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1 Preliminaries

A virtual knot diagram is presented by a knot diagram having virtual crossings as well as
real crossings in Fig. 1. Two virtual knot diagrams are equivalent if one can be obtained
from the other by a finite sequence of generalized Reidemeister moves in Fig. 2. The
equivalence class of virtual knot diagrams modulo the generalized Reidemeister moves is
called a virtual knot.
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Fig. 1 Crossing types
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Fig. 2 Generalized Reidemeister moves

Virtual knots can be described by Gauss diagrams. The Gauss diagram of a virtual knot
is an oriented circle as the preimage of the immersed circle with chords connecting the
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preimages of each real crossing. We specify crossing information on each chord by directing

the chord toward the under crossing equipped with the sign (Fig. 3) of the crossing. The

generalized Reidemeister moves can be encoded in the Gauss diagrams as in Fig. 4 (see

[1]). It is well-known that there exists an one-to-one correspondence between all virtual

knots and all equivalence classes of Gauss diagrams module the generalized Reidemeister

moves (see [4]).
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Fig. 3 The sign of a real crossing
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Fig. 4 Generalized Reidemeister moves of Gauss diagrams

Both of the moves depicted in Fig. 5 are called forbidden moves, and denoted by $F.$

These are presented by local moves of Gauss diagrams in Fig. 6. It is well known that

any virtual knot can be deformed into any other virtual knot by using forbidden moves.

Let $K$ be a virtual knot, and $D$ a virtual knot diagram of $K$ . If a virtual knot diagram

$D$ can be transformed into a trivial knot diagram by a set of generalized Reidemeister

moves and forbidden moves, we denote the minimum number of times of forbidden moves

needed to transform $D$ into a trivial knot diagram by $u_{F}(K)$ and call it the unknotting

number of $K$ by forbidden moves.
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Fig. 5

Fig. 6

To estimate unknotting numbers by forbidden moves, we define invariants for virtual

knots. Let $G$ be a Gauss diagram of a virtual knot $K$ , and $\gamma=\overline{P}\partial$ a chord in $G$ with

sign $\epsilon$ ( $\gamma$ ) such $\gamma$ is oriented from $P$ to $Q$ . We give the signs to the endpoints $P$ and $Q,$

denoted by $\epsilon(P)$ and $\epsilon(Q)$ , respectively, such that $\epsilon(P)=-\epsilon(\gamma)$ and $\epsilon(Q)=\epsilon(\gamma)$ . For

a chord $\gamma=\overline{P}\partial$ in a Gauss diagram $G$ , the specified arc of $\gamma$ is the arc $\alpha$ in $\mathbb{S}^{1}$ with

endpoints $P$ and $Q$ oriented from $P$ to $Q$ with respect to the orientation of $\mathbb{S}^{1}$ . The index

of $\gamma$ is the sum of the signs of all the points on $\alpha$ except $P$ and $Q$ , and denoted by $i(\gamma)$ .

Definition 1.1. Using the index $i(\gamma)$ , we define the $n$ -writhe $J_{n}(K)$ , the index polynomial

$p_{t}(K)$ and the odd writhe polynomial $f_{K}(t)$ for a virtual knot $K$ (see [11], [6], and [3]):

1. For a non-zero integer $n$ , the $n$-writhe is given by

ゐ
$(K)= \sum_{i(\gamma)=n}\epsilon(\gamma)$

,

2. the index polynomial is given by

$p_{t}(K)=\sum_{\gamma}\epsilon(\gamma)(t^{|i(\gamma)|}-1)$
,

3. the odd writhe polynomial is given by

$f_{K}(t)= \sum \epsilon(\gamma)t^{1-i(\gamma)}.$

$i(\gamma)$ is odd

These are invariants for a virtual knot $K$ . The index polynomial $p_{t}(K)$ and the odd

writhe polynomial $f_{K}(t)$ is induced from the $n$-writhe $J_{n}(K)$ .
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Proposition 1.2 ([11]).

1. The following equation holds for $p_{t}(K)$ and $J_{n}(K)$ :

$p_{t}(K)=\sum_{n>0}\{J_{n}(K)+J_{-n}(K)\}(t^{n}-1)$ , (1)

2. the following equation holds for $f_{K}(t)$ and $J_{n}(K)$ :

$f_{K}(t)= \sum_{n\in \mathbb{Z}}J_{1-2n}(K)t^{2n}$
. (2)

We define a polynomial with coefficients of the $n$-writhe $J_{n}(K)$ .

Definition 1.3. For a virtual knot $K$ , the polynomial invariant $q_{t}(K)$ is given by

$q_{t}(K)=\sum_{n\in \mathbb{Z}}J_{n}(K)(t^{n}-1)$

$= \sum_{\gamma}\epsilon(\gamma)(t^{i(\gamma)}-1)$
.

The polynomial $q_{t}(K)$ is an invariant for $K$ , and equivalent to the affine index polyno-

mial (see [9]) fundamentally. It induces the index polynomial $p_{t}(K)$ and the odd writhe
polynomial $f_{K}(t)$ from equations (1), (2).

2 Forbidden moves and $q_{t}(K)$

We consider the relation between the polynomial invariant $q_{t}(K)$ and forbidden moves.

Theorem 2.1. Let $K$ and $K’$ be two virtual knots which can be transformed into each

other by a single forbidden move. Then we have

$q_{t}(K)-q_{t}(K’)=(t-1)(\pm t^{p}\pm t^{m})$ ,

for some integers $k$ and $\ell.$

Proof. Let $K$ and $K’$ be virtual knots which can be transformed into each other by a
single forbidden move. Virtual knots $K$ and $K’$ are represented by Gauss diagrams $G$ and
$G’$ respectively in cases (I) or (II) of Fig. 7. We only show the case (I) since the other

case can be treated similarly. Chords $\gamma_{i}$ and $\gamma_{i}’(i=1,2)$ of $G$ and $G’$ are the two chords

in the part where a forbidden move is applied. For chords $\gamma_{i}$ and $\gamma_{i}’$ , we have

$i(\gamma_{1}’)=i(\gamma_{1})-\epsilon(\gamma_{2})$ ,

$i(\gamma_{2}’)=i(\gamma_{2})+\epsilon(\gamma_{1})$
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,where $\epsilon(\gamma_{i})=\epsilon(\gamma_{i}’)$ . Therefore,

$q_{t}(K)-q_{t}(K’)=\epsilon(\gamma_{1})(t^{i(\gamma_{1})}-1)+\epsilon(\gamma_{2})(t^{i(\gamma_{2})}-1)$

$-\epsilon(\gamma_{1}’)(t^{i(\gamma_{1}’)}-1)-\epsilon(\gamma_{2}’)(t^{i(\gamma_{2}’)}-1)$

$=\epsilon(\gamma_{1})t^{i(\gamma_{1})}+\epsilon(\gamma_{2})t^{i(\gamma_{2})}-\epsilon(\gamma_{1})t^{i(\gamma_{1})-\epsilon(\gamma_{2})}-\epsilon(\gamma_{2})t^{i(\gamma_{2})+\epsilon(\gamma_{1})}$

$=\epsilon(\gamma_{1})t^{i(\gamma_{1})}(1-t^{-\epsilon(\gamma_{2})})+\epsilon(\gamma_{2})t^{i(\gamma_{2})}(1-t^{\epsilon(\gamma_{1})})$

$=\{\begin{array}{ll}(t-1)(t^{i(\gamma_{1})-1}-t^{i(\gamma_{2})}) (\epsilon(\gamma_{i})=1)(t-1)(-t^{i(\gamma_{1})}+t^{i(\gamma_{2})}) (\epsilon(\gamma_{1})=1, \epsilon(\gamma_{2})=-1)(t-1)(-t^{i(\gamma_{1})-1}+t^{i(\gamma_{2})-1}) (\epsilon(\gamma_{1})=-1, \epsilon(\gamma_{2})=1)(t-1)(t^{i(\gamma_{1})}-t^{i(\gamma_{2})-1}) (\epsilon(\gamma_{i})=-1)\end{array}$

口

$G G’ G G’$(I) (II)

Fig. 7

Corollary 2.2. Let $K$ be a virtual knot, and $q_{t}(K)=(t-1)\sum_{n\in \mathbb{Z}}a_{n}t^{n}$ . Then,

$u_{F}(K) \geq\frac{\sum_{n\in \mathbb{Z}}|a_{n}|}{2}.$

From Theorem 2.1, we have the estimate of the unknotting number for a virtual knot

$K$ by forbidden moves using the value of $J_{n}(K)$ as the following:

$u_{F}(K) \geq\frac{\sum_{n\neq 0}|J_{n}(K)|}{4}.$

We know some estimates of the unknotting number $u_{F}(K)$ .

Theorem 2.3. We may estimate $u_{F}(K)$ by using values of $p_{t}(K)$ and $f_{K}(t)$ (see [13],

[2]):

1. Let $K$ be a virtual knot, and $p_{t}(K)=(t-1)\sum_{n\geq 0}b_{n}t^{n}$ . Then,

$u_{F}(K) \geq\frac{\sum_{n\geq 0}|b_{n}|}{2},$
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2. let $K$ be a virtual knot, and $f_{K}(t)= \sum_{n\neq 0}c_{n}t^{n}$ . Then,

$u_{F}(K) \geq\frac{\sum_{n\neq 0}|c_{n}|}{2}.$

Since the polynomial invariant $q_{t}(K)$ induces the index polynomial $p_{t}(K)$ and the odd
writhe invariant $f_{K}(t)$ , we have

$u_{F}(K) \geq\frac{\sum_{n\neq 0}|a_{n}|}{2}\geq\frac{\sum_{n\neq 0}|J_{n}(K)|}{4}, \frac{\sum_{n\geq 0}|b_{n}|}{2}, \frac{\sum_{n\neq 0}|c_{n}|}{2}.$

We see that the estimate of $u_{F}(K)$ by $q_{t}(K)$ is the strongest estimate in these.

3 Examples

We calculate unknotting numbers of virtual knots by forbidden moves by Corollary 2.2.

Example 3.1. For a positive even number $m$ , let $K_{m}$ be a virtual knot with a diagram
$D_{m}$ in Fig. 8. The virtual knot $K_{m}$ is represented by the Gauss diagram $G_{m}$ in Fig. 9.
Indexes of all chords of $G_{m}$ are calculated as the following:

$i(\gamma_{1})=-m, i(\gamma_{2})=-1\cdots i(\gamma_{m+1})=-1,$

$i(\gamma_{m+2})=-1\cdots i(\gamma_{2m+1})=-1, i(\gamma_{2m+2})=m.$

Fig. 8 The virtual knot $D_{m}$

Fig. 9 The Gauss diagram $G_{m}$
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Calculating values of invariants $Pt,$ $f(t)$ , $J_{n}$ and $q_{t}$ for a virtual knot $K_{m},$

$p_{t}(K_{m})=2m(t-1)$ , (3)

$f_{K_{m}}(t)=2mt^{2}$ , (4)

$J_{-m}(K_{m})=-1, J_{-1}(K_{m})=2m, J_{m}(K_{m})=1$ , (5)

$q_{t}(K_{m})=(t-1)\{t^{m-1}+\cdots+1+(-2m+1)t^{-1}+\cdots+t^{-m}\}$ . (6)

From equations (3), (4), (5) and (6), we have equations (7), (8), (9) and (10) respectively.

$u_{F}(K_{m})\geq m$ , (7)

$u_{F}(K_{m})\geq m$ , (8)

$u_{F}(K_{m}) \geq\frac{m+1}{2}$ , (9)

$u_{F}(K_{m})\geq 2m-1$ . (10)

Since we may transform Gauss diagram $G_{m}$ into a trivial knot as shown in the Fig. 10
by $2m-1$ forbidden moves, we obtain $u_{F}(K_{m})=2m-1$ . Therefore there exist a virtual

knot $K_{k}$ such that the unknotting number $u_{F}(K_{k})$ can be determined from $q_{t}(K_{k})$ though

it cannot be determined from $p_{t}(K_{k})$ , $f_{K_{k}}(t)$ and $J_{n}(K_{k})$ for any natural number $k.$

$m+1\downarrow$

Fig. 10

Example 3.2. Table 1 shows unknotting numbers for virtual knots with up to 4 real

crossing points (see [5]) by forbidden moves using the value of $q_{t}.$
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$\overline{\frac{Ku_{F}(K)Ku_{F}(K)Ku_{F}(K)Ku_{F}(K)Ku_{F}(K)}{0.104.2014.4834.7614.1043-5}}$

$2.1$ 1 4.2124.4914.7714.105 1-5

3.1 1 4.22 1 4.50 1 4.78 3-4 4.106 2-3

3.2 1 4.23 1 4.51 1 4.79 14.107 1-4

3.3 2 4.24 2-3 4.5214.8034.108 1-4

3.4 1 4.25 2 4.53 2 4.81 2

3.5 2-3 4. $26$ 2 4. $54$ 1 4. $82$ 3

3.6 1-4 4. $27$ 1-2 4. $55$ 1 4. $83$ 2

3.7 2-3 4. $28$ 2 4.5614.841-2

4.1 2 4.29 2 4.57 1 4.85 2

4.2 1-2 4. $30$ 1-2 4.5814.862-3

4.3 2 4.31 1 4.59 1 4.87 4-5

4.4 1 4.32 1 4.60 1 4.88 1

4.5 1 4.33 1 4.61 1-4 4. $89$ 4

4.6 1-2 4.3414.623-4 4. $90$ 1-2

4.7 2 4.35 1 4.63 2 4.91 4-5

4.8 1-2 4. $36$ 2 4. $64$ 1-2 4. $92$ 3-5

4.9 1-2 4. $37$ 3 4. $65$ 2-4 4. $93$ 2

4.10 1-2 4. $38$ 1 4. $66$ 2-3 4. $94$ 1-5

4.11 2 4.39 1 4.67 1-2 4. $95$ 3-5

4.12 1-2 4. $40$ 1 4. $68$ 1-3 4. $96$ 2-3

4.13 1-2 4. $41$ 1 4. $69$ 1-2 4. $97$ 1-2

4.14 1-2 4. $42$ 1 4. $70$ 1-2 4. $98$ 1-3

4.15 2 4.43 2 4.71 1-2 4. $99$ 1-3

4.16 1 4.44 1-2 4. $72$ 1-2 4.100 2-7

4.17 1 4.45 2 4.73 2 4.101 3-4

4.18 1 4.46 1-2 4. $74$ 1 4.102 2-4

4.19 1-2 4. $47$ 2 4. $75$ 1-2 4.103 3-6

Tab. 1 Unknotting numbers
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