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1 Introduction

This is a survey article of a part of arithmetic topology, which is a theory on analogies

between low-dimensional topology and number theory. This theory is based on regarding

knots (links) in 3-manifolds as analogues of primes in number fields. In $1960’ s$ , Mazur [15]

pointed out an analogy between Alexander-Fox theory and Iwasawa theory. Rom 1998,

independently on the works of Kapranov, Reznikov et al., the arithmetic topology has
been developed by Morishita and his collaborators (cf. [17] [18] etc Morishita considered

new analogies between link groups and Galois groups, which induced a new view point

on analogies between Alexander-Fox theory and Iwasawa theory. In particular, Morishita

[16] introduced an idea of Iwasawa invariants to knot theory, and Hillman, Matei and

Morishita [6] defined the Iwasawa invariants of links in the 3-sphere $S^{3}.$

In this article, we survey the Iwasawa invariants of links and related analogies. Moreover,

we discuss what is an analogue of Greenberg’s conjecture, which is a problem (open in

general) relating with Iwasawa invariants.

2 Motivations

First, we recall some basic analogies. Let $M$ be an oriented connected closed 3-manifold,

which is a finite cover of $S^{3}$ branched over some link. The analogue of $M$ is a number

field $k$ , which is a finite dimensional algebraic extension of the rational number field $\mathbb{Q}$

ramified over some prime numbers. By regarding a closed path (i.e., a knot) in $M$ as
an analogue of a prime ideal of the ring $\mathcal{O}_{k}$ of algebraic integers in $k$ , the first homology

group $H_{1}(M, \mathbb{Z})$ is considered as a natural analogue of the ideal class group $Cl(k)$ of $k.$

As an analogue of Hurewicz isomorphism $H_{1}(M, \mathbb{Z})\simeq\pi_{1}(M)^{ab}$ , we have an isomorphism

$Cl(k)\simeq Ga1(k^{ur}/k)^{ab}$ by class field theory, where $k^{ur}$ is the maximal unramified extension

of $k$ . It is well known that $Cl(k)$ is a finite abelian group, while $H_{1}(M, \mathbb{Z})$ is not necessarily

finite.

The ideal class group $Cl(k)$ is one of the most interesting objects in number theory,

since $Cl(k)$ describes how far from a principal ideal domain $\mathcal{O}_{k}$ is. In fact, $Cl(k)=\{1\}$ if

and only if $\mathcal{O}_{k}$ is a principal ideal domain. For example, $\mathcal{O}_{\mathbb{Q}(\zeta_{4})}=\mathbb{Z}[\sqrt{-1}]$ is a principal

ideal domain, and hence $Cl(\mathbb{Q}(\zeta_{4}))=\{1\}$ , where $\mathbb{Q}(\zeta_{n})$ denotes the nth cyclotomic fields.
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The divisibility of the cardinality $\# Cl(k)$ by a specific prime number $p$ is also interests
in number theory. Before Wiles proved Fermat’s last theorem, it has been known that the
Fermat equation $x^{p}+y^{p}=z^{p}$ has no nontrivial integer solution if $\# Cl(\mathbb{Q}(\zeta_{p}))\not\equiv 0(mod p)$

and $p>2$ (cf. e.g. [25]). It is known as a famous example that $\# Cl(\mathbb{Q}(\zeta_{37}))\equiv 0$ (mod37).
Iwasawa’s class number formula, which is the origin of Iwasawa theory, describes the
growth of the $p$-parts of $\# Cl(k_{n})$ in a tower of cyclic extensions $k_{n}$ of degree $p^{n}$ over $k,$

e.g., $k_{n}=\mathbb{Q}(\zeta_{p^{n+1}})$ .
Our motivation is to consider the analogous subject, the $p$-adic growth of the order of

$H_{1}(M_{p^{n}}, \mathbb{Z})$ in a tower of cyclic branched covers $M_{p^{n}}$ of degree $p^{n}$ over $M$ . Therefore
$\bullet$ we fix a prime number $p$ , and
$\bullet$ we assume that $H_{1}(M, \mathbb{Z})$ is finite, i.e., $M$ is a rational homology 3-sphere

in the following. Since $Cl(k_{n})$ is finite, we will assume that $H_{1}(M_{p^{n}}, \mathbb{Z})$ are also finite.

3 Iwasawa invariants

Let $L=K_{1}\cup\cdots\cup K_{r}$ be an $r$-component link in a rational homology 3-sphere $M$ . Put
$G_{L}=\pi_{1}(X, *)$ the link group of $L$ , i.e., the fundamental group of the exterior $X$ of $L$ with
the base point $*$ . For a surjective homomorphism $\sigma$ : $G_{L}arrow \mathbb{Z}$ , we obtain an infinite cyclic
cover $X_{\sigma}$ of $X$ corresponding to the kernel: $Ker\sigma=\pi_{1}(X_{\sigma})$ . Let $X_{\sigma,p^{n}}$ be the subcover
of degree $p^{n}$ over $X$ , and $M_{\sigma,p^{n}}$ the Fox completion. Thus we obtain a tower of cyclic
branched covers $M_{\sigma,p^{n}}$ of degree $p^{n}$ over $M$ , which are unbranched outside $L$ . Iwasawa
invariants of $L$ are defined for each $\sigma$ (and fixed p) such that $H_{1}(M_{\sigma,p^{n}}, \mathbb{Z})$ are finite for
all $n\geq 0.$

Analogously, let $S$ be a finite set of prime ideals of $\mathcal{O}_{k}$ such that $S_{p}\subset S$ , where $S_{p}$

denotes the set of all prime ideals $\wp$ of $\mathcal{O}_{k}$ such that $p\in\wp$ . Put $G_{S}=Ga1(k_{S}/k)^{pro-p}$

the pro-p completionl of the Galois group of the maximal algebraic extension $k_{S}$ of $k$

unramified outside $S$ . For a surjective homomorphism $G_{S}arrow \mathbb{Z}_{p}$ , we obtain an infinite
cyclic pro-p-extension $k_{\infty}$ of $k$ corresponding to the kernel, which is called a $\mathbb{Z}_{p}$-extension
of $k$ , where $\mathbb{Z}_{p}$ denotes (the additive group of) the ring of $p$-adic integers. Note that
$\mathbb{Z}_{p}\neq \mathbb{Z}/p\mathbb{Z}$ . Then $Ga1(k_{\infty}/k)\simeq \mathbb{Z}_{p}$ , and hence $k_{\infty}$ can be regarded as a tower of cyclic
subextensions $k_{n}$ of degree $p^{n}$ over $k$ . Since any $\mathbb{Z}_{p}$-extensions are unramified outside $S_{p},$

we may assume that $S=S_{p}$ . In [7], Iwasawa showed that for each $k_{\infty}$ there is a triple
$(\lambda_{k_{\infty}}\rangle\mu_{k_{\infty}}, \nu_{k_{\infty}})\in \mathbb{Z}_{\geq 0}\cross \mathbb{Z}_{\geq 0}\cross \mathbb{Z}$ of integers such that

$v_{p}(\# Cl(k_{n}))=\lambda_{k_{\infty}}n+\mu_{k_{\infty}}p^{n}+\nu_{k_{\infty}}$

for all sufficiently large $n\gg 0$ , where $v_{p}$ is the $p$-adic additive valuation normalized as
1The pro-p completion $G^{pro-p}$ of a group $G$ is the projective limit of quotient $p$-groups of $G$ . If $G$ is a finite abelian

group, $G^{pro-p}$ is isomorphic to the $p$-Sylow subgroup. $\mathbb{Z}^{pro-p}=\mathbb{Z}_{p}$ is the additive group of $p$-adic integers.
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$v_{p}(p)=1$ . The original Iwasawa invariants are $\lambda_{k_{\infty}},$
$\mu_{k_{\infty}}$ and $\nu_{k_{\infty}}$ above. If $p=37$ and

$k_{n}=\mathbb{Q}(\zeta_{p^{n+1}})$ , it is known that $\lambda_{k_{\infty}}=1$ and $\mu_{k_{\infty}}=0.$

We obtain the following analogous formula, assuming the finiteness of $H_{1}(M_{\sigma,p^{n}}, \mathbb{Z})$ .

Theorem 1 ([16] [6] [11]). Assume that $H_{1}(M_{\sigma,p^{n}}, \mathbb{Z})$ are finite for all $n\geq$ O. Then

there is a triple $(\lambda_{L,\sigma}, \mu_{L,\sigma}, \nu_{L,\sigma})\in \mathbb{Z}_{\geq 0}\cross \mathbb{Z}_{\geq 0}\cross \mathbb{Z}$ of integers such that

$v_{p}(\# H_{1}(M_{\sigma,p^{n}}, \mathbb{Z}))=\lambda_{L,\sigma}n+\mu_{L,\sigma}p^{n}+\nu_{L,\sigma}$

for all sufficiently large $n\gg O.$

We call $\lambda_{L,\sigma},$
$\mu_{L,\sigma}$ and $\nu_{L,\sigma}$ the Iwasawa invariants of $L$ . Theorem 1 was firstly indicated

by Morishita [16], and proved in [6] (resp. [11]) for the case where $M=S^{3}$ (resp. $M$ is

a rational homology 3-sphere) in the way of another proof of a part of Iwasawa’s class

number formula ([9], [25, Theorem 7.14]). Ueki [24] also gave another proof of Theorem

1 analogous to Iwasawa’s original proof [7].

Iwasawa [8] pointed out that the invariant $\lambda_{k_{\infty}^{cyc}}$ is an analogue of the genus of an alge-

braic curve, where $k_{\infty}^{cyc}$ denotes the cyclotomic $\mathbb{Z}_{p}$-extension, i.e., the unique $\mathbb{Z}_{p}$-extension

contained in $\bigcup_{n=1}^{\infty}k(\zeta_{p^{n}})$ . Based on this analogy, it is conjectured that $\mu_{k_{\infty}^{cyc}}=0$ in gen-

eral, and Riemann-Hurwitz type formulas for $\lambda_{k_{\infty}^{cyc}}$ were given by Kida [13] and Iwasawa

[10]. Analogously, Ueki [24] gave Riemann-Hurwitz type formulas for $\lambda_{L,\sigma}.$

4 Calculations

Assume that $M=S^{3}$ for simplicity. Let $m_{i}\in G_{L}$ be the meridian of the component $K_{i}$

of $L$ . Then $G_{L}^{ab}=G_{L}/G_{L}’\simeq H_{1}(X, \mathbb{Z})\simeq \mathbb{Z}^{r}$ is freely generated by $t_{i}=m_{i}G_{L}’\in G_{L}/G_{L}’$

$(1\leq i\leq r)$ . Put $z_{i}=\sigma(m_{i})\in \mathbb{Z}$ . Since a is surjective, we have $gcd(z_{1}, \cdots, z_{r})=1$ . Since

$z_{i}=0$ if and only if $K_{i}$ is unbranched in $M_{\sigma,p^{n}}$ for all $n$ , we may assume that $\prod_{i=1}^{r}z_{i}\neq 0$

by removing unbranched components.

Let

$\Delta_{L}(t_{1}, \cdots, t_{r})\in\Lambda=\mathbb{Z}[G_{L}/G_{L}’]=\mathbb{Z}[t_{1}^{\pm 1}, \cdots, t_{r}^{\pm 1}]$

be the Alexander polynomial of $L$ , and put

$\Delta_{L,\sigma}(t)=(t-1)\Delta_{L}(t^{z}, \ldots, t^{z_{r}})\in \mathbb{Z}[t^{\pm 1}]=\mathbb{Z}[Aut(X_{\sigma}/X)]$

the characteristic polynomial of the $\mathbb{Z}[t^{\pm 1}]$ -module $H_{1}(X_{\sigma}, \mathbb{Z})=(Ker\sigma)^{ab}$ . Now we embed

$\mathbb{Z}[t^{\pm 1}]$ into the formal power series ring $\mathbb{Z}_{p}[[T]]$ via $t=1+T$. By the $p$-adic Weierstrass

preparation theorem (cf. [25, Theorem 7.3]), $\Delta_{L,\sigma}(1+T)$ can be written in the form

$\Delta_{L,\sigma}(1+T)=p^{\mu}P_{L,\sigma}(T)u(T)$
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with $0\leq\mu\in \mathbb{Z}$ , monic $P_{L,\sigma}(T)\in \mathbb{Z}_{p}[T]$ such that $P_{L,\sigma}(T)\equiv T^{\deg P_{L,\sigma}}(mod p)$ and
$u(T)\in \mathbb{Z}_{p}[[T]]^{\cross}$ Then $\mu$ and $P_{L,\sigma}(T)$ are uniquely determined for $\Delta_{L,\sigma}(t)$ . Theorem 1
for $M=S^{3}$ is obtained by taking $v_{p}$ of the following formula, and hence one can see that

$\lambda_{L,\sigma}=\deg P_{L,\sigma}(T) , \mu_{L,\sigma}=\mu.$

For the case $M\neq S^{3}$ , we need [22, Theorem 3] instead of the following formula.

Theorem 2 ([14] [21]). Suppose that $M=S^{3}$ , and put $v= \max_{i}v_{p}(z_{i})$ . Then we have

$|H_{1}(M_{\sigma}J^{j^{n}}, \mathbb{Z})|=|H_{1}(M_{\sigma,p^{v}}, \mathbb{Z})|\cdot|\prod_{\zeta^{p^{v}}\neq 1}\Delta_{L,\sigma}(\zeta)|\zeta^{p^{n}}=1$

for all $n\geq v$ , where $|H|$ denotes the order of a $\mathbb{Z}$ -module $H$ , i. e., $|H|=\# H$ if $\# H<\infty,$

and $|H|=0$ if $\# H=\infty.$

Moreover, one can check whether $H_{1}(M_{\sigma,p^{n}\rangle}\mathbb{Z})$ is finite or not by this formula. Therefore
one can calculate Iwasawa invariants with the check of the assumption of Theorem 1 from
the calculation of Alexander polynomials.

Example 1 ([12]). Let $L=K_{1}\cup K_{2}\subset M=S^{3}$ be the following link.

Then $\Delta_{L}(t_{1}, t_{2})=m(t_{1}-1)(t_{2}-1)^{3}$ , and hence

$\Delta_{L,\sigma} = m(t-1)(t^{z_{1}}-1)(t^{z_{2}}-1)^{3}$

$=p^{v_{p}(m)}T((1+T)^{p^{v_{p}(z_{1})}}-1)((1+T)^{p^{v_{p}(z_{2})}}-1)^{3}u(T)$ .

Since $M_{\sigma,p^{v}}$ is a branched cover of $S^{3}$ along a knot, we have $\# H_{1}(M_{\sigma,p^{v}}, \mathbb{Z})<\infty$ . Moreover,
$\Delta_{L,\sigma}(t)$ has no common factors with the $p^{n}th$ cyclotomic polynomials for all $n>v=$
$v_{p}(z_{1}z_{2})$ . Therefore $\# H_{1}(M_{\sigma,p^{n}}, \mathbb{Z})<\infty$ for all $n\geq 0$ , and

$\lambda_{L,\sigma}=1+p^{v_{p}(z_{1})}+3p^{v_{p}(z_{2})}, \mu_{L,\sigma}=v_{p}(m)$ .

The analogue of $\Delta_{L,\sigma}(t)$ is the Iwasawa polynomial $p^{\mu_{k}}\infty P_{k_{\infty}}(T)\in \mathbb{Z}_{p}[T]$ , which is

the characteristic polynomial of the module $Y_{k_{\infty}}$ over $\mathbb{Z}_{p}[[T]]\simeq \mathbb{Z}_{p}[[Ga1(k_{\infty}/k)]]$ such

that $P_{k_{\infty}}(T)$ is monic and $P_{k_{\infty}}(T)\equiv T^{\lambda_{k}}\infty(mod p)$ , where $Y_{k_{\infty}}\simeq k^{mCl(k_{n})^{pro-p}}$ is the

unramified quotient of $Ker(G_{S}arrow \mathbb{Z}_{p})^{ab}$ . Theorem 2 is based on the close relation between

the structures of $H_{1}(M_{\sigma_{1}p^{n}}, \mathbb{Z})$ and the torsion part of $H_{1}(X_{\sigma}, \mathbb{Z})/(t^{p^{n}}-1)$ . Analogously,

there is a close relation between the structures of $Cl(k_{n})^{pro-p}$ and $Y_{k_{\infty}}/((1+T)^{p^{n}}-1)$ .
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Iwasawa main conjecture (Mazur-Wiles’ theorem) describes explicitly the close relation

between Iwasawa polynomials $P_{k_{\infty}^{cyc}}(T)$ and $p$-adic $L$-functions. An analogue of Iwasawa

main conjecture has been given by Sugiyama [23].

If $Ga1(k/\mathbb{Q})$ is abelian, $\lambda_{k_{\infty}^{cyc}}$ can be partially calculated via Iwasawa main conjecture.

While there are some partial results ([1] [20]), it is still a difficult problem to determine

the possible values of $\lambda_{k_{\infty}},$
$\mu_{k_{\infty}}$ and $\nu_{k_{\infty}}$ . Motivated by this problem, the authors obtained

the following theorem (cf. [12, Theorem 2.2 and Theorem 3.4]).

Theorem 3 ([12]). Assume that $M=S^{3}$ and put

$P_{r}=\{(\lambda_{L,\sigma}, \mu_{L,\sigma})|L$ is $r$ -component, $\prod_{i=1}^{r}z_{i}\neq 0,$ $\# H_{1}(M_{\sigma,p^{\mathfrak{n}}}, \mathbb{Z})<\infty$ for all $n\geq 0\}.$

Then we have

(1) $P_{1}=\{(0,0$

(2) $P_{r}=(r-1+2\mathbb{Z}_{\geq 0})\cross \mathbb{Z}_{\geq 0}$ if $p\neq 2$ and $r\geq 2,$

(3) $P_{2}=\mathbb{Z}_{\geq 1}\cross \mathbb{Z}_{\geq 0}$ if $p=2.$

The claim (1) is immediately obtained, since $\Delta_{K}(1)=\pm 1$ for a knot $K$ . The $\subset$-parts

of (2) and (3) are obtained by the Torres conditions. The $\supset$-parts need some results on

the existence of a link with prescribed Alexander polynomials (cf. [12]).

5 More analogies

We also assume that $M=S^{3}$ in the following. Then $G_{L}^{ab}=G_{L}/G_{L}’\simeq \mathbb{Z}_{\rangle}^{r}$ and
$G_{S}^{ab}/TorG_{s}^{ab}\simeq \mathbb{Z}_{p^{2}}^{r+1}\simeq Ga1(\tilde{k}/k)\simeq G_{S}/G_{S}’$ (assuming Leopoldt’s conjecture, cf [25,

Theorem 13.4]) with the corresponding subgroup $G_{S}’$ , where $\tilde{k}$ is the maximal free abelian

pro-p-extension of $k$ which is an analogue of the maximal free abelian cover $\pi$ : $\tilde{X}arrow X.$

We suppose that $\sigma$ satisfies $\prod_{i=1}^{r}z_{i}\neq 0$ . As an analogous condition, we suppose that

any $\wp\in S=S_{p}$ ramifies in $k_{\infty}/k$ . Then, by Theorem 3, we have $\lambda_{L,\sigma}\geq r-1$ . On the

other hand, it is known that $\lambda_{k_{\infty}}\geq r_{2}$ if $\# S_{p}=\dim_{\mathbb{Q}}k$ (cf. [3]), where $r_{2}$ is the half of

the number of embeddings $\iota$ : $k\mapsto \mathbb{C}$ such that $\iota(k)\not\subset \mathbb{R}.$

If we regard $r_{2}$ as an analogue of $r-1$ , an analogue of a 2-component link is $S_{p}=\{\wp_{1}, \wp_{2}\}$

in the case where $\# S_{p}=\dim_{\mathbb{Q}}k=2r_{2}=2$ . For a 2-component link $L=K_{1}\cup K_{2}$ , one

can easily see that $\# H_{1}(M_{\sigma,p^{n}}, \mathbb{Z})<\infty$ for all $n\geq 0$ and $(\lambda_{L,\sigma}, \mu_{L,\sigma})=(1,0)$ if and only

if the linking number $1k(K_{1}, K_{2})\not\equiv 0(mod p)$ ([12, Theoerm 3.2]). On the other hand,

if we assume $\# Cl(k)\not\equiv 0(mod p)$ $($ analogously $to \# H_{1}(S^{3}, \mathbb{Z})=1$ ) in the analogous

case above, then it is known as Gold’s theorem [2] that $(\lambda_{k_{\infty}}, \mu_{k_{\infty}})=(1,0)$ if and only if
$\wp_{2}^{\# Cl(k)}=\pi_{2}\mathcal{O}_{k}$ for $\pi_{2}\in \mathcal{O}_{k}$ which is not a pth power residue modulo $\wp_{1}^{2}$ . This is one of

the examples of analogies between linking numbers and power residue symbols.

14



From these points of view, $S_{p}$ looks like an $(r_{2}+1)$-component link in the case where
$\# S_{p}=\dim_{\mathbb{Q}}k$ . However, while Example 1 shows the existence of infinitely many link
$L=K_{1}\cup K_{2}$ such that $\sup\{\lambda_{L,\sigma}\}_{\sigma}=\infty$ and $\mu_{L,\sigma}>0$ , Ozaki’s theorem [19] states that
$(\lambda_{k_{\infty}}, \mu_{k_{\infty}})=(1,0)$ for almost all $k_{\infty}$ if $\# S_{p}=\dim_{\mathbb{Q}}k=2r_{2}=2$ and (Greenberg’s

conjecture”’ holds. Motivated by this difference, the authors [12] considered what is an
analogue of Greenberg’s conjecture. In the following, we shall recall and supplement the

consideration.

Greenberg’s original conjecture [3] states that $(\lambda_{k_{\infty}^{cyc})}\mu_{k_{\infty}^{cyc}})=(0, 0)$ if $r_{2}=0$ , i.e., $Y_{k_{\infty}^{cyc}}$

is finite if $k$ is a totally real number field. In the case where $M=S^{3}$ , the analogue of

this conjecture holds as Theorem 3 (1). If $r_{2}=0$ , then $\tilde{k}=k_{\infty}^{cyc}$ . Greenberg’s generalized

conjecture (cf. e.g. [4]) asserts that the unramified quotient $Y_{\tilde{k}}=(G_{S}’)^{ab}/ \sum_{\wp\in S}\hat{\Lambda}\varphi(I_{\wp}.\cap$

$G_{s}’)$ of $(G_{S}’)^{ab}$ is pseudonull2 (cf. [5]) as a module over $\hat{\Lambda}=\mathbb{Z}_{p}[[G_{S}/G_{S}’]]$ , where $\varphi$ : $G_{S}’arrow$

$(G_{S}’)^{ab}$ is the natural mapping, and $I_{\wp}\subset G_{S}$ is an inertia group of a prime lying over
$\wp\in S$ which is often regarded as an analogue of $\langle m_{i}\rangle\subset G_{L}$ . Since $\langle m_{i}\rangle\cap G_{L}’=1,$

a strict analogue of Greenberg’s conjecture is the following: Is the link module $(G_{L}’)^{ab}$

pseudonull as a $\Lambda$ -module? The answer is (n$0^{)}$ in many cases, and this is a background

of the difference between Example 1 and Ozaki’s theorem. Since this question seems not

so interesting, we modify an analogue of $Y_{\tilde{k}}$ as follows.

Since $I_{\wp}\cap G_{S}’$ is equal to the inertia group $I_{\tilde{\wp}}\subset G_{S}’$ of a prime lying over $\tilde{\wp}$, where $\tilde{\wp}$

is a prime of $\tilde{k}$ lying over $\wp$ , we regard the meridianal elements $[\overline{m_{i}}]\in H_{1}(\tilde{X}, \pi^{-1}(*), \mathbb{Z})$

as analogues of $\varphi(I_{\tilde{\wp}})$ , where $\overline{m_{i}}$ is a lift of $m_{i}$ with endpoints in $\pi^{-1}(*)$ . Then we put
$Y_{L}=(G_{L}’)^{ab}/ \theta^{-1}(\sum_{i=1}^{r}\Lambda[\overline{m_{i}}])$ as an analogue of $Y_{\tilde{k}}$ , where $\theta$ : $(G_{L}’)^{ab}\simeq H_{1}(\tilde{X}, \mathbb{Z})\mapsto$

$H_{1}(\tilde{X}, \pi^{-1}(*), \mathbb{Z})$ is the natural embedding. Thus we obtain the following problem as a
weak analogue of Greenberg’s conjecture. Some examples has been given in [12].

Problem 1 ([12]). Is $Y_{L}$ pseudonull as a $\Lambda$ -module/?

A corrigendum to [12]. In [12, page 223, line 5], $G_{S}$ should be replaced by $G_{S}’$ . The

author had confused $\langle I_{\wp}\cap G_{S}’\rangle_{\wp\in S}$ and $\langle I_{\wp}\rangle_{\wp\in S}\cap G_{S}’.$
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