BB FERTIFFC T Tk
51911 % 2014 4F 1-9
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1 Introduction

This note is mainly a summary of our studies for the “state numbers” of a virtual knot
obtained in [5] and [6].

In knot theory, there are many “minimal-type” numerical invariants of a knot K. For
example, the crossing number c(K) for K is the minimal number of crossings in any
diagrams of K, and the unknotting number u(K) is the minimal number of crossing
changes in any diagrams of K needed to create a diagram of the unknot. Those invariants
measure a certain complexity of the knot.

In [5], we define the n-state number s,(K) of a virtual knot K. A state S of a virtual
knot diagram D is a union of circles obtained from D by splicing all real crossings in D.
Let s,(D) be the number of states of D consisting of n circles. The n-state number of a
virtual knot K is defined to be the minimal number of s, (D) for all possible diagram of X .
In this note, we show some properties of the n-state numbers of a virtual knot. First, we
give upper and lower bounds for the n-state numbers of a virtual knot K forn = 1, 2,31in
terms of the real crossing number of K. Second, we consider a set of virtual knots whose
n-state number is equal to 4 for each non-negative integer i and study the finiteness of
the set. Finally, we give lower bounds for the 1-state number s1(K) of a virtual knot K
in terms of a special value of the Jones polynomial and the Miyazawa polynomial of K.

2 The state numbers fo a virtual knot

A wirtual knot diagram D is an immersed circle in the plane R? whose double points
are ordinary crossings, which are called real crossings and virtual crossings

A wirtual knot K is an equivalence class of virtual knot diagrams under generalized Rei-
demeister moves as in Figure 1 (cf. [3]).

A state S of a virtual knot diagram D is a union of circles possibly with virtual crossings
obtained from D by splicing all real crossings as in Figure 2. A state S is said to be an
n-state if S consists of n circles. We denote by s, (D) the number of n-states of D.
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Example 2.1. Let D be the virtual knot diagram as in Figure 3 (a), which presents the
virtual knot labeled by 2.1 in Green’s table [1]. By splicing the real crossings in D, we
obtained four states as in Figure 3 (b). Three of them are 1-states and the other is a
2-state. Hence we have s1(D) = 3, so(D) =1, 5;(D) =0 (¢ > 3).

Let K be a virtual knot. The n-state number of K, denoted by s, (K), is defined to be
the minimal number of s,(D) for all possible virtual knot diagrams D of K (cf. [5]). For
example, we can easily see that s;(K) =1 and s;(K) =0 (¢ > 2) if K is trivial.

Let D be an oriented virtual knot diagram. We regard D as the image of an immersion
of a circle into R? with crossing information at each double point. The Gauss diagram of
D is an oriented circle regarded as the preimage of the immersed circle with chords, each
of which connects the preimages of each double point corresponding to a real crossing.
A chord is oriented from the preimage of the over-crossing-point to that of the under-
crossing-point in the circle, and labeled by the sign of the corresponding real crossing.
Figure 4 illustrates an example of a virtual knot diagram and its Gauss diagram.

Two chords of a Gauss diagram G is linked if their end-points appear along the circle
of G alternately. A chord is free if it is not linked with any other chords.

Lemma 2.2 ([5]). Let D and D' be virtual knot diagrams with the same Gauss diagram
by ignoring the orientation of the circle and the orientation and sign of each chord. Then
$n(D) = 8,(D") holds for any natural number n.

By Lemma 2.2, s,(D) is determined by its unoriented and unsigned Gauss diagram G.
In this sense, we denote s,(D) by sn(G).
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3 Bounds for 1-,2-, and 3-state numbers

In this section, we give upper bounds and lower bounds for the n-state number of a
virtual knot K for n = 1,2,3. Let ¢(K) be the minimal real crossing number for K, that
is, the minimal number of real crossings for all possible virtual knot diagrams of K.

9. 9cK) (_1)C(K)
Theorem 3.1 ([5]). Any virtual knot K satisfies (1) 1 < s;(K) < 3 )

1
(2) 0 < 55(K) < 52409, and () 0 < s5(K) < g L Qel),

The lower bounds of (2) and (3) in Theorem 3.1 are obvious. For any virtual knot
diagram D, we see that there is at least one sequence of virtual knot diagrams D =
Dy, Dy, Dy, ..., Dy, such that D; is obtained from D;_; by splicing a real crossing in D;_;
(¢ = 1,2,...,m) and D,, has no real crossing. This gives the lower bound of (1) in
Theorem 3.1. The upper bounds in Theorem 3.1 are given by the following lemma.

Lemma 3.2 ([5]). Let G be a Gauss diagram of one circle with r chords. Then we have

(1) s1(G) < gL—;(_i)—T, (2) 55(G) < —;— .27, and (3) s3(G) < g o,
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We remark that G produces 2" states. The following examples of Gauss diagrams
realizes upper bounds in Lemma 3.2.

Example 3.3. Let F; be a Gauss diagram as in Figure 5. Then we have s(F,) =
2.2 4+ (-1)
—

1 2 3

Figure 5:
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For r < 3, there exists a virtual knot K presented by F, with s,(K) = M

It is an open question whether there exists a virtual knot K presented by F, realizing

2.27‘ — T
si(K) = # for r > 4.

Example 3.4. Let F} (r > 3) be a Gauss diagram as in Figure 6 (a) and F,_; +1 a
Gauss diagram as in Figure 6 (b). A Gauss diagram F,_; + 1 is obtained from F,._; by

adding a free chord in any place. Then we have so(F)) = so(Fr_1 +1) = % i

(e ()

(a) F} (b) Fre1 +1

Figure 6:

There exists a virtual knot presented by Fj with so(K) = 4. It is an open question
whether there exists a virtual knot K presented by F) realizing so(K) = 3" 2" for r > 4.
Example 3.5. A Gauss diagram F,_, + 2 as in Figure 7 (a) is obtained from F/_, by

adding two free chords and a Gauss diagram F;,_3 + 3 as in Figure 7 (b) is obtained from
F,._3 by adding three free chords in any place. Then we have s3(F/_,+2) = s3(F,_3+3) =

3
S
8

4 The number of virtual knots with a given state number

Let S, (i) be the set of virtual knots with s,(K) = ¢ for a non-negative integer 7. In
this section, we consider the finiteness of S, (7).
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Proposition 4.1 ([5]). (1) Both of Si(1) and S»(0) consist of the trivial knot. (2) S;(2k)
is the empty set for k > 0.

It is showed in [5] that ¢(K) < sp(K) for any virtual knot K with ¢(K) > 3 and
so(K) <1 for any virtual knot ¢(K) <2 .

Theorem 4.2. S,(t) is finite for any non-negative integer i.

On the other hand, the cases of n > 3 are different from that of n = 2. It is showed
that S,(0) is a subset of S,,1(0) ([5]) and S5(0) contains infinitely many virtual knots

([6])-
Theorem 4.3. S,(0) is infinite for n > 3.

In addition, it is showed in [6] that any non-trivial virtual knot contained in S3(0) is
non-classical, that is, it has no diagram without virtual crossings.

In [5], for any Gauss diagram G of a virtual knot digram D it is showed that s;(G) >
r(G) — f(G), where r(G) is the number of chords and f(G) is the number of free chords
in G. For any Gauss diagram G whose s1(G) is an odd prime, we see that there exists at
least one free chord in G corresponding to a real crossing in D which can be eliminated
by a Reidemeister move I.

Theorem 4.4. (1) S;(i) is finite for any odd prime i. In particular, S1(3) consists of
four virtual knots 2.1,3.5,3.6, and 3.7 in Green’s table.
(2) 81(9) is infinite.

The outline of a proof of Theorem 4.4 (2) is the following. Let D, be a virtual knot
diagram as in Figure 8 (a) and K, the virtual knot presented by D,,. The Gauss diagram
Gy of D,, is illustrated in Figure 8 (b). We see that s1(D,,) = 9 for any non-negative
integer m. Thus we have s;(K,,) < 9. We can show that K, is not equivalent to Ky if
m # m’ by the Miyazawa polynomial. Since S;(z) is finite for i < 7 by Proposition 4.1
(1) and Theorem 4.4 (1), {Kn}m>o contains infinitely many virtual knots whose 1-state
number is equal to 9.

5 Lower bounds for the 1-state number by polynomial invariants

The Jones polynomial of an ordinary knot is naturally generalized to that of a virtual
knot through Kauffman’s f-polynomial. Let K be an oriented virtual knot and D an
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oriented virtual knot diagram of K with the writhe w(D). Let S be a state of the
unoriented D. Let a(S) (resp. b(S)) be the number of A-splices (resp. B-splices) to
obtain S from D as in Figure 9. We denote by |S| the number of circles in S. Then
Kauffman’s f-polynomial is defined as

fK(A) — (_A—S)w(D) ZAa(S)—b(S)(_A2 _ A—Z)]S]—l c Z[A,A_l].
S

By substituting A = ¢~ 4 we obtain the Jones polynomial Vi (t) of K.
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Figure 9:

Proposition 5.1 ([5]). For any virtual knot K, we have s,(K) > |fx(é)| = |[Vk(-1)|,
where £ = ei’.

We review the definition of the Miyazawa polynomial of an oriented virtual knot K
([4]) as the state-sum of poled states ([2]).

Let K be an oriented virtual knot and D an oriented virtual knot diagram of K with
the writhe w(D). There are two ways of splicing at a real crossing ¢ in D with respect
to the orientation of arcs. One of which is coherent, otherwise is non-coherent. For a
non-coherent splicing, we set up a pair of poles on spliced arcs as in Figure 10. If ¢ is
positive, then A-splicing at ¢ is coherent and B-splicing is non-coherent. By splicing all
real crossing of D, we obtained a state with poles. A state with poles is called a poled
state.

Let S be a poled state of D and a(S) (resp. b(S)) the number of A-splices (resp.
B-splices) to obtain S from D. Let C(S) be the set of circles in a poled state S.

We note that the number of poles on C' € C(S) is always even. We reduce the number of
poles on C' by the following moves: A pole can slide along C and pass a virtual crossing. If
there exist two successive poles on the same side of C, then they are canceled. See Figures
11 (a) and (b). Let C be the circle with poles obtained from C after reducing poles on C
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as possible. Then the poles on C stand on the left and right side of C' alternately as in
Figure 11 (c).

(a) (b) (¢)

Figure 11:

Let A(C) be the half of the number of poles on C' and ¢;(S) the number of circles in S
with A(C) = 4. Then the Miyazawa polynomial Rk (A, %) € Z[A, A~ 1, 2,,...] of K is
defined by

Ri(A, 1) = (-AB)—w(D) ZAa(S)—b(S)(_AQ A~ )co(S) c1(S) ;2(5) .

Example 5.2. Let D be the virtual knot diagram as indicated in Figure 12, which
presents the virtual knot labeled by 4.81 in Green’s table. Since the number of real
crossings of D is equal to four, D has 16 poled states. Each poled state S is assigned by
AUE)=HE) (— A2 f=2)c0(S) p ) 22%) ... according to the information of the number of A-
or B-splices, the number of poles on each circles in S as in Figure 12, where d = —A%2— A2,
Then the Miyazawa polynomial of K is given by

RK(A, .’f) = (—-—A2 - A—Q)(AS — At + 1) + (AG — A? + A—2>$1 + A101'3 + Asmlmg.
We describe the Miyazawa polynomial Rk (A, Z) of K as

Ry (A, Z) +ZF1 )t ey ez,

where [ is a finite sequence of integers such that I = (c1,¢a,...,c) with ¢; > 0 (i =
1,2,...,k—1) and ¢; > 0. It is known that Fp(A) is divisible by —A? — A~2 ([4]). Let
Fo(A) = Fp(A)/(-A? — A72).
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Theorem 5.3 ([5]). For any virtual knot K, we have s;(K) > \ﬁo(ﬁ)l + Z |Fr (&) >
k=1

|fa(€)], where I, = (0,0,...,0,1) and £ = e%*.
N e’
k-1

Example 5.4. Let K be the virtual knot 4.81 in Example 5.2. We see that there are
seven 1l-states obtained from D as in Figure 12. Hence we have s;(K) < 7. By direct
calculation, we have fx(A) = A® — A* — A2+ 1+ A~2, and hence |fx(§)| = V13. By
Proposition 5.1, v13 < 4 < s;(K) < 7.

Since Rk (A,7) = (—A? — A72)(A8 — A* 4+ 1) + (A% — A% + A7)z + AV¥z3 + A8z,
we have Fy(A) = A% — A+ 1, Fjyy = A® — A2+ A2, and Fiop,1)(A) = A'°. Then we see



that
B+ X116 = |Bo©)] + 1Fy (©)] + | Foany (€)] = 7

Therefore we have s;(K) = 7.
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