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Abstract

After reviewing Marc Culler and Peter B. Shalen’s construction of essential surfaces contained in
3-dimensional manifolds, we shall present an extension of there construction utilising character vari-
eties and Bruhat-Tits buildings of higher dimension. This extended method enables us to construct
essential tribranched surfaces contained in 3-dimensional manifolds in a systematic way.

This is a report of the author’s talk “Concerning actions of 3-manifold groups: from
topological and arithmetic viewpoints”’ given at the RIMS Conference: intelligence of
Low-dimensional Topology 2014. In 1983, Marc Culler and Peter B. Shalen proposed a
systematic method to construct essential surfaces contained in 3-dimensional manifolds in
[CS83]. Their method heavily utilised algebro-geometric ideas; to sum up, they introduced
geometry of $SL(2)$ -character varieties and the theory of Bruhat-Tits trees to establish their
construction. It should therefore be worth introducing more sophisticated algebraic and
arithmetic concepts to extending Culler and Shalen’s classical method. In this brief report
we shall propose a systematic construction of essential tribranched surfaces contained in
3-manifolds, which is regarded as a natural extension of Culler and Shalen’s result [CS83]
(this is ajoint work with Takahiro KITAYAMA, Tokyo Institute of Technology). Refer also
to [H14], which deals with the same contents as this report but written in Japanese.
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\S 1 Introduction: Essential surfaces and group actions

Throughout this article all 3-dimensional manifolds are assumed to be compact, con-

nected, irreducible and orientable. As an introduction of this report, we here review the

(somewhat mysterious) relation between the topological concepts of essential surfaces and

algebraic actions of 3-manifold groups on trees.

First let us recall the definition of essential surfaces (see [Sh02, Definition 1.5.1] for

example).

Definition 1.1 (Essential surfaces). A $surface^{*1}S$ contained in a 3-manifold $M$ is said

to be essential if the following four conditions are fulfilled:

(ES1) (incompressibility) for each connected component $S_{i}$ of $S$ , the canonical homo-

morphism $\pi_{1}(S_{i})arrow\pi_{1}(M)$ is injective;

(ES2) (bicollaredness) $S$ is bicollared; that is, there exists a homeomorphism $h$ from
$S\cross[-1, 1]$ onto a neighbourhood of $S$ in $M$ such that

$-h(x, 0)=x$ holds for each $x$ in $S$ ; and
- the intersection of $h(S\cross[-1,1])$ and $\partial M$ coincides with $h(\partial S\cross[-1,1$

(ES3) (non-boundary-parallel) no connected component of $S$ is boundary-parallel;

(ES4) (nontriviality) $S$ is nonempty and no connected component of $S$ is homeomor-

phic to a 2-sphere.

Now let $S$ be an essential surface

contained in a 3-manifold $M$ and

let $\{S_{j}\}_{j=1}^{r}$ denote the (finite) set of

all connected components of $S$ . By

cutting $M$ along $S$ , we may decom-

pose $M$ into several components,

which we denote by $N_{1}$ , . . . , $N_{s}.$

Now let us shrink each component
$N_{i}$ to a point (or a (vertex) and

Figure 1. The dual graph associated to an essential surface
label it $v_{i}$ . Whenever a connected

component $S_{j}$ of $S$ separates components $N_{i_{1}}$ and $N_{i_{2}}$ , we attach to $S_{i}$ an “edge” $e_{j}$ con-

necting the vertices $v_{i_{1}}$ and $v_{i_{2}}$ . As a result we obtain a finite graph, which is called the

dual graph of $M$ associated to the essential surface $S$ (see Figure 1 above). We finally

attach to each vertex $v_{j}$ of the dual graph the fundamental group $\pi_{1}(N_{i})$ of the corre-

$*1$ Here we do not require that $S$ itself $1S$ connected.
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Figure 2. Construction of (essential) surfaces

sponding component $N_{i}$ (which is called the vertex group of $v_{i}$ ), and attach to each edge
$e_{j}$ the fundamental group $\pi_{1}(S_{j})$ of the corresponding component $S_{j}$ (which is called the
edge group of $e_{j}$ ). After these procedures we obtain a graph of groups $\mathcal{G}s$ associated to $S$

(see [Se77, Chapitre I,, Definition 8] for the definition of graphs of groups). Due to the
theory of graphs of groups developed by Hyman Bass and Jean-Pierre Serre (for details
refer to [Se77, Chapitre I the graph of groups $\mathcal{G}s$ is known to be obtained as the quo-
tient graph associated to an action of $\pi_{1}(M)$ on a certain connected and simply connected
graph, or namely, on a certain $tree^{*2\prime}\mathcal{T}$ . Each vertex and edge group is recovered (up to
conjugation) as the isotropy subgroup of $\pi_{1}(M)$ (with respect to the action of $\pi_{1}(M)$ on
$\mathcal{T})$ at the corresponding vertex and edge respectively. $*3$

Conversely, given an action of $\pi_{1}(M)$ on a tree which is nontriviar4 and without inver-
sion, $*5$ we may construct an essential surface $S$ contained in $M$ . This is due to results of

$*2$ This tree is an analogous object of the universal covemng space in the theory of covering spaces, and called the
Bass-Serre tree today. See [Se77, Chapitre I., Section 53] for details.

$*3$ Moreover we may obtain the splitting of $\pi_{1}(M)$ as the fundamental group $\pi_{1}(\mathcal{G}_{S})$ of the graph of groups $\mathcal{G}s.$

$*4$ An action of a group $G$ on a tree $\mathcal{T}$ is said to be nontrivial if the isotropy subgroup $G_{v}$ does not coincide with the
whole group $G$ for each vertex $v.$

$*5$ An action of a group $G$ on a tree $\mathcal{T}$ is said to be without inversion if there does not exist an element $g$ of $G$ which
fix an edge $e$ but interchange the endpoints of $e.$
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many people including John Robert Stallings [St59, St71], David Bernard Alper Epstein

[Ep61] and Riedhelm Waldhausen [Wa67]. We here briefly sketch how to construct an

essential surface from a group action on a tree (refer also to [Sh02, Section 2.2.]). First

take a triangulation of $M$ and lift it to the universal covering space $\tilde{M}$ of $M$ . Then we

obtain a $\pi_{1}(M)$ -equivariant triangulation of $\tilde{M}$ . Due to the contractibility of the tree $\mathcal{T},$

we may construct a $\pi_{1}(M)$ -equivariant simplicial map $\tilde{f}:\tilde{M}arrow \mathcal{T}$ (by using simplicial

approximation theorem if necessary). The simplicial map $\tilde{f}$ induces a piecewise-linear

map $f:Marrow \mathcal{T}/\pi_{1}(M)$ on the quotient, where $\mathcal{T}/\pi_{1}(M)$ denotes the quotient graph of
$\mathcal{T}$ with respect to the action of $\pi_{1}(M)$ on $\mathcal{T}$ . Let $E$ denote the set of the midpoints of all

edges of the quotient graph $\mathcal{T}/\pi_{1}(M)$ , and consider the inverse image $S’$ of $E$ under the

map $f:Marrow \mathcal{T}/\pi_{1}(M)$ . The inverse image $S’$ is then a properly embedded surface in $M$

(see Figure 2). While $S’$ itself might not be essential, we may modify $S’$ into an essential

surface $S$ by certain “local surgery”’ (that is, a certain topological operation). We may

thus construct an essential surface $S$ in $M$ from the nontrivial action of $\pi_{1}(M)$ on the

tree $\mathcal{T}.$

As a consequence, one observes that there exists a close relation between the concepts

of essential surfaces and (nontrivial) actions of 3-dimensional groups on trees:

Essential surfaces $clos\underline{erela}$tion
Nontrivial actions of $\pi_{1}(M)$ on trees

(topological concept) (algebraic group action)

Moreover it is easy to imagine from the arguments above that one might be able to

systematically construct essential surfaces contained in 3-manifolds if one could construct

nontrivial actions of 3-manifold groups on trees in a certain ingenious manner. It was
Marc Culler and Peter B. Shalen who realised this vague idea and established a systematic

construction of essential surfaces contained in 3-manifolds. In the next section we shall

survey their outstanding results of [CS83].

\S 2 Nontrivial actions of 3-manifold groups: Culler-Shalen theory

In their construction of nontrivial actions of $\pi_{1}(M)$ on trees, Culler and Shalen utilised

two highly algebraic (or algebro-geometric) ingredients: namely

- Geometry of $SL(2)$ -character varieties; and
- Bruhat-Tits trees associated to the special linear groups of degree two.

We shall see each of them more thoroughly in the following subsections.
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\S 2.1 Step 1: Geometry of $SL(2)$-character varieties

Concerning $SL(2)$-character varieties, see also Harada’s article [Harada14] in this vol-
ume. Let us set

$R(\pi_{1}(M))_{SL(2)}(\mathbb{C})=Hom(\pi_{1}(M), SL_{2}(\mathbb{C}))$

$=$ (the set of all $SL_{2}(\mathbb{C})$ -representations of $\pi_{1}(M)$ ).

Using the fact that $\pi_{1}(M)$ is a group of finite presentation (due to the compactness of
$M)$ , we may readily verify that $R(\pi_{1}(M))_{SL(2)}(\mathbb{C})$ admits a structure of an affine alge-
braic variety over $\mathbb{C}$ , which we call the $SL(2)$ -representation variety of $\pi_{1}(M)$ . Next let
$X(\pi_{1}(M))_{SL(2)}(\mathbb{C})$ denote the set of all $SL(2)$ -characters of $\pi_{1}(M)$ ; more specifically, an
element of $X(\pi_{1}(M))_{SL(2)}(\mathbb{C})$ is the trace $\chi_{\rho}=Tr(\rho)$ of a certain $SL(2)$-representation
$\rho:\pi_{1}(M)arrow SL_{2}(\mathbb{C})$ of $\pi_{1}(M)$ . It is widely known that $X(\pi_{1}(M))_{SL(2)}(\mathbb{C})$ also admits a
structure of an affine algebraic variety over $\mathbb{C}$ , which we call the $SL(2)$ -character variety
of $\pi_{1}(M)$ .
In the context of algebraic geometry, the natural action of $SL_{2}(\mathbb{C})$ on the set

$R(\pi_{1}(M))_{SL(2)}(\mathbb{C})$ via conjugation $\rho\mapsto\gamma^{-1}\rho\gamma$ canonically extends to the action of the
(reductive) algebraic group $SL(2)/\mathbb{C}$ on the representation variety $R(\pi_{1}(M))_{SL(2)}/\mathbb{C}$ ’

and the character variety $X(\pi_{1}(M))_{SL(2)}/\mathbb{C}$ is represented as the (geometric invariant
theoretical) quotient variety of $R(\pi_{1}(M))_{SL(2)}/\mathbb{C}$ with respect to this action. In particular
there exists a natural “quotient” morphism

$\pi:R(\pi_{1}(M))_{SL(2)}/\mathbb{C}arrow X(\pi_{1}(M))_{SL(2)}/c.$

Let $\gamma$ be an element of $\pi_{1}(M)$ . Then we associate to $\gamma$ a regular function $I_{\gamma}$ defined on
$X(\pi_{1}(M))_{SL(2)}/\mathbb{C}$ satisfying

$I_{\gamma}(\chi_{\rho})=Tr\rho(\gamma)$

for every complex point $\chi_{\rho}$ of $X(\pi_{1}(M))_{SL(2)}/\mathbb{C}$ (the $evaluation-at-\gamma$” function). It is
known that the affine coordinate ring of $X(\pi_{1}(M))_{SL(2)}/\mathbb{C}$ is generated over $\mathbb{C}$ by a finite
number of such evaluation functions (see [CS83, Proposition 1.4.1]).
Now let us take an (affine) algebraic curve $C$ contained in $X(\pi_{1}(M))_{SL(2)}/\mathbb{C}$ . By a

standard argument in algebraic geometry (refer to [Mu76] for basic facts on algebraic ge-
ometry), one may verify that there exists a “lift” $D$ of $C$ with respect to $\pi$ ; in other words,
there exists an algebraic curve $D$ contained in $R(\pi_{1}(M))_{SL(2)}/\mathbb{C}$ such that the restriction
of $\pi$ to $D$ (which we also abbreviate as $\pi$ ) surjects onto $C$ . The canonical projection
$\pi:Darrow C$ extends to their projective completions, and induces a regular morphism
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$\tilde{\pi}:\tilde{D}arrow\tilde{C}$ on the (unique) smooth projective models of (the projective completions of)
$C$ and $D.$

For such $D$ we may consider the tautological representation

$\rho_{taut,D}:\pi_{1}(M)arrow SL_{2}(\mathbb{C}[D])$

where $\mathbb{C}[D]$ denotes the ring of regular functions on $D$ . This is a certain kind of (universal

representations and characterised by the following property: for every closed point $y$ of
$D$ and for every element $\gamma$ of $\pi_{1}(M)$ , we have

$\rho_{taut,D}(\gamma)(y)=\rho_{y}(\gamma)$

where $\rho_{y}$ denotes the $SL_{2}(\mathbb{C})$-representation of $\pi_{1}(M)$ corresponding to the closed point $y$

regarded as a complex point of $R(\pi_{1}(M))_{SL(2)}/\mathbb{C}$ . Composing it with the canonical maps*6

$\mathbb{C}[D]\mapsto \mathbb{C}(D)arrow\sim \mathbb{C}(\tilde{D})$

(here we denote by $\mathbb{C}(D)$ and $\mathbb{C}(\tilde{D})$ the fields of rational functions on $D$ and $\tilde{D}$ respec-

tively), we may readily extend $\rho_{taut,D}$ to the tautological representation associated to $\tilde{D}$ ;

$\rho_{taut,\tilde{D}}:\pi_{1}(M)arrow SL_{2}(\mathbb{C}(\tilde{D}))$ .

\S 2.2 Step 2: Bruhat-Tits trees associated to $SL(2)$

The tree on which we let 3-manifold groups act is the Bruhat-Tits tree associated to the

special linear group $SL(2)$ defined over a discrete valuation field (refer to [Se68, Chapitre I,

Section 1] for details on discrete valuation fields). We here recall its precise definition.

Let $K=(K, v)$ be a field equipped with $a$ (normalised) discrete valuation $v:K^{\cross}arrow \mathbb{Z}$

and $\mathcal{O}_{v}$ its valuation ring. We denote by $\varpi_{v}$ a uniformiser of $\mathcal{O}_{v}$ (that is, an element of $\mathcal{O}_{v}$

satisfying $v(\varpi_{v})=1$ ). Let $V_{0}$ be the standard 2-dimensional $K$-vector space with basis
$\{e_{1}, e_{2}\}$ . Recall that an $\mathcal{O}_{v}$ -lattice $L$ of $V_{0}$ is a free $\mathcal{O}_{v}$-submodule of $V_{0}$ which satisfies
$L\otimes_{\mathcal{O}_{v}}K=V_{0}$ . An $\mathcal{O}_{v}$-lattice $L_{1}$ of $V_{0}$ is said to be homothetic to another $\mathcal{O}_{v}$-lattice
$L_{2}$ if there exists an invertible element $a$ of $K$ such that $L_{1}$ coincides with $aL_{2}$ (as an
$\mathcal{O}_{v}$-submodule of $V_{0}$ ). One readily verifies that the homothety relation is an equivalence

relation on the set of all $\mathcal{O}_{v}$-lattices of $V_{0}.$

$*6$ The second isomorphism is due to the fact that $D$ and $\tilde{D}$ are birational to each other.
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Definition 2.1 (The Bruhat-Tits tree). Let $V(\mathcal{T}_{K})$ be the set of all homothety classes
$[L]$ of $\mathcal{O}_{v}$-lattices of $V_{0}$ (the vertex set of $\mathcal{T}_{K}$ ). We equip $V(\mathcal{T}_{K})$ with the following
adjacency relation:

two elements $v_{1}$ and $v_{2}$ of $V(\mathcal{T}_{K})$ are $ad_{J^{acent}}$ if and only if there exist $\mathcal{O}_{v}$-lattices
$L_{1}$ and $L_{2}$ representing $v_{1}$ and $v_{2}$ respectively such that $\varpi_{v}L_{1}\subset L_{2}\subset L_{1}$ holds.

Let $E(\mathcal{T}_{K})$ denote the set of all adjacent pairs $(v_{1}, v_{2})$ of $V(\mathcal{T}_{K})$ (the edge set of $\mathcal{T}_{K}$ ).

Then one may verify that the resulted graph $\mathcal{T}_{K}=(V(\mathcal{T}_{K}), E(\mathcal{T}_{K}))$ is indeed a tree
(refer to [Se77, Chapitre II, Th\’eor\‘em 1 which we call the Bruhat-Tits tree associated
to $SL(2)_{/K}.$

The figure on the right side illustrates the

Bruhat-Tits tree associated to the special lin-
ear group of degree two defined over the 2-adic
number field $\mathbb{Q}_{2}$ . Note that the Bruhat-Tits
tree $\mathcal{T}_{K}$ is equipped with the natural action
of $SL_{2}(K)$ ; the action of an element $g$ of
$SL_{2}(K)$ on the tree $\mathcal{T}_{K}$ is explicitly defined by
$g*v=[9^{L}]$ when an $\mathcal{O}_{v}$-lattice $L$ of $V_{0}$ repre-
sents the vertex $v$ . It is known that this action

$-$
$/\mathbb{Q}_{2}$Bruhat-Tits tree associated to $SL(2)$

is strongly transitive and without inversion (refer to [Se77, Chapitre II, Section 1

We continue to use the notation used in the previous subsection. In order to relate
$SL(2)$ -representations of the 3-manifold group $\pi_{1}(M)$ to the theory of Bruhat-Tits trees,
let us consider a closed point $x$ of $\tilde{C}$ and take a lift $y$ of $x$ with respect to $\tilde{\pi}$ (more
specifically, $y$ is a closed point of $\tilde{D}$ satisfying $\tilde{\pi}(y)=x$ ). By elementary facts on algebraic
curves, each closed point $y$ of $\tilde{D}$ endow the rational function field $\mathbb{C}(\tilde{D})$ of $\tilde{D}$ with a discrete
valuation*7 $v_{y}$ , and thus we may consider the Bruhat-Tits tree $\mathcal{T}_{y}=\mathcal{T}_{K_{y}}$ associated to the
special linear group $SL(2)$ defined over the discrete valuation field $K_{y}=(\mathbb{C}(\tilde{D}), v_{y})$ .
Composing the tautological representation $\rho_{taut,\tilde{D}}$ with the canonical action of $SL_{2}(K_{y})$

on the Bruhat-Tits tree $\mathcal{T}_{y}$ , we obtain the action of $\pi_{1}(M)$

$\pi_{1}(M)arrow SL_{2}(K_{y})\rho_{taut,\overline{D}}arrow^{canonica1}$ Aut $(\mathcal{T}_{y})$

on the Bruhat-Tits tree associated to the closed point $y$ of $\tilde{D}.$

$*7$ The discrete valuation $v_{y}$ is nothing but the ‘order at-y” function, namely, the evaluation of $v_{y}$ at a rational function
$f$ defined on $\tilde{D}$ is the order of the Laurent expansion of $f$ around $y.$
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\S 2.3 Step 3: Construction of nontrivial actions

A closed point $x$ (resp. y) of $\tilde{C}$ (resp. $\tilde{D}$ ) is said to be an ideal point if it is contained

in the $\langle(boundary$
” of the projective completion of $C$ (resp. $D$ ). Or in other words, ideal

points are points added in the procedure of the projective completion. The key to the

construction of nontrivial actions of $\pi_{1}(M)$ on the Bruhat-Tits trees is the following

theorem (denoted as the “Fundamental Theorem”’ in [CS83, Theorem 2.2.1]).

We may prove Theorem 2.2 by a certain easy and tautological argument based upon

the fact that the affine coordinate ring of $X(\pi_{1}(M))_{SL(2)}/\mathbb{C}$ is generated by evaluation

functions $\{I_{\gamma}\}_{\gamma\in\pi_{1}(M)}$ . We omit the details of the proof, and the readers are referred to

[CS83, Theorem 2.2.1] or [Sh02, Property 5.4.2 and Property 5.4.4] for details.

By virtue of Theorem 2.2, we obtain a nontrivial action (without inversion) of $\pi_{1}(M)$

on a tree, and thus we may construct an essential surface contained in $M$ as explained in

the previous section. This is an outline of Culler and Shalen’s construction of essential

surfaces in [CS83].

\S 3 Extending towards representations of higher dimension

The content of this section is ajoint work with Takahiro KITAYAMA, Tokyo Institute of

Technology. The details shall appear in [HK14].

As we have already seen in the previous section, Culler and Shalen’s construction of

essential surfaces is based upon the deep study of $SL(2)$ -representations of $\pi_{1}(M)$ . There-

fore it is natural for us to consider the following naive question:

Naive Question:

Cannot we play the same game for representations of $\pi_{1}(M)$ of higher
dimension??
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Or equivalently, are there any extension or any generalisation of Culler-Shalen theory
for representations of $\pi_{1}(M)$ of higher dimension? The main result of [HK14] presents an
affirmative answer to this naive question.

\S 3.1 (Essential) Ribranched surfaces

The main difference between the main result of [HK14] from that of Culler and Shalen
in [CS83] is that the former one provides not (usual) essential surfaces but essential
tribranched surfaces in general. In order to introduce the notion of essential tribranched
surfaces, we first give the definition of tribranched surfaces.

In the definition above we denote by $C(\Sigma)$

the closed subset of $\Sigma$ which corresponds to the
subset $\{0\}\cross[0, \infty$ ) of $\mathbb{C}\cross[0, \infty$ ) under the iden-
tification in (TBSO), by $S(\Sigma)$ the complement

of a sufficiently small tubular neighbourhood
of $C(\Sigma)$ in $\Sigma$ , and by $M(\Sigma)$ the complement of
a sufficiently small tubular neighbourhood of
$\Sigma$ in $M$ . We call the set $C(\Sigma)$ the branch set
of $\Sigma$ . The figure on the right side shows how a
tribranched surface locally looks like.

A tribranched Surface $\Sigma$ (local picture)

The essentiality of tribranched surfaces is defined similarly to the classical concept of
incompressibility (namely the condition (ES1) of Definition 1.1). The precise definition
of essential tribranched surfaces is given as follows.
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Definition 3.2 (Essential tribranched surfaces). A tribranched surface $\Sigma$ in $M$ is said

to be essential if it has following properties:

(ETBSI) for each component $N$ of $M(\Sigma)$ , the natural functorial homomorphism

$\pi_{1}(N)arrow\pi_{1}(M)$ is not surjective;

(ETBS2) for connected components $C,$ $S$ and $N$ of $C(\Sigma)$ , $S(\Sigma)$ and $M(\Sigma)$ re-

spectively, the natural functorial homomorphisms $\pi_{1}(C)arrow\pi_{1}(S)$ and
$\pi_{1}(S)arrow\pi_{1}(N)$ are injective (if they exist);

(ETBS3) there does not exist a connected component of $\Sigma$ which is contained in a

ball in $M$ or a collar of $\partial M.$

The notion of (essential) tribranched surfaces is a certain extension of the notion of

usual (essential) surfaces; indeed usual (essential) surfaces may be regarded as (essential)

tribranched surfaces with the empty branch sets. (Essential) ‘nibranched surfaces seem,

however, to have mysterious and strange-looking properties which have not been observed

for usual (essential) surfaces. We shall propose several problems and questions concerning

(essential) tribranched surfaces in [PLDT14, Section 10].

\S 3.2 Utilising Bruhat-Tits buildings of higher dimension

In order to pursue an extension of Culler and Shalen’s method, we should consider

counterparts of the following algebraic ingredients (used in [CS83]) for higher-dimensional

representations of $\pi_{1}(M)$ :

- the $SL(2)$ -character variety $X(\pi_{1}(M))_{SL(2)}/\mathbb{C}$ ; and

-the Bruhat-Tits tree $\mathcal{T}_{\overline{y}}.$

For the former one it is not difficult at all to generalise the definitions of both the

representation variety $R(\pi_{1}(M))_{SL(2)}/\mathbb{C}$ and the character variety $X(\pi_{1}(M))_{SL(2)}/\mathbb{C}$ to

$SL(n)$ -representations of $\pi_{1}(M)$ ; indeed all one need to do is to replace $SL(2)_{/\mathbb{C}}$ (or

$SL_{2}(\mathbb{C}))$ with $SL(n)_{/\mathbb{C}}$ $(or SL_{n}(\mathbb{C}))$ everywhere in the definitions of $R(\pi_{1}(M))_{SL(2)}/\mathbb{C}$ and

$X(\pi_{1}(M))_{SL(2)}/\mathbb{C}$ in Section 2.1. We may thus define the $SL(n)$ -representation variety

$R(\pi_{1}(M))_{SL(n)}/\mathbb{C}$ and the $SL(n)$ -character variety $X(\pi_{1}(M))_{SL(n)}/\mathbb{C}$ of $\pi_{1}(M)$ , and obtain

a canonical “quotient morphism

$\pi:R(\pi_{1}(M))_{SL(n)}/\mathbb{C}arrow X(\pi_{1})_{SL(n)}/\mathbb{C}.$

Similarly to the $SL(2)$-character variety, the affine coordinate ring of the $SL(n)$-character

variety $X(\pi_{1}(M))_{SL(n)}/\mathbb{C}$ is known to be generated over $\mathbb{C}$ by a finite number of

$evaluation-at-\gamma$
” functions $I_{\gamma}$ , due to the classical result of Claudio Procesi [Pr76].
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For the latter one –the Bruhat-Tits trees– there exist no trees which admit natural

actions of the special linear groups $S\dot{L}(n)$ of higher degree, but due to the vast theory

of Fran\caois Bruhat and Jacques Tits [BT72, BT84] on Euclidean buildings associated to

reductive groups defined over local fields, there exists a higher-limensional (contractible)

simplicial complex equipped with the natural action of $SL(n)$ . It is called the Bruhat-Tits

building associated to $SL(n)$ .
The general definition of the Bruhat-Tits buildings is rather complicated, which we shall

omit. Limiting ourselves to the special linear group $SL(n)$ , however, we may write down

the explicit construction of the Bruhat-Tits building associated to $SL(n)$ as follows (refer

also to [Ga97, Chapter 19 As in Section 2.2, let $K=(K, v)$ be a discrete valuation

field and $\mathcal{O}_{v}$ its valuation ring. Let us denote by $V_{0}$ the standard $n$-dimensional $K$-vector

space. We also consider $\mathcal{O}_{v}$ -lattices of $V_{0}$ and the homothety relation among them.

Definition 3.3 (The Bruhat-Tits building associated $SL(n)$ ). Consider an abstract

simplicial complex $\mathcal{B}_{n,K}$ of dimension $n-1$ constructed in the following manner;

- the vertex set of $\mathcal{B}_{n,K}$ is defined as the set of all homothety classes of $\mathcal{O}_{v}$-lattices

in $V_{0}$ ; and
- (distinct) $k$-vertices $v_{0},$ $v_{1}$ , . . . , $v_{k}$ of $\mathcal{B}_{n,K}$ form a $k$-simplex if and only if there

exist $\mathcal{O}_{v}$-lattices $L_{0},$ $L_{1}$ , . . . , $L_{k}$ of $V_{0}$ representing $v_{0},$ $v_{1}$ , . . . , $v_{k}$ respectively such

that

$\varpi_{v}L_{0}\subset L_{k}\subset L_{k-1}\subset\cdots\subset L_{1}\subset L_{0}$

holds (here $\varpi_{v}$ denotes a uniformiser of $K$ ).

One may verify that the (abstract) simplicial complex $\mathcal{B}_{n,K}$ satisfies all the axioms of

(thick) Euclidean buildings ( la Jacques Tits), which we call the Bruhat- Tits building

associated to $SL(n)_{/K}.$

We cite [AB08] and [Ga97] as basic references on (Euclidean) buildings. Combinatorially

the (Euclidean) building $\mathcal{B}_{n,K}$ consists of the $(n-1)$-dimensional (real) Euclidean spaces

(called apartments of $\mathcal{B}_{n,K}$ ) tessellated by equilateral $(n-1)$-dimensional simplices (called

chambers of $\mathcal{B}_{n,K}$ ), which are glued together along (several) chambers. $*8$ The right figure

of Table 1 illustrates an apartment and a chamber of the Bruhat-Tits buildings associated

to the special linear group of degree three. Due to the contractibility of every apartment

of $\mathcal{B}_{n,K}$ and the axioms of buildings, we readily verify that the Bruhat-Tits building $\mathcal{B}_{n,K}$

is contractible. Note that the Bruhat-Tits building $\mathcal{B}_{2,K}$ associated to the special linear

$*8$ The Bruhat-Tits building $\mathcal{B}_{n,K}$ is said to be Euclidean since each apartment of $\mathcal{B}_{n,K}$ is the Euclidean space.
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group $SL(2)/K$ of degree 2 is none other than the Bruhat-Tits tree $\mathcal{T}_{K}$ associated to
$SL(2)_{/K}$ by definition. The left figure of Table 1 illustrates how the Bruhat-Tits trees are
regarded as Euclidean buildings.

The Bruhat-Tits tree as an Euclidean building An apartment and a chamber of

the Bruhat-Tits building associated to $SL(3)$

Table 1. The Bruhat-Tits buildings

As in the case for Bruhat-Tits trees, the Bruhat-Tits building $\mathcal{B}_{n,K}$ is equipped with the

natural action of $SL_{n}(K)$ ; namely an element $g$ of $SL_{n}(K)$ acts on a vertex $v$ of $\mathcal{B}_{n,K}$ by

$g*v=[gL]$ when an $\mathcal{O}_{v}$-lattice $L$ of $V_{0}$ represents $v$ . This action is known to be strongly

transitive and type-preseruing. $*9$

Now let us take an (affine) algebraic curve $C$ contained in $X(\pi_{1}(M))_{SL(n)}/\mathbb{C}$ and take
$a$ “lift” $D$ of $C$ with respect to $\pi$ . The restriction of the natural quotient map $\pi$ to
$D$ extends to a regular morphism $\tilde{\pi}:\tilde{D}arrow\tilde{C}$ on the smooth projective models of (the

projective completions of) $C$ and $D$ , as in Section 2.1. Let $x$ be a closed point of $\tilde{C}$ and $y$

its lift to $\tilde{D}$ with respect to $\tilde{\pi}$ . Let $v_{y}$ denote the discrete valuation of the field of rational

functions $\mathbb{C}(\tilde{D})$ of $\tilde{D}$ associated to the closed point $y$ and let us regard $\mathbb{C}(\tilde{D})$ as a discrete

valuation field $K_{y}=(\mathbb{C}(\tilde{D}), v_{y})$ . Then by composing the tautological representation

$\rho_{taut,\tilde{D}}:\pi_{1}(M)arrow SL_{n}(\mathbb{C}(\tilde{D}))=SL_{n}(K_{y})$

with the natural action of $SL_{n}(K_{y})$ on the Bruhat-Tits building $\mathcal{B}_{n,K_{y}}$ , we obtain the

action of $\pi_{1}(M)$

$\pi_{1}(M)\underline{\rho_{\iota_{aut,\overline{D}}}}arrow SL_{n}(K_{y})arrow canonica1Aut(\mathcal{B}_{y})$

on the Bruhat-Tits building $\mathcal{B}_{y}=\mathcal{B}_{n,K_{y}}$ associated to the closed point $y$ of $\tilde{D}.$

Similarly to the proof of Theorem 2.2, we may verify the following statement:

$*9$ The fact that the natural action of $SL_{n}(K)$ on the Bruhat-Tits building $\mathcal{B}_{n_{\rangle}K}$ is type-preserving corresponds to the

fact that the natural action of $SL_{2}(K)$ on the Bruhat-Tits tree $\mathcal{T}_{K}$ is without inversion. For the precise definition

of type-preserving actions, refer to [Ga97, Section 52] for example.
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Theorem 3.4 (H.-Kitayama). Let $x$ be a closed point of $\tilde{C}$ and $y$ a lifl of $x$ to
$\tilde{D}$ with respect to $\tilde{\pi}$ . Consider the Bruhat-Tits building $\mathcal{B}_{y}$ associated to the closed

point $y$ of $\tilde{D}$ and let $\gamma$ be an element of $\pi_{1}(M)$ . Then there exists a vertex of $\mathcal{B}_{y}$

which is stabilised by $\gamma$ under the action of $\pi_{1}(M)$ on $\mathcal{B}_{y}$ (defined as above) if the

$evaluation-at-\gamma$ function $I_{\gamma}$ is regular at $x.$

In particular the action of $\pi_{1}(M)$ on the Bruhat-Tits building $\mathcal{B}_{\overline{y}}$ is nontrivial if $\tilde{x}$ is

$an$ ideal point of $\tilde{C}$ and $\tilde{y}$ is a lift of $\tilde{x}.$

We remark that the converse of Theorem 3.4 does not hold in general for higher-

dimensional representations, unlike Theorem 2.2.

\S 3.3 Construction of tribranched surfaces

We briefly summarise how to construct a tribranched surface from a nontrivial (and

type-preserving) action of $\pi_{1}(M)$ on the Bruhat-Tits building $\mathcal{B}_{\overline{y}}$ associated to an ideal

point of the curve $\tilde{D}$ obtained as in Theorem 3.4. The construction is similar to the

method of Stallings et al. which we have already explained in Section 1.

Let $n$ be a natural number greater than or equal to three, and assume that the boundary

of $M$ is not empty when $n$ is strictly greater than three. Let us take a triangulation of
$M$ and lift it to the universal covering space $\tilde{M}$ of $M$ . Therefore $\tilde{M}$ is equipped with the
$\pi_{1}(M)$ -triangulation. When $n$ is strictly greater than three, we may take a $spine^{*10}\tilde{K}$ of $\tilde{M}$

because of the non-empty assumption on the boundary of $M$ . Due to the contractibility

of the Bruhat-Tits building $\mathcal{B}_{\overline{y}}$ , we may construct a $\pi_{1}(M)$-equivariant simplicial map

from $\tilde{M}$ (resp. from the 2-dimensional subcomplex $\tilde{K}$ of $\tilde{M}$ if $n$ is strictly greater than

three) to the 2-skeleton $\mathcal{B}_{\tilde{y}}^{(2)}$ of $\mathcal{B}_{\overline{y}}$ . Composing it with a retraction $\tilde{M}arrow\tilde{K}$ when $n$ is

strictly greater than three, we finally obtain a $\pi_{1}(M)$ -equivalent piecewise-linear map

$\tilde{f}:\tilde{M}arrow \mathcal{B}_{\tilde{y}}^{(2)},$

which induces a piecewise-linear map $f:Marrow \mathcal{B}_{\frac{(}{y}}^{2)}/\pi_{1}(M)$ on the quotient complexes.

Since the target $\mathcal{B}_{\frac{(}{y}}^{2)}/\pi_{1}(M)$ of $f$ is now a simplicial complex of
dimension two, it is absurd to consider the set of all midpoints

of edges.”’ We thus consider for a 2-dimensional simplicial com-

plex $\triangle$ the 1-dimensional subcomplex $Y(\triangle)$ of the barycentric

subdivision of $\triangle$ consisting of the barycentres of all 1- and 2-

simplices and all the edges connecting them. The figure on the

left side shows $Y(\triangle)$ when $\triangle$ consists of a single 2-simplex. We

$*10$ A spine of a topological manifold $M$ is a locally tamely embedded subcomplex $K$ of $M$ so that $K$ is a strong

deformation retract of $M$ and the natural inclusion $K\mapsto M$ is a simple homotopy equivalence.
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$\tilde{M}$

$\pi_{1}(M)-equivariant\downarrow$ $\downarrow$ quotient

Figure 3. Construction of (essential) tribranched surfaces

deal with $Y(\mathcal{B}_{\tilde{y}}^{(2)}/\pi_{1}(M))$ as a counterpart of the “set of all midpoints of edges”’ $E$ of the

quotient graph $\mathcal{T}/\pi_{1}(M)$ in Section 1, and consider the inverse image $\Sigma’$ of $Y(\mathcal{B}_{\frac{(}{y}}^{2)}/\pi_{1}(M))$

under the map $f:Marrow \mathcal{B}_{\frac{(}{y}}^{2)}/\pi_{1}(M)$ (see Figure 3). We readily verify that $\Sigma’$ is a properly

embedded tribranched surface in $M$ . As in Section 1, we may modify $\Sigma’$ into an essential

tribranched surface $\Sigma$ by certain “local surgery.” For details refer to [HK14, Section 4.2].

Consequently we obtain the following theorem, which is the main result of [HK14]:

Theorem 3.5 (H.-Kitayama). Let $n$ be a natural number greater than or equal to

three, and let $M$ be a 3-manifold. Furthermore assume that the boundary of $M$ is

not empty if $n$ is strictly greater than three. Then associated to each ideal point
$\tilde{x}$ of the $SL(n)$ -character variety $X(\pi_{1}(M))_{SL(n)}/\mathbb{C}$ ’ we may construct an essential

tmbranched surface $\Sigma_{\overline{x}}$ contained in $M.$

Conversely, we may also associate to an essential tribranched surface $\Sigma$ a 2-complex

of groups $\mathcal{G}_{\Sigma}$ in a way similar to the construction of the graph of groups $\mathcal{G}s$ associated

to an essential surface $S$ (the details shall appear in [HK14]; refer also to the final part

of [PLDT14, Section 10 These results reveal a close relation between the concepts of

essential tribranched surfaces and (nontrivial) actions of 3-dimensional groups on certain
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simply-connected 2-dimensional complexes:

Essential Nontrivial actions of $\pi_{1}(M)$

tribranched surfaces $clos\underline{erela}$tion on certain simply-connected

2-dimensional complexes
(topological concept) (algebraic group action)

\S 4 Several problems from the arithmetic viewpoint

In this final section we propose several problems and questions concerning actions of
3-manifold groups from the arithmetic viewpoint. The readers are referred to [PLDT14,
Section 10] for problems and questions from the topological viewpoint.

\S 4.1 From the arithmetic topological viewpoint

Arithmetic topology is a research field where one pursues analogous theory and analogous
phenomena between low-dimensional topology and number theory. Recently there has been
drastic progress in this research field by virtue of great efforts of many people including
Masanori Morishita and his colleagues. See also Mizusawa’s article [Mi14] in this volume
for another aspect of the progress of arithmetic topology.

Table 2 is a part of the (what is called) (dictionary” of arithmetic topology, which
indicates correspondences between analogous objects in low-dimensional topology and
number theory. According to this dictionary, the counterparts of the $SL(2)$-character va-
rieties of 3-manifold groups (which are certain kinds of “moduli spaces” of representations
of 3-manifold groups) are the universal deformation spaces of the absolute Galois groups,
which were first introduced by Barry Mazur in [Ma89] and have played crucial roles in
recent arithmetic geometry. $*11$ Moreover it has been widely known that there exist very
interesting (rigid analytic) curves in the universal deformation space of (certain) residual
Galois representations of the absolute Galois group $G_{\mathbb{Q}}$ of the rational number field $\mathbb{Q}$ :
namely curves of families of $p$ -adic modular for,$ms$ (Hida family, Coleman family, and

ultimately the “eigencurve”).

Question 4.1. For such a curve of a family of $p$ -adic modular forms, could we play the
same (or at least analogous) game as Culler and Shalen’s $method’$?

Note, however, that there exist several crucial difficulties in this setting. Firstly, curves
of families of $p$-adic modular forms are not algebraic curves but rigid analytic curves,

$*11$ For example, the deep study of the universal deformation spaces of Galois representations is one of the keys of
Andrew Wiles’s solution of Fermat’s Last Theorem.
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Table 2. The (dictionary of arithmetic topology

and thus we could not apply results on (classical) birational geometry of algebraic curves

to them and need to heavily utilise rigid analytic geometry. Secondly, although we may

interpret a point of rigid analytic curves as a valuation of a certain Banach algebra, it is

not a discrete valuation in general. Hence the associated Bruhat-Tits building no longer

admits a structure as a simplicial complex. Nevertheless there exists a possibility for us

to obtain a certain action of the absolute Galois group on $a$ (combinatorially complicated)

object, and it might be interesting to study such a mysterious action of the absolute Galois

representation.

\S 4.2 From the zeta functional viewpoint

As we have also seen in Section 1, we may associate to an essential surface $S$ contained

in a 3-manifold $M$ a graph of groups $\mathcal{G}s$ in a canonical manner. Moreover the underlying

graph of $\mathcal{G}s$ is a finite graph due to the compactness of $M$ . For a general finite graph $\mathcal{G},$

we may consider the zeta function of the graph $\mathcal{G}$ (or the Ihara zeta function of $\mathcal{G}$ ) $\zeta_{\mathcal{G}}(u)$ ,

which has its origin in Ihara’s thorough study of a $p$-adic analogue of the Selberg zeta
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functions in [Iha66] and has been developed by many people including Toshikazu Sunada,
Ki-ichiro Hashimoto, Hyman Bass and Audrey Terras.
Under the background above let us consider the zeta function of the graph (of groups)

$\mathcal{G}s$ associated to an essential surface $S$ , which seems to contain certain information of
the essential surface $S$ . Moreover if the essential surface $S$ is associated to an ideal point
of (a curve $C$ contained in) the $SL(2)$-character variety $X(\pi_{1}(M))_{SL(2)}$ , we may obtain
another zeta function; namely the Hasse-Weil zeta function associated to $X(\pi_{1}(M))_{SL(2)}$

(or associated to $C$). See also Harada’s article [Harada14] in this volume for the Hasse-
Weil zeta functions of $SL(2)$ -character varieties. As Ihara has already observed in [Iha68],
the zeta functions of certain graphs might have close relations with the Hasse-Weil zeta
functions of certain algebraic curves, and thus it might be interesting to investigate the
relation between the zeta functions of the graphs associated to essential surfaces and the
Hasse-Weil zeta functions of character varieties.
We finally give one remark. When we consider the zeta function of $\mathcal{G}_{S}$ , we ignore the

information of vertex and edge groups of $\mathcal{G}s$ , and the underlying graph (that is, the dual
graph of $S$ ) might become too simple. For example, let us consider the knot complement
$V_{K}$ of an arbitrary knot $K$ . In this case $V_{K}$ contains the Seifert surface $S_{K}$ of $K$ which is
essential. The graph of groups $\mathcal{G}_{S_{K}}$ associated to the Seifert surface $S_{K}$ then consists of a
single vertex with the trivial vertex group and a single edge representing $S_{K}^{*12}$ Therefore
the zeta function $\zeta_{\mathcal{G}s_{K}}(u)$ reduces to an uninteresting function $(1-u)^{-1}$ because $\mathcal{G}_{S}$ admits
only one prime cycle of length one. $*13$ This observation implies that we should impose
certain constraints on essential surfaces (or on 3-manifolds themselves) when we consider
the zeta functions of the graphs associated to them, or more ultimately, we should try
to construct more sophisticated zeta-function-like invariants of graphs of groups which
reflect the information of their vertex and edge groups.
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