);>0 satisfying the usual conditions. Let us recall
that for given IF-nonanticipative set-valued process ® = (®;);>o defined
on Pr with values in the space CI(IRY) of all nonempty closed subsets of
IR¢, a set-valued stochastic integral fot ®,d7 is defined to be a set-valued
random variable such that Sx,( f; ®.dr) = dec,(Sr(®)), where Sp(®))
denotes the set of all square integrable IF-nonanticipative selectors of @,
Je(f)(w) = f; fr(w)dr for every w € 2 and f € Sp(®)), and Sz, ([} ®,dr)
contains all ;- measurable selectors of fot ®,dr. In a similar way (see [4])
for an IF-nonanticipative set-valued process ¥ with values in Cl(IR#*™)
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and an m-dimensional IF-Brownian motion B = (Bi)>0, a set-valued
integral fo V.dB, is defined as a set-valued random variable such that

Sr([f; ¥,dB;) = decT:(Sp(¥)), where Ji(g)(w) = (Js 9-dB;)(w) for every
w € N and g € Sp(¥)). Unfortunalely, a set-valued integral fo VU.dB; is not
in the general case integrably bounded (see [12]). Therefore, we shall apply
in (1) a generalized set-valued stochastic integral f Gg(z)dB, defined (see
[9]) for a nonempty set Gg(z) = cof{goz:g€ G} C le(IRJr x Q, L, R¥>*™),
where G is a nonempty set of Carathéodory selectors of G, and for every
g € G and an IF-nonanticipative process = (£:);>o with values in X, a
process g o is defined by (g o z):(w) = g(t, z4(w)) for (t,w) € R* x (2.
A set-valued stochastic integral [; G(x)dB; is defined as a set-valued ran-
dom variable such that Sz, ( fot Ge(z)dB,) = decJ:(Ge(x)). Such set-valued
stochastic integrals are in some cases integrably bounded. In particular, it is
the case if Gg(z) is defined by a finite set G = {g,..., g’} of Carathéodory
selectors of an square integrably bounded Carathéodory multifunction G.
It can be verified (see [9]) that for every sequence (g")52, of Caratheéodory
selectors of an square integrably bounded Carathéodory multifunction G
such that Y>> |lg"||> < oo, a generalized set-valued stochastic integral
f co{g" : n > 1}dB; is also square integrably bounded. A generalized set-
valued stochastic integral fo Gg(z)dB, covers with a set valued stochastic

integral [, ¥,dB;, if Gg(z) is such that Gg(x) = Sw(¥).
2. Properties of set-valued stochastic integrals

Let (X,p) be a metric space, and F : [0,T] x X — CI(R%) and G :
[0,T] x X — CI(R¥*™) convex valued Caratheodory multifunctions. For an
IF - nonanticipative stochastic process r = (x;);>p with values in a metric
space (X, p), we shall consider a set-valued stochastic process F oz and a
set Go(z) defined by (Foz)i(w) = F(t,z:(w)) and Gg(x) = co{goz : g € G},
where G is a set of Carathéodory selectors of G and (go:c)t(w) = g(t, z:(w))
for every g € G and (t,w) € R* x . A set-valued integral fo (F ox),dr is
defined such as above for ® = F o z. It is denoted by fo T,z;)dr. If F
is integrably bounded then (see [10]) the set-valued integral fot F(7,z.)dr is
integrably bounded and a set-valued process ( fot F(7,2,)dT)s>0 is uniformly
integrably bounded and continuous. If G is uniformly square integrably
bounded then (see [9]) for every finite set G = {g*,...,gP} of Cara,theodory
selectors of G the generalized set-valued stochastic mtegra.l fo Ge(x)dB; is



square integrably bounded and a set-valued process ( fot Ge(z)dB; )0 is uni-
formly integrably bounded and continuous set-valued submartingale. More
precisely, we have

In particular case, if |G(¢,2)|| < K then E| [, Ga(z)dB|?) <p- K.

Having given two uniformly square integrably bounded Caratheodory
multifunctions G : [0,T] x X — CI(IR**™) and G : [0,T] x X — CI(IR%*™)
and families G = {¢', ..., ¢} and G = {g", ..., §"}, of Caratheéodory selectors
of G and G, respectinely we obtain

(/ Go( as)dBT,/ Gs(z dB) <p- E/ max |g*(7, z,;) — §%(r, z, ) |2dr.

1<k<p

z)dB, <p E/ max |g*(7, z,)|2dT.

1<k<p

Similar results can be obtained (see [9]) for every infinite families G = {g" :
n>1} and G = {§" : n > 1} of Caratheodory selectors of G and G, respec-
tively such that ) > |g"(¢,2)[> < 0o and Y .-, |3"(¢,2)|*> < co uniformly
with respect (¢,2) € [0,T] x X. In particular, in such a case we get

(/ Ge(x) dBT,/ gs5(x) dB) <FE sup g (7, ) — §*(7, z.)|%dr.
0 k>1

If the above multifunction G : [0, 7] x X — CI(IR®*™) possesses a finite fam-
ily G ={g',...,g"} of Lipschitz continuous with respect to z € X selectors,
then there is a number D > 0 such that

t t t
h2( | gat@ae., [ ga(%)dBT) <p-DE [ ponzr)dr
0 0 0

for every IF-nonanticipative processes * = (x;);>0 and T = (Z;)i>0 Wwith
values in a metric space X. Similar result can be obtained, by some addi-
tional assumptions, if G possesses an infinite family of Lipschitz continuous
selectors.

3. Generalized stochastic differential equations

Let (X,h) be a complete metric space of all nonempty compact convex
subsets of IR? with the Hausdorff metric h, F : R* x X — CI(IR%) and
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G : Rt x X — CI(IR¥*™) Carathéodory set-valued mappings, and G a
nonempty family of Carathéodory selectors of G. By a stochastic diffrential
equation SDE(F,Gg) with set-valued solutions we mean a relation

¢ t
(2) Ty = T +/ F(r,z;)dt +/ Ge(z)dB;,
0 0

which has to be satisfied a.s. for every t > 0 by a system (P, z, B), called
a weak solution of SDE(F,Gg), consisting of a complete filtered probability
space Pr with a filtration IF = (JF;);>0 satisfying the usual conditions,
an IF-adapted continuous set-valued process £ = (z:):>0 With values in
the space X and an m-dimensional IF-Brownian motion B = (Bi)>o
defined on Pg such that Sp(F oz) # @ and Gg(z) is a nonempty subset
of L*(IR* x Q, L, R¥™), where (F o z)(w) = F(t,z4(w)) and Ge(x) =
co{goz: g € G}, for every (t,w) € Rt x Q). A weak solution (Pp,z,B) of
SDE(F,Gg) is said to be unique in law if for every weak solution (’ﬁﬁs, z, B)
of SDE(F,Gg) we have Pz~! = PZ~!, where Pz~! and PZ~! denote
distributions of set-valued random variables z : 2 - C(R*,X) and 7 :
Q) = C(IR*, X). In particular, if apart from the above multifunctions F, G
and a family G of Carathéodory selectors of G, we have also given a filtered
probability space Pr and an m-dimensional IF-Brownian motion B =
(Bt)i>o defined on P, then an IF-non-anticipative continuous set-valued
process T = (T;);>0 With values in the space X such that (Pg,z,B) is a
weak solution of SDE(F, Gg), is said to be a strong solution of SDE(F, Gg).

Similarly as in the classical theory of stochastic differential equations we
can define initial value problems for SDE(F,Gg). In particular, for given
a filtered probability space Pg, an m-dimensional IF-Brownian motion
B = (B;)i>0 and an JF;- measurable set-valued random variable £ : 2 = X
we can look for a strong solution z for SDE(F,Gg) such that o = £ a.s.
Such defined problem is written in the differential form

{ dzr; = F(t,z:)dt + Ge(z)dB;
To — §

(2)

Apart from the existence problems for stochastic differential equations
with set-valued solutions we can look for their relations with stochastic dif-
ferential inclusions SDI(®, ¥) written as relations of the form

t t
2 — 25 € / O(1, z;)dT + / V(7,2 )dB;



that has to be satisfied, for given set-valued measurable mappings @ :
R* xIR? - CI(IRY) and ¥ : R* x R? — CI(R¥*™), by a system (P, 2, B),
called a weak solution of SDI(®, ¥), consisting of a complete filtered proba-
bility space Pg with a filtration IF = (F;):>o satisfying the usual conditions,
an d-dimensional IF-adapted continuous process z = (2);>0 and an m-
dimensional IF-Brownian motion B = (B;)i>o defined on Pg such that
Sr(Poz)#0 and Sp(¥ o z) # 0. Solutions of stochastic differential equa-
tions with set-valued solutions can be applied in the thory of fuzzy differential
equations.

We shall present now the skech of the proof of the existence and unique-
ness theorem for an initial value problem (2) with Gg(z) defined by a finite
family G of Lipschitz continuous selectors of G.

Theorem 1. Let T > 0, and F : [0,T] x X — Cl(IR?) and G : [0,T] x
X — CI(R¥*™) be Carathéodory set-valued mappings with convezr-valued and
assume there are numbers C' >0 and D > 0 such that

(z) |1F@ )|+ G 2)|| < C(+|zl]) for z€ X and t € [0,T],
(1) h(F(t,z),F(t,y)) < Dh(z,y) for z,y € X and t € [0,T],

(i) G possesses a finite Lipschitz continuos with respect to z € X fam-
iy G = {g%,...,g°} of selectors with Lipschitz constants Ds, ..., D,
bounded above by D.

If Pr s a filtered complete separable probability space with a filtration
IF = (Fi)i>0 satisfying the usual conditions and B = (B;)i>o @ an
m - dimensional IF - Brownian motion defined on Pg, then for every Fy-
measurable set-valued random variable & : Q0 — X such that E||€||?> < oo
there exists exactly one strong solution of the initial value problem (2).

Proof (Skech of the proof). Similarly as in the classical theory of stochas-
tic diffrential equations, in the first step of the proof, we define a sequence
(z™)%; of successive approximations of the form: z¥ = ¢ as. for every
t €[0,7] and

t ¢
(3) Pt = §+/ F(r,z™)dr +/ Gg(z™)dB, as.
0 0
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for every t € [0,T] and n = 1,2,.... It is clear that a sequence (z")52,
is well defined, because for n = 0 set-valued processes (F(t,&))o<t<r
and (G(t,€))o<i<r are IF-non-anticipative and square integrably bounded
by a random variable & = C(1 + ||£||). Therefore, set-valued process
( fo F(7,£)d7)o<i<r is continuous uniformly square integrably bounded. By
finitness of the family G, the set-valued stochastic process fo Ge(€)dB;)o<t<T
is continuous uniformly square integrably bounded This, together with con-
vexity of the set-valued stochastic integrals fo T,§)dr and fo Ge(€)dB,
implies that z} € X as. for every ¢t € [0,7]. Hence also follows that a
set-valued process (z})o<i<T is square integrably bounded. By continuity of
set-valued processes ( fot F(1,8)dr)oct<r and ( fot Gg(8)dB;)o<i<r it follows
that a set-valued process (z})o<tier is continuous. Immediately from the
definition of z! it follows that (z})o<:<r is IF-adapted, and hence IF-non-
anticipative. Thus set-valued processes (F(t,z!))o<t<r and (G(t,z}))o<t<r
are IF-non-anticipative and square integrably bounded. Then Gg(z') is a
nonempty subset of IL>(R* x €, ¥, IR®*™). By the inductive procedure
it can be easily verified that all set-valued processes (z})o<t<r are well de-
fined with values in X, and are continuous and uniformly square integrably
bounded.

The second steps of the proof deals with the estimations of the
ERh*(z?t z7) for every n > 1 and 0 < ¢t < T. By the properties of
set—valued stochastic integrals presented above, and the definition of z? and
z; for t € [0,T] we get

1/2

t 1/2 t
(ER (s}, 2] < [TE / nF(fr,on?dT} +[pE [ max i P
0 0 1<k<p

1/2

< [TCBQ+ €] ™" + [CpEQ + l€l))*t]
(VT +v/B) CLEQ + €124,

which can be written in the form Eh?(zl,2%) < KL -t where K = (VT +
VvP)? and L = C?’E(1 + ||€|[)?>. By the definition of a sequence (z")5%;
and properties of set-valued stochastic integrals presented above, for every
t € [0, T] we obtain

[ER2(zp1,27)] ' < [Eh2 (/ "dr, / F(r,a1 dT)]1/2+



[Eh? ( / ' Go(z)dB,, / t gc(m"'l)dBT)] "

t 1/2 t 1/2
[TDE/ hz(a:,’r',:v:f—l)dT] + [pDE/ hz(mf,x’;_l)dTJ =
0 0

t 1/2
(VTD+ViD) £ [ Wt yar]
0

which can be wrirtten in the form Eh?(z}t!,2?) < KDE fot h2((z?, z" 1)dr.

The third step of the proof is connected with convergence of the sequence
(z™)2 , with respect to the metric topology of the metric space (C,d) defined
by C =: C([0,T], £?) with d(u,v) = supg<;eg v/ Eh2(us,v;) for continuous
set-valued processes u = (us)o<t<r and v = @t)ostg with values in the Pol-
ish space £2 =: IL>(2, F, P, X) consisting of all set-valued random variables
(equivalence casses of) z: ) — X such that E|z|? < oc.

Immediately from the results of the above two steps, we obtain

Kn+1 Dn+1Tn+1
sup Eh?(z"l, ™) < L
05t.<I_)T (= £ < (n+1)!

for every n =0, 1,2, .... Hence it follows that (z")22, is a Cauchy sequence of
the complet metric space (C,d). Then thereis z € C such that d(z",z) — 0
as n — 00. Let us observe that z is IF-non-anticipative, i.e., that it is IF -
adaptive and 4([0, T]) ® F -measurable. Indeed, IF-adaptness follows imme-
diately from IF - adaptness of =" for every n > 1 and theresult d(z",z) — 0
as n —oo. Let f:Qx ([0,7] xC) = X be defined by f(w, (¢, 2)) = z(w)
for w e 2 and (t,2) € [0,T] x C. It is clear that f(-, (¢, 2)) = z(w) is
F - measurable for fixed (¢,2) € [0,7] x C. Furthermore, f(-,(t,2)) € L2
and the set-valued mapping [0,7] x C > (¢,2) — f(+,(¢,2)) € L? is con-
tinuous, because for every sequence {(¢,,2")}2,, such that ¢, — t, and
supg<s<r ER? (2}, 2)) = 0 we have

ER?[f(-, (tn, ™), £(+, (t0, 2°))] = BN (27, 2) < ER*(2,, 2, )+
Eh*(z) , 7)) < sup ER*(2},2]) + ER* (2., 2)-
0<t<T

Then ER*[f(-, (tn,2")), f(+, (to,2°))] = 0 as n — 0. Therefore, a set-valued

mapping g : [0, T]xN2xC — X defined by g(t,w, 2) = f(w, (¢, 2)) for (t,w) €
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[0,T]x€ and z € C is F®PB([0, T]xC) - measurable. But F®p([0, T|xC) C
F®BroB(C), where fr and B(C) denote the Borel o - algebras on [0, T] and
C, respectively. Therefore, g(-,-,2) is F @ fr-measurable, which implies
that for every z € C a set-valued process (2 )o<t<r With values in X such
that E||z|> < co is F ® fSr - measurable, because z(w) = g(t,w, 2).

In the fourth step we verify that ER¥(z;, &+ [y F (T, z.)dr + [, Go(z)dB,)
=0 for every 0 <t < T. It follows from inequalities

t t
Eh2 (mta f + / F(T, .’L'.,-)dT +/ gG(x)dB‘r> < 2Eh2($ta $?+1)+
0 0

t t t ¢
280 ([ Fe,atar + [ Gote)ab., [ Fer.a )i + [ Gotwran. )
0 0 0 0

< 2ER?(zy, ) + 4T2D2ER? (¢, 27) + 4pD? Eh? (x4, 27)

for every n > 1 and 0 < t < T. Immediately from the equality z; =
£+ f(f F(r,z,;)dt + fot Go(z)dB, as. for every 0 <t < T and continuity
of the set-valued processes ( fot F(7,z.)dT)o<t<r and ( fot Ge(x)dB:)o<t<T it
follows that (z:)o<:<r is continuous.

Similarly as above we can verify that for two continuous set-valued
processes (T:)o<i<r and (yi)o<i<r satisfying conditions (2) we obtain
Eh*(z;,y;) = 0. O

Remark 1. In a similar way we can consider the case with a set G con-
taining an infinity many Lipschitz continuous selectors of G satisfying some
additional conditions implying integrable boundedness of a set-valued integral
fot Gg(x)dB, and boundedness from above of Lipschitz constants of the above
selectors. O
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