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1 Introduction

This note is mainly a summary of our studies for the “state numbers”’ of a virtual knot
obtained in [5] and [6].

In knot theory, there are many “minimal-type” numerical invariants of a knot $K$ . For
example, the crossing number $c(K)$ for $K$ is the minimal number of crossings in any
diagrams of $K$ , and the unknotting number $u(K)$ is the minimal number of crossing
changes in any diagrams of $K$ needed to create a diagram of the unknot. Those invariants
measure a certain complexity of the knot.

In [5], we define the $n$ -state number $s_{n}(K)$ of a virtual knot K. A state $S$ of a virtual
knot diagram $D$ is a union of circles obtained from $D$ by splicing all real crossings in $D.$

Let $s_{n}(D)$ be the number of states of $D$ consisting of $n$ circles. The $n$-state number of a
virtual knot $K$ is defined to be the minimal number of $s_{n}(D)$ for all possible diagram of $K.$

In this note, we show some properties of the $n$-state numbers of a virtual knot. First, we
give upper and lower bounds for the $n$-state numbers of a virtual knot $K$ for $n=1$ , 2, 3 in
terms of the real crossing number of $K$ . Second, we consider a set of virtual knots whose
$n$-state number is equal to $i$ for each non-negative integer $i$ and study the finiteness of
the set. Finally, we give lower bounds for the 1-state number $s_{1}(K)$ of a virtual knot $K$

in terms of a special value of the Jones polynomial and the Miyazawa polynomial of $K.$

2 The state numbers fo a virtual knot

A virtual knot diagram $D$ is an immersed circle in the plane $\mathbb{R}^{2}$ whose double points

are ordinary crossings, which are called real crossings $\cross and$ virtual crossings $\mathbb{X}.$

A virtual knot $K$ is an equivalence class of virtual knot diagrams under generalized Rei-
demeister moves as in Figure 1 (cf. [3]).

A state $S$ of a virtual knot diagram $D$ is a union of circles possibly with virtual crossings
obtained from $D$ by splicing all real crossings as in Figure 2. A state $S$ is said to be an
$n$ -state if $S$ consists of $n$ circles. We denote by $s_{n}(D)$ the number of $n$-states of $D.$
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Example 2.1. Let $D$ be the virtual knot diagram as in Figure 3 (a), which presents the
virtual knot labeled by 2.1 in Green’s table [1]. By splicing the real crossings in $D$ , we
obtained four states as in Figure 3 (b). Three of them are 1-states and the other is a
2-state. Hence we have $s_{1}(D)=3,$ $s_{2}(D)=1,$ $s_{i}(D)=0(i\geq 3)$ .

Let $K$ be a virtual knot. The $n$ -state number of $K$ , denoted by $s_{n}(K)$ , is defined to be
the minimal number of $s_{n}(D)$ for all possible virtual knot diagrams $D$ of $K$ (cf. [5]). For
example, we can easily see that $s_{1}(K)=1$ and $s_{i}(K)=0(i\geq 2)$ if $K$ is trivial.

Let $D$ be an oriented virtual knot diagram. We regard $D$ as the image of an immersion
of a circle into $\mathbb{R}^{2}$ with crossing information at each double point. The Gauss diagram of
$D$ is an oriented circle regarded as the preimage of the immersed circle with chords, each
of which connects the preimages of each double point corresponding to a real crossing.
A chord is oriented from the preimage of the over-crossing-point to that of the under-
crossing-point in the circle, and labeled by the sign of the corresponding real crossing.
Figure 4 illustrates an example of a virtual knot diagram and its Gauss diagram.

Two chords of a Gauss diagram $G$ is linked if their end-points appear along the circle
of $G$ alternately. A chord is free if it is not linked with any other chords.

Lemma 2.2 ([5]). Let $D$ and $D’$ be virtual knot diagrams with the same Gauss diagram
by ignoring the orientation of the circle and the orientation and sign of each chord. Then
$s_{n}(D)=s_{n}(D’)$ holds for any natural number $n.$

By Lemma 2.2, $s_{n}(D)$ is determined by its unoriented and unsigned Gauss diagram $G.$

In this sense, we denote $s_{n}(D)$ by $s_{n}(G)$ .
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3 Bounds for 1-,2-, and 3-state numbers

In this section, we give upper bounds and lower bounds for the $n$-state number of a
virtual knot $K$ for $n=1$ , 2, 3. Let $c(K)$ be the minimal real crossing number for $K$ , that
is, the minimal number of real crossings for all possible virtual knot diagrams of $K.$

Theorem 3.1 ([5]). Any virtual knot $K$ satisfies (1) $1 \leq s_{1}(K)\leq\frac{2\cdot 2^{c(K)}+(-1)^{c(K)}}{3},$

(2) $0 \leq s_{2}(K)\leq\frac{1}{2}\cdot 2^{c(K)}$ , and (3) $0 \leq s_{3}(K)\leq\frac{3}{8}\cdot 2^{c(K)}.$

The lower bounds of (2) and (3) in Theorem 3.1 are obvious. For any virtual knot
diagram $D$ , we see that there is at least one sequence of virtual knot diagrams $D=$
$D_{0},$ $D_{1},$ $D_{2}$ , . . . , $D_{m}$ such that $D_{i}$ is obtained from $D_{i-1}$ by splicing a real crossing in $D_{i-1}$

$(i=1,2, \ldots, m)$ and $D_{m}$ has no real crossing. This gives the lower bound of (1) in
Theorem 3.1. The upper bounds in Theorem 3.1 are given by the following lemma.

Lemma 3.2 ([5]). Let $G$ be a Gauss diagram of one circle with $r$ chords. Then we have

(1) $s_{1}(G) \leq\frac{2\cdot 2^{r}+(-1)^{r}}{3}$ , (2) $s_{2}(G) \leq\frac{1}{2}\cdot 2^{r}$ , and (3) $s_{3}(G) \leq\frac{3}{8}\cdot 2^{r}.$
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We remark that $G$ produces $2^{r}$ states. The following examples of Gauss diagrams
realizes upper bounds in Lemma 3.2.

Example 3.3. Let $F_{r}$ be a Gauss diagram as in Figure 5. Then we have $s_{1}(F_{r})=$

$\frac{2\cdot 2^{r}+(-1)^{r}}{3}.$

$1 2 3 r$

Figure 5:

For $r\leq 3$ , there exists a virtual knot $K$ presented by $F_{r}$ with $s_{1}(K)=\frac{2\cdot 2^{r}+(-1)^{r}}{3}.$

It is an open question whether there exists a virtual knot $K$ presented by $F_{r}$ realizing

$s_{1}(K)=\frac{2\cdot 2^{r}+(-1)^{r}}{3}$ for $r\geq 4.$

Example 3.4. Let $F_{r}’(r\geq 3)$ be a Gauss diagram as in Figure 6 (a) and $F_{r-1}+1a$

Gauss diagram as in Figure 6 (b). A Gauss diagram $F_{r-1}+1$ is obtained from $F_{r-1}$ by

adding a free chord in any place. Then we have $s_{2}(F_{r}’)=s_{2}(F_{r-1}+1)= \frac{1}{2}\cdot 2^{r}.$

$r$ $r$

$2 r- 1 r-1$1
$\bullet\bullet\bullet$

(a) $F_{r}’$ (b) $F_{r-1}+1$

Figure 6:

There exists a virtual knot presented by $F_{3}’$ with $s_{2}(K)=4$ . It is an open question

whether there exists a virtual knot $K$ presented by $F_{r}’$ realizing $s_{2}(K)=\frac{1}{2}\cdot 2^{r}$ for $r\geq 4.$

Example 3.5. A Gauss diagram $F_{r-2}’+2$ as in Figure 7 (a) is obtained from $F_{r-2}’$ by
adding two free chords and a Gauss diagram $F_{r-3}+3$ as in Figure 7 (b) is obtained from
$F_{r-3}$ by adding three free chords in any place. Then we have $s_{3}(F_{r-2}’+2)=s_{3}(F_{r-3}+3)=$

$\frac{3}{8}\cdot 2^{r}.$

4 The number of virtual knots with a given state number

Let $S_{n}(i)$ be the set of virtual knots with $s_{n}(K)=i$ for a non-negative integer $i$ . In
this section, we consider the finiteness of $\mathcal{S}_{n}(i)$ .
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Proposition 4.1 ([5]). (1) Both of $S_{1}(1)$ and $S_{2}(O)$ consist of the trivial knot. (2) $S_{1}(2k)$

is the empty set for $k\geq 0.$

It is showed in [5] that $c(K)\leq s_{2}(K)$ for any virtual knot $K$ with $c(K)\geq 3$ and
$s_{2}(K)\leq 1$ for any virtual knot $c(K)\leq 2.$

Theorem 4.2. $S_{2}(i)$ is finite for any non-negative integer $i.$

On the other hand, the cases of $n\geq 3$ are different from that of $n=2$ . It is showed
that $S_{n}(O)$ is a subset of $\mathcal{S}_{n+1}(O)$ ([5]) and $S_{3}(O)$ contains infinitely many virtual knots
([6]).

Theorem 4.3. $S_{n}(O)$ is infinite for $n\geq 3.$

In addition, it is showed in [6] that any non-trivial virtual knot contained in $S_{3}(O)$ is

non-classical that is, it has no diagram without virtual crossings.
In [5], for any Gauss diagram $G$ of a virtual knot digram $D$ it is showed that $s_{1}(G)\geq$

$r(G)-f(G)$ , where $r(G)$ is the number of chords and $f(G)$ is the number of free chords
in $G$ . For any Gauss diagram $G$ whose $s_{1}(G)$ is an odd prime, we see that there exists at
least one free chord in $G$ corresponding to a real crossing in $D$ which can be eliminated
by a Reidemeister move I.

Theorem 4.4. (1) $S_{1}(i)$ is finite for any odd prime $i$ . In particular, $S_{1}(3)$ consists of
four virtual knots 2.1, 3.5, 3.6, and 3.7 in Green’s table.
(2) $S_{1}(9)$ is infinite.

The outline of a proof of Theorem 4.4 (2) is the following. Let $D_{m}$ be a virtual knot
diagram as in Figure 8 (a) and $K_{m}$ the virtual knot presented by $D_{m}$ . The Gauss diagram
$G_{m}$ of $D_{m}$ is illustrated in Figure 8 (b). We see that $s_{1}(D_{m})=9$ for any non-negative

integer $m$ . Thus we have $s_{1}(K_{m})\leq 9$ . We can show that $K_{m}$ is not equivalent to $K_{m’}$ if
$m\neq m’$ by the Miyazawa polynomial. Since $S_{1}(i)$ is finite for $i\leq 7$ by Proposition 4.1
(1) and Theorem 4.4 (1), $\{K_{m}\}_{m\geq 0}$ contains infinitely many virtual knots whose 1-state
number is equal to 9.

5 Lower bounds for the 1-state number by polynomial invariants

The Jones polynomial of an ordinary knot is naturally generalized to that of a virtual

knot through Kauffman’s $f$-polynomial. Let $K$ be an oriented virtual knot and $D$ an

5



(a) $D_{m}$ (b) $G_{m}$

Figure 8:

oriented virtual knot diagram of $K$ with the writhe $w(D)$ . Let $S$ be a state of the
unoriented $D$ . Let $a(S)$ (resp. $b(S)$ ) be the number of $A$-splices (resp. $B$-splices) to
obtain $S$ from $D$ as in Figure 9. We denote by $|S|$ the number of circles in $S$ . Then
Kauffman’s $f$-polynomial is defined as

$f_{K}(A)=(-A^{-3})^{w(D)} \sum_{s}A^{a(S)-b(S)}(-A^{2}-A^{-2})^{|S|-1}\in \mathbb{Z}[A, A^{-1}].$

By substituting $A=t^{-\frac{1}{4}}$ , we obtain the Jones polynomial $V_{K}(t)$ of $K.$

$)$ $(A$-splice $/\backslash \backslash B$-splice

$\wedge$

Figure 9:

Proposition 5.1 ([5]). For any virtual knot $K$ , we have $s_{1}(K)\geq|f_{K}(\xi)|=|V_{K}(-1)|,$

where $\xi=e^{\frac{\pi}{4}i}.$

We review the definition of the Miyazawa polynomial of an oriented virtual knot $K$

([4]) as the state-sum of poled states ([2]).
Let $K$ be an oriented virtual knot and $D$ an oriented virtual knot diagram of $K$ with

the writhe $w(D)$ . There are two ways of splicing at a real crossing $c$ in $D$ with respect
to the orientation of arcs. One of which is coherent, otherwise is non-coherent. For a
non-coherent splicing, we set up a pair of poles on spliced arcs as in Figure 10. If $c$ is
positive, then $A$-splicing at $c$ is coherent and $B$-splicing is non-coherent. By splicing all
real crossing of $D$ , we obtained a state with poles. A state with poles is called a poled
state.

Let $S$ be a poled state of $D$ and $a(S)$ (resp. $b(S)$ ) the number of $A$-splices (resp.
$B$-splices) to obtain $S$ from $D$ . Let $C(S)$ be the set of circles in a poled state $S.$

We note that the number of poles on $C\in C(S)$ is always even. We reduce the number of
poles on $C$ by the following moves: A pole can slide along $C$ and pass a virtual crossing. If
there exist two successive poles on the same side of $C$ , then they are canceled. See Figures
11 (a) and (b). Let $\tilde{C}$ be the circle with poles obtained from $C$ after reducing poles on $C$

6



Figure 10:

as possible. Then the poles on $\tilde{C}$ stand on the left and right side of $\tilde{C}$ alternately as in
Figure 11 (c).

$marrow$

(a) (b) (c)

Figure 11:

Let $\lambda(C)$ be the half of the number of poles on $\tilde{C}$ and $c_{i}(S)$ the number of circles in $S$

with $\lambda(C)=i$ . Then the Miyazawa polynomial $R_{K}(A,\vec{x})\in \mathbb{Z}[A, A^{-1}, x_{1}, x_{2}, . . .]$ of $K$ is
defined by

$R_{K}(A, \vec{x})=(-A^{3})^{-w(D)}\sum_{s}A^{a(S)-b(S)}(-A^{2}-A^{-2})^{c_{0}(S)}x_{1}^{c_{1}(S)}x_{2}^{c_{2}(S)}\cdots$

Example 5.2. Let $D$ be the virtual knot diagram as indicated in Figure 12, which
presents the virtual knot labeled by 4.81 in Green’s table. Since the number of real
crossings of $D$ is equal to four, $D$ has 16 poled states. Each poled state $S$ is assigned by
$A^{a(S)-b(S)}(-A^{2}-A^{-2})^{c_{0}(S)}x_{1}^{c_{1}(S)}x_{2}^{c_{2}(S)}\cdots$ according to the information of the number of A-
or $B$-splices, the number of poles on each circles in $S$ as in Figure 12, where $d=-A^{2}-A^{-2}.$

Then the Miyazawa polynomial of $K$ is given by

$R_{K}(A,\vec{x})=(-A^{2}-A^{-2})(A^{8}-A^{4}+1)+(A^{6}-A^{2}+A^{-2})x_{1}+A^{10}x_{3}+A^{8}x_{1}x_{2}.$

We describe the Miyazawa polynomial $R_{K}(A,\vec{x})$ of $K$ as

$R_{K}(A, \vec{x})=F_{0}(A)+\sum_{I}F_{I}(A)x_{1}^{c_{1}}x_{2}^{c_{2}}\cdots x_{k}^{c_{k}},$

where $I$ is a finite sequence of integers such that $I=(c_{1}, c_{2}, \ldots, c_{k})$ with $c_{i}\geq 0(i=$

$1$ , 2, . . . , $k-1)$ and $c_{k}>$ O. It is known that $F_{0}(A)$ is divisible by $-A^{2}-A^{-2}$ ([4]). Let
$\tilde{F}_{0}(A)=F_{0}(A)/(-A^{2}-A^{-2})$ .
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Theorem 5.3 ([5]). For any virtual knot $K$ , we have $s_{1}(K)\geq|\tilde{F}_{0}(\xi)|+\sum_{k=1}^{\infty}|F_{I_{k}}(\xi)|\geq$

$|f_{A}(\xi)|$ , where
$I_{k}=(_{\frac{0,0_{)\rangle}0}{k-1}}, 1)$

and $\xi=e^{\frac{\pi}{4}i}.$

Example 5.4. Let $K$ be the virtual knot 4.81 in Example 5.2. We see that there are
seven 1-states obtained from $D$ as in Figure 12. Hence we have $s_{1}(K)\leq 7$ . By direct
calculation, we have $f_{K}(A)=A^{8}-A^{4}-A^{2}+1+A^{-2}$ , and hence $|f_{K}(\xi)|=\sqrt{13}$ . By
Proposition 5.1, $\sqrt{13}<4\leq s_{1}(K)\leq 7.$

Since $R_{K}(A,\vec{x})=(-A^{2}-A^{-2})(A^{8}-A^{4}+1)+(A^{6}-A^{2}+A^{-2})x_{1}+A^{10}x_{3}+A^{8}x_{1}x_{2},$

we have $\tilde{F}_{0}(A)=A^{8}-A^{4}+1,$ $F_{(1)}=A^{6}-A^{2}+A^{-2}$ , and $F_{(0,0,1)}(A)=A^{10}$ . Then we see
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that

$| \tilde{F}_{0}(\xi)|+\sum_{k=1}^{\infty}|F_{I_{k}}(\xi)|=|\tilde{F}_{0}(\xi)|+|F_{(1)}(\xi)|+|F_{(0,0,1)}(\xi)|=7.$

Therefore we have $s_{1}(K)=7.$
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