Iwasawa invariants of links

Teruhisa Kadokami	and	Yasushi Mizusawa
East China Normal University		Nagoya Institute of Technology

1 Introduction

This is a survey article of a part of arithmetic topology, which is a theory on analogies between low-dimensional topology and number theory. This theory is based on regarding knots (links) in 3-manifolds as analogues of primes in number fields. In 1960's, Mazur [15] pointed out an analogy between Alexander-Fox theory and Iwasawa theory. From 1998, independently on the works of Kapranov, Reznikov *et al.*, the arithmetic topology has been developed by Morishita and his collaborators (cf. [17] [18] etc.). Morishita considered new analogies between link groups and Galois groups, which induced a new view point on analogies between Alexander-Fox theory and Iwasawa theory. In particular, Morishita [16] introduced an idea of *Iwasawa invariants* to knot theory, and Hillman, Matei and Morishita [6] defined the Iwasawa invariants of links in the 3-sphere S^3 .

In this article, we survey the Iwasawa invariants of links and related analogies. Moreover, we discuss what is an analogue of Greenberg's conjecture, which is a problem (open in general) relating with Iwasawa invariants.

2 Motivations

First, we recall some basic analogies. Let M be an oriented connected closed 3-manifold, which is a finite cover of S^3 branched over some link. The analogue of M is a number field k, which is a finite dimensional algebraic extension of the rational number field \mathbb{Q} ramified over some prime numbers. By regarding a closed path (i.e., a knot) in M as an analogue of a prime ideal of the ring \mathcal{O}_k of algebraic integers in k, the first homology group $H_1(M,\mathbb{Z})$ is considered as a natural analogue of the ideal class group Cl(k) of k. As an analogue of Hurewicz isomorphism $H_1(M,\mathbb{Z}) \simeq \pi_1(M)^{ab}$, we have an isomorphism $Cl(k) \simeq \operatorname{Gal}(k^{ur}/k)^{ab}$ by class field theory, where k^{ur} is the maximal unramified extension of k. It is well known that Cl(k) is a finite abelian group, while $H_1(M,\mathbb{Z})$ is not necessarily finite.

The ideal class group Cl(k) is one of the most interesting objects in number theory, since Cl(k) describes how far from a principal ideal domain \mathcal{O}_k is. In fact, $Cl(k) = \{1\}$ if and only if \mathcal{O}_k is a principal ideal domain. For example, $\mathcal{O}_{\mathbb{Q}(\zeta_4)} = \mathbb{Z}[\sqrt{-1}]$ is a principal ideal domain, and hence $Cl(\mathbb{Q}(\zeta_4)) = \{1\}$, where $\mathbb{Q}(\zeta_n)$ denotes the *n*th cyclotomic fields. The divisibility of the cardinality #Cl(k) by a specific prime number p is also interests in number theory. Before Wiles proved Fermat's last theorem, it has been known that the Fermat equation $x^p + y^p = z^p$ has no nontrivial integer solution if $\#Cl(\mathbb{Q}(\zeta_p)) \not\equiv 0 \pmod{p}$ and p > 2 (cf. e.g. [25]). It is known as a famous example that $\#Cl(\mathbb{Q}(\zeta_{37})) \equiv 0 \pmod{37}$. Iwasawa's class number formula, which is the origin of Iwasawa theory, describes the growth of the p-parts of $\#Cl(k_n)$ in a tower of cyclic extensions k_n of degree p^n over k, e.g., $k_n = \mathbb{Q}(\zeta_{p^{n+1}})$.

Our motivation is to consider the analogous subject, the *p*-adic growth of the order of $H_1(M_{p^n},\mathbb{Z})$ in a tower of cyclic branched covers M_{p^n} of degree p^n over M. Therefore

• we fix a prime number p, and

• we assume that $H_1(M,\mathbb{Z})$ is finite, i.e., M is a rational homology 3-sphere in the following. Since $Cl(k_n)$ is finite, we will assume that $H_1(M_{p^n},\mathbb{Z})$ are also finite.

3 Iwasawa invariants

Let $L = K_1 \cup \cdots \cup K_r$ be an *r*-component link in a rational homology 3-sphere M. Put $G_L = \pi_1(X, *)$ the link group of L, i.e., the fundamental group of the exterior X of L with the base point *. For a surjective homomorphism $\sigma : G_L \to \mathbb{Z}$, we obtain an infinite cyclic cover X_{σ} of X corresponding to the kernel: Ker $\sigma = \pi_1(X_{\sigma})$. Let X_{σ,p^n} be the subcover of degree p^n over X, and M_{σ,p^n} the Fox completion. Thus we obtain a tower of cyclic branched covers M_{σ,p^n} of degree p^n over M, which are unbranched outside L. Iwasawa invariants of L are defined for each σ (and fixed p) such that $H_1(M_{\sigma,p^n},\mathbb{Z})$ are finite for all $n \geq 0$.

Analogously, let S be a finite set of prime ideals of \mathcal{O}_k such that $S_p \subset S$, where S_p denotes the set of all prime ideals \wp of \mathcal{O}_k such that $p \in \wp$. Put $G_S = \operatorname{Gal}(k_S/k)^{\operatorname{pro-}p}$ the pro-p completion¹ of the Galois group of the maximal algebraic extension k_S of k unramified outside S. For a surjective homomorphism $G_S \to \mathbb{Z}_p$, we obtain an infinite cyclic pro-p-extension k_{∞} of k corresponding to the kernel, which is called a \mathbb{Z}_p -extension of k, where \mathbb{Z}_p denotes (the additive group of) the ring of p-adic integers. Note that $\mathbb{Z}_p \neq \mathbb{Z}/p\mathbb{Z}$. Then $\operatorname{Gal}(k_{\infty}/k) \simeq \mathbb{Z}_p$, and hence k_{∞} can be regarded as a tower of cyclic subextensions k_n of degree p^n over k. Since any \mathbb{Z}_p -extensions are unramified outside S_p , we may assume that $S = S_p$. In [7], Iwasawa showed that for each k_{∞} there is a triple $(\lambda_{k_{\infty}}, \mu_{k_{\infty}}, \nu_{k_{\infty}}) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}$ of integers such that

$$v_p(\#Cl(k_n)) = \lambda_{k_\infty} n + \mu_{k_\infty} p^n + \nu_{k_\infty}$$

for all sufficiently large $n \gg 0$, where v_p is the p-adic additive valuation normalized as

¹The pro-*p* completion $G^{\text{pro-}p}$ of a group *G* is the projective limit of quotient *p*-groups of *G*. If *G* is a finite abelian group, $G^{\text{pro-}p}$ is isomorphic to the *p*-Sylow subgroup. $\mathbb{Z}^{\text{pro-}p} = \mathbb{Z}_p$ is the additive group of *p*-adic integers.

 $v_p(p) = 1$. The original Iwasawa invariants are $\lambda_{k_{\infty}}$, $\mu_{k_{\infty}}$ and $\nu_{k_{\infty}}$ above. If p = 37 and $k_n = \mathbb{Q}(\zeta_{p^{n+1}})$, it is known that $\lambda_{k_{\infty}} = 1$ and $\mu_{k_{\infty}} = 0$.

We obtain the following analogous formula, assuming the finiteness of $H_1(M_{\sigma,p^n},\mathbb{Z})$.

Theorem 1 ([16] [6] [11]). Assume that $H_1(M_{\sigma,p^n},\mathbb{Z})$ are finite for all $n \geq 0$. Then there is a triple $(\lambda_{L,\sigma}, \mu_{L,\sigma}, \nu_{L,\sigma}) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{Z}$ of integers such that

$$v_p(\#H_1(M_{\sigma,p^n},\mathbb{Z})) = \lambda_{L,\sigma}n + \mu_{L,\sigma}p^n + \nu_{L,\sigma}$$

for all sufficiently large $n \gg 0$.

We call $\lambda_{L,\sigma}$, $\mu_{L,\sigma}$ and $\nu_{L,\sigma}$ the Iwasawa invariants of L. Theorem 1 was firstly indicated by Morishita [16], and proved in [6] (resp. [11]) for the case where $M = S^3$ (resp. M is a rational homology 3-sphere) in the way of another proof of a part of Iwasawa's class number formula ([9], [25, Theorem 7.14]). Ueki [24] also gave another proof of Theorem 1 analogous to Iwasawa's original proof [7].

Iwasawa [8] pointed out that the invariant $\lambda_{k_{\infty}^{\text{cyc}}}$ is an analogue of the genus of an algebraic curve, where k_{∞}^{cyc} denotes the cyclotomic \mathbb{Z}_p -extension, i.e., the unique \mathbb{Z}_p -extension contained in $\bigcup_{n=1}^{\infty} k(\zeta_{p^n})$. Based on this analogy, it is conjectured that $\mu_{k_{\infty}^{\text{cyc}}} = 0$ in general, and Riemann-Hurwitz type formulas for $\lambda_{k_{\infty}^{\text{cyc}}}$ were given by Kida [13] and Iwasawa [10]. Analogously, Ueki [24] gave Riemann-Hurwitz type formulas for $\lambda_{L,\sigma}$.

4 Calculations

Assume that $M = S^3$ for simplicity. Let $m_i \in G_L$ be the meridian of the component K_i of L. Then $G_L^{ab} = G_L/G'_L \simeq H_1(X,\mathbb{Z}) \simeq \mathbb{Z}^r$ is freely generated by $t_i = m_i G'_L \in G_L/G'_L$ $(1 \leq i \leq r)$. Put $z_i = \sigma(m_i) \in \mathbb{Z}$. Since σ is surjective, we have $gcd(z_1, \dots, z_r) = 1$. Since $z_i = 0$ if and only if K_i is unbranched in M_{σ,p^n} for all n, we may assume that $\prod_{i=1}^r z_i \neq 0$ by removing unbranched components.

Let

$$\Delta_L(t_1,\cdots,t_r) \in \Lambda = \mathbb{Z}[G_L/G'_L] = \mathbb{Z}[t_1^{\pm 1},\cdots,t_r^{\pm 1}]$$

be the Alexander polynomial of L, and put

$$\Delta_{L,\sigma}(t) = (t-1)^{\min\{1,r-1\}} \Delta_L(t^{z_1},\ldots,t^{z_r}) \in \mathbb{Z}[t^{\pm 1}] = \mathbb{Z}[\operatorname{Aut}(X_{\sigma}/X)]$$

the characteristic polynomial of the $\mathbb{Z}[t^{\pm 1}]$ -module $H_1(X_{\sigma}, \mathbb{Z}) = (\text{Ker } \sigma)^{ab}$. Now we embed $\mathbb{Z}[t^{\pm 1}]$ into the formal power series ring $\mathbb{Z}_p[[T]]$ via t = 1 + T. By the *p*-adic Weierstrass preparation theorem (cf. [25, Theorem 7.3]), $\Delta_{L,\sigma}(1+T)$ can be written in the form

$$\Delta_{L,\sigma}(1+T) = p^{\mu} P_{L,\sigma}(T) u(T)$$

with $0 \leq \mu \in \mathbb{Z}$, monic $P_{L,\sigma}(T) \in \mathbb{Z}_p[T]$ such that $P_{L,\sigma}(T) \equiv T^{\deg P_{L,\sigma}} \pmod{p}$ and $u(T) \in \mathbb{Z}_p[[T]]^{\times}$. Then μ and $P_{L,\sigma}(T)$ are uniquely determined for $\Delta_{L,\sigma}(t)$. Theorem 1 for $M = S^3$ is obtained by taking v_p of the following formula, and hence one can see that

$$\lambda_{L,\sigma} = \deg P_{L,\sigma}(T), \quad \mu_{L,\sigma} = \mu.$$

For the case $M \neq S^3$, we need [22, Theorem 3] instead of the following formula.

Theorem 2 ([14] [21]). Suppose that $M = S^3$, and put $v = \max_i v_p(z_i)$. Then we have

$$|H_1(M_{\sigma,p^n},\mathbb{Z})| = |H_1(M_{\sigma,p^v},\mathbb{Z})| \cdot \left| \prod_{\substack{\zeta p^n = 1 \\ \zeta p^v \neq 1}} \Delta_{L,\sigma}(\zeta) \right|$$

for all $n \ge v$, where |H| denotes the order of a \mathbb{Z} -module H, i.e., |H| = #H if $\#H < \infty$, and |H| = 0 if $\#H = \infty$.

Moreover, one can check whether $H_1(M_{\sigma,p^n},\mathbb{Z})$ is finite or not by this formula. Therefore one can calculate Iwasawa invariants with the check of the assumption of Theorem 1 from the calculation of Alexander polynomials.

Example 1 ([12]). Let $L = K_1 \cup K_2 \subset M = S^3$ be the following link.

Then $\Delta_L(t_1, t_2) = m(t_1 - 1)(t_2 - 1)^3$, and hence

$$\Delta_{L,\sigma} = m(t-1)(t^{z_1}-1)(t^{z_2}-1)^3 = p^{v_p(m)}T((1+T)^{p^{v_p(z_1)}}-1)((1+T)^{p^{v_p(z_2)}}-1)^3u(T).$$

Since M_{σ,p^v} is a branched cover of S^3 along a knot, we have $\#H_1(M_{\sigma,p^v},\mathbb{Z}) < \infty$. Moreover, $\Delta_{L,\sigma}(t)$ has no common factors with the p^n th cyclotomic polynomials for all $n > v = v_p(z_1z_2)$. Therefore $\#H_1(M_{\sigma,p^n},\mathbb{Z}) < \infty$ for all $n \ge 0$, and

$$\lambda_{L,\sigma} = 1 + p^{v_p(z_1)} + 3p^{v_p(z_2)}, \quad \mu_{L,\sigma} = v_p(m).$$

The analogue of $\Delta_{L,\sigma}(t)$ is the Iwasawa polynomial $p^{\mu_{k_{\infty}}}P_{k_{\infty}}(T) \in \mathbb{Z}_p[T]$, which is the characteristic polynomial of the module $Y_{k_{\infty}}$ over $\mathbb{Z}_p[[T]] \simeq \mathbb{Z}_p[[\operatorname{Gal}(k_{\infty}/k)]]$ such that $P_{k_{\infty}}(T)$ is monic and $P_{k_{\infty}}(T) \equiv T^{\lambda_{k_{\infty}}} \pmod{p}$, where $Y_{k_{\infty}} \simeq \varprojlim Cl(k_n)^{\operatorname{pro-}p}$ is the unramified quotient of $\operatorname{Ker}(G_S \to \mathbb{Z}_p)^{ab}$. Theorem 2 is based on the close relation between the structures of $H_1(M_{\sigma,p^n},\mathbb{Z})$ and the torsion part of $H_1(X_{\sigma},\mathbb{Z})/(t^{p^n}-1)$. Analogously, there is a close relation between the structures of $Cl(k_n)^{\operatorname{pro-}p}$ and $Y_{k_{\infty}}/((1+T)^{p^n}-1)$. Iwasawa main conjecture (Mazur-Wiles' theorem) describes explicitly the close relation between Iwasawa polynomials $P_{k_{\infty}^{cyc}}(T)$ and *p*-adic *L*-functions. An analogue of Iwasawa main conjecture has been given by Sugiyama [23].

If $\operatorname{Gal}(k/\mathbb{Q})$ is abelian, $\lambda_{k_{\infty}^{\text{cyc}}}$ can be partially calculated via Iwasawa main conjecture. While there are some partial results ([1] [20]), it is still a difficult problem to determine the possible values of $\lambda_{k_{\infty}}$, $\mu_{k_{\infty}}$ and $\nu_{k_{\infty}}$. Motivated by this problem, the authors obtained the following theorem (cf. [12, Theorem 2.2 and Theorem 3.4]).

Theorem 3 ([12]). Assume that $M = S^3$ and put

$$\mathbf{P}_r = \left\{ \left(\lambda_{L,\sigma}, \mu_{L,\sigma} \right) \middle| \ L \text{ is } r \text{-component}, \ \prod_{i=1}^r z_i \neq 0, \ \#H_1(M_{\sigma,p^n}, \mathbb{Z}) < \infty \text{ for all } n \geq 0 \right\}.$$

Then we have

- (1) $\mathbf{P}_1 = \{(0,0)\},\$
- (2) $\mathbf{P}_r = (r 1 + 2\mathbb{Z}_{\geq 0}) \times \mathbb{Z}_{\geq 0}$ if $p \neq 2$ and $r \geq 2$,
- (3) $\mathbf{P}_2 = \mathbb{Z}_{\geq 1} \times \mathbb{Z}_{\geq 0}$ if p = 2.

The claim (1) is immediately obtained, since $\Delta_K(1) = \pm 1$ for a knot K. The \subset -parts of (2) and (3) are obtained by the Torres conditions. The \supset -parts need some results on the existence of a link with prescribed Alexander polynomials (cf. [12]).

5 More analogies

We also assume that $M = S^3$ in the following. Then $G_L^{ab} = G_L/G'_L \simeq \mathbb{Z}^r$, and $G_S^{ab}/\text{Tor} G_S^{ab} \simeq \mathbb{Z}_p^{r_2+1} \simeq \text{Gal}(\widetilde{k}/k) \simeq G_S/G'_S$ (assuming Leopoldt's conjecture, cf [25, Theorem 13.4]) with the corresponding subgroup G'_S , where \widetilde{k} is the maximal free abelian pro-*p*-extension of *k* which is an analogue of the maximal free abelian cover $\pi : \widetilde{X} \to X$.

We suppose that σ satisfies $\prod_{i=1}^{r} z_i \neq 0$. As an analogous condition, we suppose that any $\wp \in S = S_p$ ramifies in k_{∞}/k . Then, by Theorem 3, we have $\lambda_{L,\sigma} \geq r - 1$. On the other hand, it is known that $\lambda_{k_{\infty}} \geq r_2$ if $\#S_p = \dim_{\mathbb{Q}} k$ (cf. [3]), where r_2 is the half of the number of embeddings $\iota : k \hookrightarrow \mathbb{C}$ such that $\iota(k) \not\subset \mathbb{R}$.

If we regard r_2 as an analogue of r-1, an analogue of a 2-component link is $S_p = \{\wp_1, \wp_2\}$ in the case where $\#S_p = \dim_{\mathbb{Q}} k = 2r_2 = 2$. For a 2-component link $L = K_1 \cup K_2$, one can easily see that $\#H_1(M_{\sigma,p^n},\mathbb{Z}) < \infty$ for all $n \ge 0$ and $(\lambda_{L,\sigma}, \mu_{L,\sigma}) = (1,0)$ if and only if the linking number $\operatorname{lk}(K_1, K_2) \not\equiv 0 \pmod{p}$ ([12, Theorem 3.2]). On the other hand, if we assume $\#Cl(k) \not\equiv 0 \pmod{p}$ (analogously to $\#H_1(S^3,\mathbb{Z}) = 1$) in the analogous case above, then it is known as Gold's theorem [2] that $(\lambda_{k_{\infty}}, \mu_{k_{\infty}}) = (1,0)$ if and only if $\wp_2^{\#Cl(k)} = \pi_2 \mathcal{O}_k$ for $\pi_2 \in \mathcal{O}_k$ which is not a *p*th power residue modulo \wp_1^2 . This is one of the examples of analogies between linking numbers and power residue symbols. From these points of view, S_p looks like an $(r_2 + 1)$ -component link in the case where $\#S_p = \dim_{\mathbb{Q}} k$. However, while Example 1 shows the existence of infinitely many link $L = K_1 \cup K_2$ such that $\sup\{\lambda_{L,\sigma}\}_{\sigma} = \infty$ and $\mu_{L,\sigma} > 0$, Ozaki's theorem [19] states that $(\lambda_{k_{\infty}}, \mu_{k_{\infty}}) = (1, 0)$ for almost all k_{∞} if $\#S_p = \dim_{\mathbb{Q}} k = 2r_2 = 2$ and "Greenberg's conjecture" holds. Motivated by this difference, the authors [12] considered what is an analogue of Greenberg's conjecture. In the following, we shall recall and supplement the consideration.

Greenberg's original conjecture [3] states that $(\lambda_{k_{\infty}^{cyc}}, \mu_{k_{\infty}^{cyc}}) = (0, 0)$ if $r_2 = 0$, i.e., $Y_{k_{\infty}^{cyc}}$ is finite if k is a totally real number field. In the case where $M = S^3$, the analogue of this conjecture holds as Theorem 3 (1). If $r_2 = 0$, then $\tilde{k} = k_{\infty}^{cyc}$. Greenberg's generalized conjecture (cf. e.g. [4]) asserts that the unramified quotient $Y_{\tilde{k}} = (G'_S)^{ab} / \sum_{\varphi \in S} \widehat{\Lambda} \varphi(I_{\varphi} \cap G'_S)$ of $(G'_S)^{ab}$ is pseudonull² (cf. [5]) as a module over $\widehat{\Lambda} = \mathbb{Z}_p[[G_S/G'_S]]$, where $\varphi : G'_S \to (G'_S)^{ab}$ is the natural mapping, and $I_{\varphi} \subset G_S$ is an inertia group of a prime lying over $\varphi \in S$ which is often regarded as an analogue of $\langle m_i \rangle \subset G_L$. Since $\langle m_i \rangle \cap G'_L = 1$, a strict analogue of Greenberg's conjecture is the following: Is the link module $(G'_L)^{ab}$ pseudonull as a Λ -module ? The answer is "no" in many cases, and this is a background of the difference between Example 1 and Ozaki's theorem. Since this question seems not so interesting, we modify an analogue of $Y_{\tilde{k}}$ as follows.

Since $I_{\wp} \cap G'_{S}$ is equal to the inertia group $I_{\widetilde{\wp}} \subset G'_{S}$ of a prime lying over $\widetilde{\wp}$, where $\widetilde{\wp}$ is a prime of \widetilde{k} lying over \wp , we regard the meridianal elements $[\widetilde{m_{i}}] \in H_{1}(\widetilde{X}, \pi^{-1}(*), \mathbb{Z})$ as analogues of $\varphi(I_{\widetilde{\wp}})$, where $\widetilde{m_{i}}$ is a lift of m_{i} with endpoints in $\pi^{-1}(*)$. Then we put $Y_{L} = (G'_{L})^{ab}/\theta^{-1}(\sum_{i=1}^{r} \Lambda[\widetilde{m_{i}}])$ as an analogue of $Y_{\widetilde{k}}$, where $\theta : (G'_{L})^{ab} \simeq H_{1}(\widetilde{X}, \mathbb{Z}) \hookrightarrow H_{1}(\widetilde{X}, \pi^{-1}(*), \mathbb{Z})$ is the natural embedding. Thus we obtain the following problem as a weak analogue of Greenberg's conjecture. Some examples has been given in [12].

Problem 1 ([12]). Is Y_L pseudonull as a Λ -module ?

A corrigendum to [12]. In [12, page 223, line 5], G_S should be replaced by G'_S . The author had confused $\langle I_{\wp} \cap G'_S \rangle_{\wp \in S}$ and $\langle I_{\wp} \rangle_{\wp \in S} \cap G'_S$.

References

- S. Fujii, Y. Ohgi and M. Ozaki, Construction of Z_p-extensions with prescribed Iwasawa λ-invariants, J. Number Theory 118 (2006), no. 2, 200–207.
- [2] R. Gold, The nontriviality of certain Z_l-extensions, J. Number Theory 6 (1974), no. 5, 369–373.

²A module Y over a noetherian uniquely factorization domain Λ is *pseudonull* if the minimal principal ideal containing the annihilator ideal Ann $Y \subset \Lambda$ of Y is equal to Λ .

- [3] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), no. 1, 263–284.
- [4] R. Greenberg, Iwasawa theory—past and present, Class field theory—its centenary and prospect (Tokyo, 1998), 335–385, Adv. Stud. Pure Math. 30, Math. Soc. Japan, Tokyo, 2001.
- [5] J. Hillman, Algebraic invariants of links, Series on Knots and Everything 32, World Scientific Publishing Co., Inc., River Edge, NJ, 2002.
- [6] J. Hillman, D. Matei and M. Morishita, Pro-p link groups and p-homology groups, Primes and knots, 121–136, Contemp. Math. 416, Amer. Math. Soc., Providence, RI, 2006.
- [7] K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 183-226.
- [8] K. Iwasawa, On a certain analogy between algebraic number fields and function fields, (in Japanese), Sûgaku 15 (1963), 65–67.
- K. Iwasawa, Lectures on p-adic L-functions, Annals of Mathematics Studies 74, Princeton University Press, 1972.
- [10] K. Iwasawa, Riemann-Hurwitz formula and p-adic Galois representations for number fields, Tohoku Math. J. (2) 33 (1981), no. 2, 263–288.
- [11] T. Kadokami and Y. Mizusawa, Iwasawa type formula for covers of a link in a rational homology sphere, J. Knot Theory Ramifications 17 (2008), no. 10, 1199–1221.
- [12] T. Kadokami and Y. Mizusawa, On the Iwasawa invariants of a link in the 3-sphere, Kyushu J. Math. 67 (2013), no. 1, 215–226.
- [13] Y. Kida, *l-extensions of CM-fields and cyclotomic invariants*, J. Number Theory 12 (1980), no. 4, 519–528.
- [14] J. P. Mayberry and K. Murasugi, Torsion-groups of abelian coverings of links, Trans. Amer. Math. Soc. 271 (1982), no. 1, 143–173.
- [15] B. Mazur, Remarks on the Alexander polynomial, 1963/1964. http://www.math.harvard.edu/~mazur/papers/alexander_polynomial.pdf
- [16] M. Morishita, Primes and knots (Sosû to musubime), (in Japanese), Have fun with mathematics (Sûgaku no tanoshimi), 2004 Autumn, Nippon Hyoron Sha Co., Ltd., 125-144.

- [17] M. Morishita, Akiramenaide, (in Japanese), Mathematical Sciences (Sûrikagaku),
 546, December 2008, Saiensu-sha Co., Ltd. Publishers, 72–77.
- [18] M. Morishita, Knots and Primes An Introduction to Arithmetic Topology, Springer, 2012.
- [19] M. Ozaki, Iwasawa invariants of Z_p-extensions over an imaginary quadratic field, Class field theory—its centenary and prospect (Tokyo, 1998), 387–399, Adv. Stud. Pure Math. 30, Math. Soc. Japan, Tokyo, 2001.
- [20] M. Ozaki, Construction of \mathbb{Z}_p -extensions with prescribed Iwasawa modules, J. Math. Soc. Japan 56 (2004), no. 3, 787–801.
- [21] J. Porti, Mayberry-Murasugi's formula for links in homology 3-spheres, Proc. Amer. Math. Soc. 132 (2004), no. 11, 3423-3431.
- [22] M. Sakuma, On the polynomials of periodic links, Math. Ann. 257 (1981), no. 4, 487–494.
- [23] K. Sugiyama, An analog of the Iwasawa conjecture for a compact hyperbolic threefold, J. Reine Angew. Math. 613 (2007), 35-50.
- [24] J. Ueki, On the Iwasawa invariants for links and Kida's formula, preprint.
- [25] L. C. Washington, Introduction to cyclotomic fields, (2nd edition), Graduate Texts in Mathematics 83, Springer-Verlag, New York, 1997.

Department of Mathematics, East China Normal University, Dongchuan-lu 500, Shanghai 200241, China. mshj@math.ecnu.edu.cn

Department of Mathematics, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan. mizusawa.yasushi@nitech.ac.jp

> 華東師範大学 門上 晃久 名古屋工業大学 水澤 靖