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1 Introduction

In what follows, V' = {1,...,n} is the set of indices of given random variables X1, ..., X,,
and B = {By,..., By} is a set of subsets (possibly with repeat) of V. Furthermore, for
S = {i1,...,4e} €V, Xg and H(Xs) denote the random vector (X;,,...,X;,) and its
Shannon entropy H(X;,,...,X;,) (H(Xp) = 0). The power set (the set of all subsets)
and the set of all £-subsets of V are written as 2V and (%), respectively. For simplicity,
we state results only for discrete random variables with finite alphabets for which the
entropy functions are always well-defined.

The following entropy inequality, which is called Shearer’s inequality, is given in [1] as
a key lemma used in certain combinatorial argument.

Theorem A (Shearer’s inequality [1]). If every element of V appears in at least X mem-
bers of B, i.e., |[{j | i € B;}| > X for each i € V, then

AH(Xy) < ) H(X5).
BeB

Theorem A yields as a special case the subadditivity of joint entropy H(Xy) <
Y icv H(X;), which as well as other basic properties of entropy has played important
roles in deriving a number of combinatorial results (see for example [2]-[6]). A simple and
intuitively clear proof of Theorem A is given in [7] by proposing the “dropping method”
explained in the following paragraph. ’
Joint entropy has the strong subadditivity

H(Xsnr) + H(Xsur) < H(Xs) + H(Xr) (1)

for S,T - V since H(XSUT) — H(XT) = H(XS——SOT I XT) < H(XS__SnT I XSnT) =
H(Xs) — H(Xsnr). In (1), SNT and SUT result from arranging S and T in upper and
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lower rows and then “dropping from S to T” all the elements i € S and ¢ ¢ T as the
following example:

S={12 4} SNT={ 2 }
} I — { 3
T={ 2,3 } SUT={1,23 4}

Consider the following simple algorithm D for £,...,6, C V.

1.7 + m.

2. Compute £, N B, and B, U B,_; by the dropping from £, to 8,_1, and let these be
new [, and B,_;, respectively.

3.7 «+ r—1ifr>2, and go to 2. Stop if r = 2.

Run D with the initialization 8; + B; for 1 < j < m. In step 2, first 8, and B,,—1 change
from B,, and B,,_; to By N By-1 and B,, U B,,_; when r = m, and next §,,—; and
Bm—2 change from B,, U B,,_; and B,_3 t0 (Bm U Byr—1) N By—9 and By, U By 1 U B3
when r = m — 1. Thus B, and B,_; change from B,, U B,,_; U---U B, and B,_; to
(BmUBp_1U---UB,)NB,_; and Bp,UB,,_1U---UB,UB,_; foreachr =m,m—1,...,2.
Hence by (m — 1) times applications of the strong subadditivity, we have

H(X

Bgl)) +H(XB§1)) +“'+H(XB,(,{)) < H(Xp,) + H(Xg,) + -+ H(XB,,),

where B") = (Bn UBpn_1U---UB;)NBj_, for 2< j < m and B = B, UBp_1 U
.-+ U By U B; because D finishes with 8; = BJ(-l). For each 7 € V, let \; be the number of
members of B containing %, that is,

Ai={j|i€ B},

then i € BP and there are ()\; — 1) sets containing ¢ among BY, ... B N > 1.
Let Biz), e ,B,(,f) be the result of running D again with the initialization 8; « BJ(-I) for
1< j < m, then

H(XB?)) + H(XBéz)) +- 4 H(XB,(,",')) < H(XBgl)) + H(XBgl)) +--+ H(XB,(,P)’
i€ B§2), 1 € Bf) and there are (\; — 2) sets containing ¢ among Béz), e ,B,(f) if A, =22

for each i € V. Therefore at most (m — 1) times applications of D to the list obtained
thus far yield g; = A; for 1 < j < m, and we have

S H(Xa) < 3 H(Xz,), @)
=1 j=1
where Ay, ..., A, CV are defined by i € Ay,...,i € Ay,, 1 ¢ Ar41,---,1 & Am, L€,
Ai={ieV|j< hforI<j<m.

The assumption of Theorem A is equivalent to A < A; for all ¢ € V, hence 4; = -+ =
A, =V holds and we obtain Theorem A by (2).
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Han’s inequality [8] is a classic result in information theory. It essentially states that

h(") (i) E H(j(s) for1 <4< mn, (3)
£ se(?)

which means the average entropy per symbol of randomly drawn ¢-subset of { X3, ..., X},
decrease as the size of subset increases.

Theorem B (Han’s inequality [8]). Let b be defined as (3). Then h{™ < h{™, holds
for2 << n.

This inequality implies the subadditivity of joint entropy since nh® = H (Xv) and
nh§"’ =Y ;ev H(X;). Han’s inequality was first shown in [8] and another proof was given
in [7] by using Theorem A (see also [9, 10]). This inequality has found applications in
multi-user information theoretic problems; e.g. [11]-[13]. Furthermore, a generalization
of Theorem B to allow common components among the random variables is given in [14].

In this paper, we give a generalization of Shearer’s inequality in case that every ¢t-subset
of V is contained in at least A members of B. We also give a refinement of Han’s inequality
on monotonicity of the average entropy by applying the new inequality. We hope that
our inequalities may find their applications in the future, just as Han’s inequality finds
applications in [11]-[13] some 20 or 30 years after its discovery.

2 A Generalization of Shearer’s Inequality

In this section, for each S C V, let Ag be the number of members of B containing S, i.e.,

and (g the set in the right-hand side.
The following result is a generalization of Shearer’s inequality. In fact, Theorem 1
coincides with Theorem A in case t = 1.

Theorem 1. Let Xi,...,X, be discrete random. variables with finite alphabets. If every
t-subset of V.= {1,...,n} is contained in at least A\ members of B = {B,..., B,} C 2",
i.e., A\p = |{Jj |TCB}| A for each T € (V) then

A(tfl)H(Xv)+{ ——t+1-| Z H(Xs) < ( )ZHXB)

t 1) BeB

where k is an upper bound for the sizes of members of B, i.e., |B;j| < k for1 < j< m.

We prepare the following lemma to prove Theorem 1.

Lemma 2. Let |B;| <k for 1< j<m. If \r 2 X for eachTE() then
Aln—t+1)
> |2 2T 7
’\S/[ k—t+1 ]

holds for each S € (,V)).
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Proof. Let I, be the indicator function of B;. Since
1Bi\ S| =|Bj| -S| <k —-t+1
when j € (g, we have

> S 156) =D 1B\ S| < As(k -t +1).

i€s ieV\S i€Sls
On the other hand,
{7 € Qs | i € Bj}| = Asugyy (4)
for each S C V and i € V|, hence

3 3 15,60 = ) Asu 2 An—t+1).

iEV\S jeQs i€V\S

because |S U {i}| <t and thus Asyqy 2 A O

Proof of Theorem 1. For each S € (tfl), by applying the dropping method to {B; | j €
Qs} ={Bj,-.-, B,-AS} as mentioned in the previous section, we have

As

Z H(Xa4,) < Z H(Xs,,)

=1
by strong subadditivity where
Ajl={i€V|E</\Su{i}}f0r1<e</\s

because it follows from (4) that each i € V belongs to Asy(;y members of {B;,, ..., Bj,_}-
Ifi ¢ S, then [SU{i}| = ¢, so that Agupy > Aandi € A;y,..., A;,. Ifi € S, then Asygy =
As (> A) and i € Aj,..., Aj, . Therefore Ajy =---=A;, =V and A4;,,,,...,4;,, 2 S.
Thus we have

> H(Xs)> ) H(Xa)

j€ESds jEfts
As

=Y H(Xa,)+ Y H(Xa,)
=1

£=A+1

2 A (Xy) + (As — A) H(X5s). (5)

by monotonicity of entropy functions. Summing up both sides of (5) over all § € (t‘_/l),
by Lemma 2 and nonnegativity of entropy functions, we have

3 ZH(XBj)>A(t:Z1)H(XV)+L;\(f—;fH 3 H(Xs). (6)

Se(,Y,) 7€ se(,Y,)



Let M = (Msg;) bea (,", ) X matrix deﬁned by Mg; = H(Xp,)ifj € s and Mg; =0

otherwise for each S € ( ) and 1 € 4 €< m. Then the sum of all row-sums is
DD Msj= D > H(Xp) ()
se(,r,) 7=t Se(,Y,) €%

and the sum of all column-sums is

202, Msy=3 >, H(Xa)

= se() = se(?)
<(,f) X Her) ®
j=1
because j € (g is equivalent to S C B;, and also |B,| < k and nonnegativity of entropy
functions. The desired inequality follows from (6), (7 ) 7) and (8). a

A special case of V and B satisfying the conditions required in Theorem 1 is the case
that they form a ¢-(n, k, A) design. The pair (V, B) is said to be a t-(n, k, A) design if

Ar=[{j|TCB;j}|=A and |Bj|=k
foreach T ¢ ( t) and 1 < § < m. Moreover

Aln —t+1)

rs = I(j18 € By}l = 2=

holds for each S € (t‘_/l) by the property of ¢t-design. Combinatorial design theory is a
fundamental branch of combinatorics connecting coding theory and other applications in
computer science (see for example [15], [16]).

Theorem 3. If (V,B) is a t-(n, k, \) design, then

,\(tfl)H(xv)+k( k) > H(Xs) < ( 1>ZH(XB).

SE (t 1) BeB

3 A Refinement of Han’s Inequality

As an application of the results in the previous section, we obtain a refinement of Han’s
inequality on monotonicity of the average entropy. The following theorem states that
differences between consecutive terms of the sequence h1 ), ,hn") are monotone in a
sense, and thus they turn out to be nonnegative. Therefore this result is seen to be a
refinement of Han’s inequality.

107



108

Theorem 4. Let h{™ be defined as
| H
h{ = 0] Z )

for1 < €< n. Then
0< (£-2)(€-1) (b7 - b)) < (€~ 1e (- A

holds for 3 < £ <
Proof. Let 2 < £ < n. For each £-subset U of V,
¢
(¢Lp)n00+ 3 A <@ Y HO ©)
se(,%,) Te(,Y))

holds by Theorem 3 because (U, (,%,)) is a (¢—1)-(¢, £—1,1) design, that is, every (£—1)-
subset of U is contained in exactly one member of (,”,). Summing up both sides of (9)
over all U € (%), we have

(elo) T 0w+ 3 3 <o) 3 3 K
ve(?) ve(7) 5e(c%s) ve(y) Te(.%)
The right hand side is equal to (£ —1)(n —£+1) ZTG( ) H(Xr) by the double-counting

on the (}) x (,”,) matrix whose rows are labeled by U’s € (%), columns are labeled by T”s

€(, Y.), and (U, T)-element is given by H(X7) if T C U and by 0 otherwise, because we
have that ZUG(V) ZTE( v) H(Xr) = the sum of all row-sums = the sum of all column-

sums = (n— £+ 1)) (v () H(Xr). Similarly, the second term in the left hand side is
equal to ("Ft%) Y4 W) H (Xs). Thus, we have

(gfz> > H(Xy)+ (n _§+ 2) Y H(Xs)<(E-D(n-£+1) S H(Xr).
ve(y) se(,Y,) Te(,%,)

(10)

Dividing both sides of (10) by (%) (}) finishes the proof. O

Moreover we obtain a generalization of Theorem 4 for differences between two terms
which are not necessarily consecutive which holds if one pair (i, j) exists on the left side
of another pair (k,¢) in some sense.

Theorem 5. Let h{™ be defined as

a1 H
hg)__n_ > (3)
’ se(})
for1 << n. Then
U () (m) kKE () m
Og]—z(h" h; )ge—k(hk h‘) (11)

holds for 1 < i,5,k,f<n suchthati<j, k<{ i<k, j<U/t.
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Proof. By Theorem 4,
- (0K s ()

1 ), (n)
< (('L+1) )z(z+1 h; hz+1)
_ J -

LG+ 1) (h(") hﬁ’l)

and ..
of . n n ? n n
0<i(i+1) (K" - h) <j_~jl_(hg )~ By (12)

holds, and thus we have the first inequality in (11). In the same way as (12), we obtain

(W - 1) < G- 05 (12 - ),

(n) k(o )
e (8- 12) < 2 (4042
hence (11) holds in case j < k by Theorem 4. In case j > k,

kﬁf Z(h(m hﬁ.")) sz (h(") B 4 h,g">-h;.n>)

kj ik () _ ()
< (
(j -k + k — z) (h —h )
_kG-9) ki (o
T ik =) ]—k(hk b )

holds by (11) for the previous case, then we have

0 ) <2 (=)

We also obtain the following in the same way;

;-'Ej—k (r” - ) < K (n - n{).

Combining them finishes the proof. O
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