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Abstract

We study Okada’s conjecture on {q,t)-hook formula of general d-complete posets. Proctor
classified d-complete posets into 15 irreducible ones. We try to give a case-by-case proof of
Okada’s (g, t)-hook formula conjecture using the symmetric functions. Here we give a proof of
the conjecture for birds. in which we use Gasper’s identity for VWP-series 12W11.

1 Introduction and the main results

Let N (resp. Z) be the set of nonnegative integers (resp. integers). Throughout this paper we use
the standard notation for g-series (see [1, 3, 4, 5]):

B =

for any integer n. Usually (a; q)y, is called the g-shifted factorial, and we frequently use the compact
notation:

(a1,02,. .., 8r;@)n = (a1;@)n(a2; On - - (ar; @n.

The ,11¢, basic hypergeometric series is defined by

oo
ey , RN ¢ 4 )
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A basic hypergeometric series 110, is said to be balanced if it satisfies gay - - - ary1 = b1 --- b, and

z = g, well-poised if it satisfies ga; = asby = -+ = a,4+1br, very well-poised if it is well-poised
1 L

and satisfles by = af and by = —af (see [3, §2.1]). If r{1¢, is very well-poised series, we use the

notation
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r+lWr(a1;a4v cee Q415 9, Z) = 1‘+1¢r [ %

Proposition 1.1. Gasper’s formula ([2, p.1065, (3.2)], [3, pp.250, Ex.8.15]) reads as follows:

¢{ a,bcd qj (a/d.bg/d,cq/d, abc/d; q)oo
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ba/a,cq/a,dg/a’ P a2 | T (g/d, ab/d, ac]d, beq/d; q)oo
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where at least one of a, b, ¢ is of the form ¢~™ (n =0,1,...).




We use the notatation in [8]. For nonnegative integers n and m we write

V= ey = E D
f(n)m)—fq,t(nam)_ (tm,q)n 3
and .
F) = Faigt) = 202,

where ¢ and ¢ are parameters and z is a variable (see [8, (5)(6)]). Hereafter we use the convention
that fg.+(n;m) = 0 for a negative integer n < 0.

We use the notation in [7, 12] for partitions. Let A = (A1, Az,...) be a partition, i.e., Ay >
A2 > ... with finitely many ); unequal to zero. The length and weight of )\, denoted by £()\) and
[A], are the number and sum of the non-zero A; respectively. When |\| = N we say that A is a
partition of N, and the unique partition of zero is denoted by . The multiplicity of the part ¢ in
the partition X is denoted by m;(\). We identify a partition with its diagram (Ferrers graph)

D) ={(5)€Z®: 1<j< M} (1.3)

The conjugate X' of X is the partition obtained by reflecting the diagram of A in the main diagonal.
A partition is said to be strict if we have strict inequalities A\; > Ag > -+ > A\ > 0 with r = £(A).
If A is a strict partition, then its shifted diagram is defined by

S\ ={(4,7)€2Z®:i<j<AN+i—1}. (1.4)

Hereafter we may use the same symbol A to represent its diagram (or shifted diagram).

We use standard notation and terminology of [12, Chapter 3| related to posets. We write z < y
if x is covered by y, i.e., z < y and there is no z € P such that z < z < y. A Hasse diagram is
a diagram in which one represents each element of P as a vertex in the plane and draws an edge
that goes upward from z to y whenever y covers x.

Definition 1.2. ([11}, [12, §3.15]) Let P be a poset. A P-partition is a map 7 : P — N satisfying
z<yinP = nw(z)>n(y)inN (1.5)
Let &/ (P) denote the set of P-partitions.

First, we review the definition and some properties of d-complete posets. (See {9, 10].) For
k > 3, we denote by di(1) the poset consisting of 2k — 2 elements, called double-tailed diamond
poset, with the Hasse diagram depicted in Figure 1. The two incomparable elements are called the
sides, the k — 2 elements above them are called neck elements, and the maximum and minimum
elements are called top and bottom respectively. If k = 3 then we call d3(1) a diamond. Let P be
a poset. An interval [w,v] = {z € P : w < z < w} is called a di-interval if it is isomorphic to
dr(1) A di -interval (k > 4) is an interval isomorphic to di(1) — {top}. A dj -interval consists of
three elements z, y and w such that w is covered by both z and y. A poset P is d-complete if it
satisfies the following three conditions for every k > 3:

(D1) If I is a dj -interval, then there exists an element v such that v covers the maximal elements
of I and IU {v} is a di-interval.

(D2) If I = [w,v] is a di-interval and the top v covers v in P, then u € I.
(D3) There are no dj -intervals which differ only in the minimal elements.
We quote a proposition due to Proctor [9, Proposition in §3] (also see [8, Proposition 4.1]):

Proposition 1.3. ([9, Proposition in §3]) Let P be a d-complete poset. Suppose that P is
connected, i.e., the Hasse digram of P is connected. Then we have
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Figure 1: A double-tailed diamond poset dg(1)

(a) P has a unique maximal element vp.

(b) For each v € P, every saturated chain from v to the maximum element vy has the same
length.

Hence P admits a rank function r : P — N such that r(z) = r(y) + 1 if = covers y.

A rooted tree is a poset which has a unique maximal element, and is such that each non-
maximal element is covered by exactly one other element. Let P be a poset with a unique maximal
element. The top tree T of P is the filter (i.e., z € T and y > 2 implies y € T) of P, whose vertex
set consists of all elements z € P such that every ¥y > z is covered by at most one other element
of P. T is clearly a rooted tree and an element of T is called top tree element. Afterwards we use
a particular kind of rooted tree. Let f > 0 and h > g > 0 be integers. The rooted tree Y (f; g, k)
consists of one branch element above which a chain of f elements has been adjoined and below
which two non-adjacent chains with g and h elements, respectively.

Let P be a connected d-complete poset with top tree T. An element x € P is said to be acyclic
if z € T and it is not in the neck of any dg-interval for any £ > 3. An element of P is said to
be cyclic if it is not acyclic. Let @ be a d-complete poset containing an acyclic element y. Let
P be a connected d-complete poset. By Proposition 1.3 (a), let z denote the unique maximal
element of P. Then the slant sum of Q with P at y, denoted QY\,P, is the poset formed by

creating a covering relation x < y. A d-complete poset P is slant irreducible if it is connected and
it cannot be expressed as a slant sum of two non-empty d-complete posets. Suppose that P is a

connected d-complete poset with top tree T. An edge x < y of P is a slant edge if z,y € T and
y is acyclic. In [9] Proctor proves P is slant irreducible if and only if it contains no slant edges.
Also, P is slant irreducible if and only if every acyclic element is a minimal element of its top
tree. ([9, Proposition C of §4]) Given any connected d-complete poset P, first locate all of its slant
edges. These may be erased in any order to produce a collection Py, P;,... of uniquely determined
smaller non-adjacent connected d-complete posets. No new slant edges are created, and so each of
Py, P,,... are slant irreducible. We say that Py, P,,... are the slant irreducible components of P.
If P is an irreducible component, then its top tree T is of the form Y (f; g, h) for some f > 0 and
h > g > 1 (]9, Theorem of §5]). In the paper he establish the following theorem, which describe
the structure of any connected d-complete poset.

Theorem 1.4. (Proctor [9, Theorem in §4]) Let P be a connected d-complete poset. It may be
uniquely decomposed into a slant sum of one element posets and irreducible components. The top
tree of P is an analogous slant sum of the top trees of the irreducible components.

In §7 of [9] Proctor defines 15 disjoint classes of irreducible components %, ..., %5 and have
shown that these 15 disjoint classes exhaust the set of all irreducible eomponents. For the list of 15
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classes of irreducible d-complete posets see [9, Table 1]. The diagram (1.3) of an ordinary partition
X or the shifted diagram (1.4) of a shifted partition X is regarded as a poset by defining its order
structure as

(1,71) > (i2,J2) <= i1 <42 and j; < ja. (1.6)

By this order the poset represented by a diagram P = D()) is called a shape with its top tree
T = Y(f;9.h) where f = 0, g = £(\) and h = ¢(X'). We use €; to express the class of shapes
which is a class of irreducible d-complete posets defined in [9].

Another important class %3 is the set of posets P = S(«) of shifted diagrams for strict partitions
a, which is called shifted shapes with its top tree T = Y (f,g,h) where f = g =1 and h = £(a).
Its Hasse diagram is designated by Figure 1 in which the first row has a; vertices, the second row
asy vertices and so on. When depicting these posets as a Hasse diagram, we use the convention
that a northwest vertex is larger than another in southeast. Here the larger dots and the heavier
edges indicate the top tree. For later use we denote by P = Py(a) the Shifted shape associated
with a strict partition o. If P = Py(«) is the shifted shape associated with a strict partition «,

T T

P YO

0:..

Figure 2: Shifted shapes Cs

then P-partition
™= (Tij)(i,j)eS (@) (1.7)

satisfies
Tij S Witlg, Mg S Tijtls (1.8)

whenever the both sides defined. For example, Figure 1 is a P-partition for shifted shape (8, 5,2, 1).

Figure 3: P-partition for shifted shape (8,5,2,1)

In this paper we mainly consider only birds %3 (Figure 1). Let a = (a1,a2) and 8 = (81, B2)
be strict partitions such that a; > a3 > 0 and B; > (B2 > 0. Define the bird P = P3(a, 8; f) by

P=PgUPRUP,UPr
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Figure 4: Birds C;

where
Pa={(1,j): -f+1<j <1},
Pr={(,j) 1 i<j<ei+i-1(E=12)},
PLo={(,j):j<i<B+i-1(=12)}

Pr={(ii): 2<i< f+2}

as a set and we regard it as a poset by defining its order structure (1.6) if and only if the both of
(1,71) and (i2,j2) are in Py U Pg U P, or in Pr (see [9, Table 1 and Figure 5.3]). We call Py the
head, Pr the tail, Pr (resp. Py,) the right (resp. left) wing of P. The Hasse diagram of a bird is
as in Figure 1. Strictly speaking, we have to impose the condition a; = az+1and 8; = 82+ 1 to
let P be slant irreducible, but here we don’t need this condition. For example, Figure 1 stands for
P = P3((4,3), (4,2);2). We have the chain [v,v2] (resp. [wz,w]), which is the head (resp. tail) of

Figure 5: Bird P = P5((4,3),(3,2);2) and banner P = Ps((9,6,3,2);2)

P. Recall that a P-partition 7 satisfies the condition (1.5). When P = P3(a, 3; f), we associate
the quadruple (o, 7; p, §) with 7, where
0 =(0ij)ierns T=(Tij)Gier, P=(pii=o,...f, 0= (0i)izo,..r
With . . . . .
055 =7(1,7) for (i,7) € P, 1.5 =7(4,1)  for (i,j) € P, (1.9)
p—iv1 =m(l,4) for (1,) € Py, 0;_2 =m(s,i) for (3,%) € Pr. ’

Hence we use the convention that po = 011 = 711 and o = g22 = 122. We write 7 = (0, 7;p,80)
hereafter. If P = P3((4,3), (4,2); 2) then = is as the left picture of Figure 1.



Figure 6: A P-partition

Let P be a connected d-complete poset and T its top tree. Let C be a set, called a set of colors,
whose cardinality is the same as T'. A coloring of P a coloring map c of P to the set of colors C.
P is said to be properly colored if the coloring map c satisfies

(C1) ¢(z) # c(y) if z and y are incomparable,
(C2) c(x) # c(y) if z covers y.
It is simply colored if, in addition:

(C3) whenever an interval [w, v] is a chain, the colors of the elements c(z) in the interval [w, v] are
distinct.

If P is a rooted tree, then it is simply colored by the identity map P — P, i.e. we assign a distinct
color to each vertex of P.

Proposition 1.5. ([10, Proposition 8.6]) Let P be a connected d-complete poset and T its top
tree. Let C be a set whose cardinality is the same as T. Then a bijection ¢ : T — C can be
uniquely extended to a proper coloring ¢ : P — C satisfying the following condition:

(C4) If [w,v] is a di-interval then c(w) = ¢(v).
Such a map ¢: P — I is called a d-complete coloring.

For example, in the both picture of Figure 1 because [wg,vs] (resp. [wi,v1]) is a ds-interval
(resp. ds-interval), wo (resp. w1, w) and va (resp. wvi, v) have the same color. In Figure ??
v1 (resp. v2) and vs (resp. v4) have the same color since [v3,vi] (resp. [vs,v2] is a dg-interval,
however, the v; and vy have distinct colors since the both are in the top tree.

Proposition 1.6. (1) If ¢ is a strict partition with length> 2, then the top tree of the shifted
shape P = P,(«) is given by

T={(1,7) : 1<j<a1}U{(2,2)} (1.10)

and a d-complete coloring ¢: P — {0,0',1,2,...,a; — 1} is given by

j—1 ifi<y,
c(3,j) =40 if i = j and ¢ is odd, (1.11)
0o if 2 = j and 1 is even.

Hence we see that P has the top tree Y (1;1,a1 — 1).

(2) If a and B are strict partitions with length= 2 and f > 1 then the top tree of the bird
P = P3(a, B; f) is given by

T={(Lj7): -f+1<j<a}U{(51):1<i< B}, (1.12)
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and a d-complete coloring c: P — {—f,...,-1,0,1,2,...,a0 — 1} U{1,2,..., (81 — 1)} is
given by

j—1 ifi < j,1ie., (i,5) € Pr,

(i—j) if1<j<i,ie,(ij) € R, (1.13)
j—1 ifi=1landj<]1,ie., (i) € Pu,

—i+2 ifi=j>2 ie, (i,j) € Pr.

Hence we see that P has the top tree Y (f;01 — 1,61 — 1).

C(i,j) =

Let P be a connected d-complete poset and ¢ : P — C a d-complete coloring. Let z; (i € C)
be indeterminates. For a P-partition = € & (P), we put

i
vEP

As in [8, p.412] we associate a monomial z[Hp(v)] to each v € P, called the hook monomial, which
is uniquely determined by induction as follows:

(a) If v is not the top of any dg-interval, then we define

2[Hp()] = [] 2ew)-

w<y

(b) If v is the top of a dg-interval [w,v], then we define

z[Hp(z)] - Z[HP(y)]'

AP0 = = ]

where z and y are the sides of [w, v].

Further we denote z[Hp| = { z[Hp(v)] : v € P } the set of the hook monomials, and let F (z[Hp); g, t)
denote the product of ' (2[Hp(v)]; q,¢t) over v € P, ie.,

F(z[Hpl;q,t) = [ F (lHP()]i0,1)-

vEP

Let P be a connected d-complete poset with the maximum element vg, and the rank function
: P - N. Let T be the top tree of P. Take T as a set of colors and let ¢ : P — T be the
d—complete coloring such that ¢(v) = v for all v € T. Let P = P U {1} be the extended poset,
where T is the new maximum element of P which covers vy. Then P has its top tree T = T LI {1},

where ¢: P — T with 1) =1

Definition 1.7. Given a P-partition = € &/(P), let 7 : P — N be the extensions of 7 defined by
7r(1) = 0. Define a weight Wp(o;q,t) by putting

[I fa@) - nw)sde)

Wp(m;q,t) = ou 5w : 1.14)
P S T (@) — o) e ) F o @) —ohelos) ) (

xz,yEP
z<y, c(z)=c(y)

where ¢(z) ~ ¢(y) means that ¢(z) and ¢(y) are adjacent to each other in T, and

d(.’L’, y) - T(y) - ’;(.’E) — 1, e(x, y) T(y) (:E)

Note that if c(z) ~ c(y) then r(y) — r(z) is odd, and if ¢(z) = c(y) then r(y) — r(z) is even, hence
d(z,y) and ez, y) are nonnegative integers.
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Now we quote Okada’s (g, t)-hook formula conjecture.

Conjecture 1.8. (Okada [8]) Let P be a connected d-complete poset. Using the notations defined
above, we have
Z Wp(m;q,t)z" = F (2[Hp|; q,t) . (1.15)
rEA(P)

Okada has proven this conjecture for Shapes and Shifted shapes. The purpose of this paper is
to prove his conjecture for birds and banners.

Theorem 1.9. Okada’s (q,t)-hook formula conjecture is true for birds and banners.

Given a P-patition 7 € & (P) for the shfted shape P = P,(a) for a strict partition a, we write

f;\ID( miq,t) H H f(7r1,] — Mi—m,j—m~1; )f(ﬂ'z,j _ﬁi—m—l,j—mﬂn) (1.16)

f Tij — Ti—m,j— m;"’)f("rz] Wi—m—l,j—m—l?"n)’

(i, 3)60 m2>0

H H fmii = Ticm—1iem; M) f (Wi — Ti—m—2i-m-1;m + 1) (1.17)

f2(mq.t)
@ 7"1,1. — Mi—m,i—m> m)f("ri,i — Mi—m—2,i—m—2; M+ 1)

>0
(i,1)€a mz9

Here we use the convention that m;; = 0if ¢ < 0 or j < 0. Further we use the following short
notation. Let m and n be positive integers such that m < n. When p = (pm,...,pn) and

0 = (Om,...,0,) satisfy
OSPnS"'SpmS(}mS"‘<0n) (118)

we write

S f(pic1 — pi; 0)f(Bi-1 — pi; 0)f(6; — pi—1;0)f(8; — 6;_1;0)
1 f(6s = pis i) f(0i — pisi+ 1) : (1.19)

7. (p,05q,t) =
i=m+1

Proposition 1.10. (1) Let a be a strict partition of length » and P = P2(a) the associated
shifted shape. If m = (7;;) (i j)eq is @ P-partition (1.7) satisfying the condition (1.8), then its
weight Wp(r;g,t) is given by

Wp(m;q,t) = f2(m;q,t) FNP(m;q,1). (1.20)

(2) Let a and B be strict partitions of length 2. Let f > 0 be a positive integer, and set
P = P3(a, B3; f) to be the bird associated with «, 8 and f. If # = (0,7; p,0) is a P-partition
satisfying the condition (1.9), then its weight Wp(m;q,t) is given by

f(o22 — 012;0) f (22 — T12;0) f(ps; 0) f (85 f + 1)
f(o22 — 011;0) f (022 — 011;1)
x ®f(p,0;4.6) A (030, ) fF (3 0, 1). (1.21)

Here we use the convention that 011 = 711 = po and 093 = T92 = 6.

Wp(m;q,t) =

Proposition 1.11. (1) Let a be a strict partition of length r and P = P,(c) the associated
shifted shape. Let n be an integer such that n > a;, and let a° be the strict partition formed
by the complement of a in [n], i.e.,

{oq,...,ar}U{cf,...,a5_.} =[n].

We write yo = 2o (see Proposition 1.6 (1)) hereafter. Then we have

F(z[Hp);q.t) = H F( zaa,qt) HF(Za.,fl,t)HF W Za; Zay;5 9 ), (1.22)

af T <aj 1<J

= %=L = l,..., . if ri ,
where 4 ¥ Yo/ 20 and % i 0 zk (¢ n) Tf T ?s odd
w= zp/yo and Z; = yo [ [f= 1zk (t= ,n). ifris even.
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(2) Let a = (a1,02) and B = (B, B2) be strict partitions of length 2. Let f > 0 be a positive
integer, and set P = P3(a, §; f) the bird associated with f, a and 3. Let m,n be integers
such that m > ¢(«) and n > ¢(5), and let a® (resp. B°) be the strict partition formed by
the complement of a (resp. B) in [m] (resp. [n]). We write y; = zp fori=1,...,8; — 1 and
x; = z_; for ¢ = 1,..., f. Further we may write zo = yo = zo. (See Proposition 1.6 (2)).
Then we have

f

F(e[Hpliq,t) = ] F( aczaj,qt> II F(yﬁcye,,qt)HF(fi;qi)
ai<a; BE<B; i=1
f 3}2 2 2
X HF -i‘—o H g~ gt H F xoyﬁjzaz’q? t) (123)
=1 =1 1,7=1

where 7; = H£=ixi fori=0,...,f, 7 = Hz_:llyk fori=1,...,n, and z; = H;c;llzk for
1=1,...,m

2 Macdonald polynomials

We follow the notation and terminology of [7] for the symmetric functions. If A and u are partitions
then x4 C X if p is contained in A, i.e., p; < A; for all ¢ > 1. If g4 C X then the skew-diagram A\/p
denotes the set-theoretic difference between A and p, i.e., those squares of A not contained in p.
The skew diagram A\/u is a vertical r-strip if [\ — p| = |A| — |u| = r and if, for all i > 1, A; > u;
is at most one, i.e., each row of A — u contains at most one square. The set of all vertical r-strips
is denoted by ¥; and the set of all vertical strips by ¥ = |;2, ¥;. The skew diagram A/y is a
horizontal r-strip if |\ — u| = r and if, for all ¢ > 1, A} — u! is at most one, i.e., each column of
A — p contains at most one square. For two partitions A and p, we write A > p if A D p and A/pu
is a horizontal strip. Note that A/u is a horizontal strip if and only if A\ > 3 > g > o > ...
The set of all horizontal r-strips is denoted by #. and the set of all horizontal strips by 4. Let
s = (i,J) be a square in the diagram of ), and let a(s) and {(s) be the arm-length and leg-length

of s, given by
a(s) = A — 4, I(s) = X; —1i

Then we define the rational functions let

1—ga(9)gl(e)+1 .
Ty, £ SEA
b)\(s) b (9 q,t) {1 RO FION s y

1, otherwise,

and [6, (3.6)] [7, VL7 (6.19), VL.7 Ex.4]

fq t(/\ - )\z+m+1,m)
(g t) = [[balsia,t) =[] I] (2.1)
SEX i>1m>0 YOt t(Ai = Aigmim)
f /\ - /\1+m+1a )
bS(g, 1) == ba(s; g, t) = %! (2.2)
b3%(g, 1) 1= H br(s; q,t). (2:3)
u(s) odd

If x = (x1,22,...) and y = (y1,¥2, ... ) are two sequences of independent indeterminates, then we
write ( )
tx;y5;
(z;y;0,t) = [ | . g [ F@iyssa,t). (24)

i @i G
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Let G, denote the symmetric group, acting on z = (z1,...,2,) by permuting the z;, and
let A, = Z[z1,...,7,)% and A denote the ring of symmetric polynomials in n independent
variables and the ring of symmetric polynomials in countably many variables, respectively. For
A= (A1,...,A,) a partition of at most n parts the monomial symmetric function m) is defined as

my(z) = Z z°

where the sum is over all distinct permutations a of A\, and z = (z1,...,2n). For ¢(A) > n we
set mx(z) = 0. The monomial symmetric functions my(z) for £(A) < n form a Z-basis of Ap.
For r a nonnegative integer the power sums p, are given by po = 1 and p, = m( for r > L
More generally the power-sum products are defined as py(z) = py, (x)p»,(z)- - for an arbitrary
partition A = (A1, Az,...). Define the Macdonald scalar product (-, )4+ on the ring of symmetric

functions by
1-
<p>\,pu ot = 5Au~)\ H H

1 i=1
with 2y = [[,5;™m;! and m; = m;(A). If we denote the ring of symmetric functions in A,
variables over the field F = Q(g,t) of rational functions in ¢ and ¢t by A, F, then the Macdonald
polynomial Py (z) = Py(z; g, t) is the unique symmetric polynomial in A, r such that [VI (4.7)|Mac:

Py = Zuku g, t)ymy(z)
u<i

with uxy =1 and
(Pn,Pugt =0  ifA#p

The Macdonald polynomials Py(z;q,t) with £(A\) < n form an F-basis of App. If £(A) > n
then Py(x;q,t) = 0. Pi(x;q,t) is called Macdonald’s P-function. Since Py(z1,...,%n,0;¢,t) =
Py(z1,...,Zn; g, t) one can extend the Macdonald polynomials to symmetric functions containing
an infinite number of independent variables x = (z1,23,...), to obtain a basis of F = A®TF. A
second Macdonald symmetric function, called Macdonald’s @Q-function, is defined as

Qx(z;9,t) = ba(q, t) Pa(x; 9, t). (2.5)

The normalization of the Macdonald inner product is then (Px, Qu)q: = 0x, for all X, u, which is
equivalent to

D Pa(z;q, )@ 9,) = (7595 9. 1) (2.6)
A

(See [7, V1.4, (4.13)].) Let gr(z;q,t) := Qr)(; g, t), or equivalently, [7, VI.2, (2.8)]
(tz‘zy,
T;q,1
H (ziy; q)oo z_%g’ B
Then the Pieri coefficients ¢, and v,,, are given by [7, VL6, (6.24)]
Pu(ziq.)g-(z;0,t) = Y baul(a,t)Pa(ziq,t),

A
A—p €Iy

Qu(z;q,t)9-(z;0,t) = Y ¥a/u(d.)Q(;59,8).

A
A—p€r

Another direct expressions for ¢/, and ¥,/ is given in [7, V1.6, Ex.2] as

- f()‘l - /'l‘]) Z)f(/‘t’l - )‘.7+17 7’) 2.7
CCURE VO [o v we o ey i) 27
d’)\/u((b t) — H f(/\z NJ: ‘l)f(pq - /\]-i—l,] - '5; (2.8)

f(ul_ﬂjyj _1’).)0(A —Aj +1,] -1

1<i<5<(p)



Here we use these expressions to rewrite Okada’s (g,t)-hook formula conjectures by the Pieri
coefficients. For any three partitions A, u, v let f;)u be the coefficient P in the product P,P,: [7,
VI (7.1)]:
. . — A .
Pu(x;0,t) Pu(;9,8) = Y, f2, P73, 1) (2.9)
: A
Now let A, u be partitions and define @/, € Af by

Qx/u(z;q,t) Z L, Qu (259, t). (2.10)

Then Q»/u(x;¢,t) = 0 unless A D p, and Q,/, is homogeneous of degree |A| — |u|, which is called
Macdonald’s skew Q-function. We define Macdonald’s skew P-function Py, as

Quuloi0,0) = P EB P umia ) (211)

holds. Let T be a tableau of shape A — i and weight v, thought as a sequence of partitions
(A©@ . X)) such that
M'—'/\(O) A oA =y

and such that each A®) — \¢=1) is a horizontal strip. Let
t) = Hmm/w—n (3:1),
i=1

t) =[] ¥aw/ae-n (g 0).

i=1

Then we have [7, VI, (7.13), (7.13)]
Qu/u(@ia,t) =Y drg, )z,
T

P/\/ﬂ.(x; q, t) = Z"Z)T(Q? t)xTa
T

summed over tableaux T' of shape A — y, where 27 = []i_, ml)‘(l) =211t also holds [7, VL7,
(7.9) (7.9)]

Qxr(z, z;9,t) = ZQ/\/;L(:Evz;Qr Qu(z, 25 9, t), (2.12)
"

PA(%Z;Q? t) = ZPA//L(mvz;Qf t)P“(x,z;q,t), (213)
I

where the sums on the right are over partitions 4 C A. The following lemma has appeared in the
proof of [13, Proposition 2.2] (also see [7, 1.5, Ex.26] and [14, Proposition 5.1]).

Lemma 2.1. Let u and v be partitions, and x = (z1, 2, ...) and y = (y1, Y2, ... ) are independent
indeterminates.

> Qnu(@;0,t) Py (450.8) = T3 430, 8) Y Quyr (250, 8) Pusr (y34,) (2.14)
A T

In [13] Vuleti¢ has presented so-called a generalized MacMahon’s formula. The following the-
orem gives a generalized form of [13, Proposition 2.2], which we use in the proof of Okada’s
conjecture.
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Theorem 2.2. Fix a positive integer T and two partitions x° and uT. Let 20,...,zT-1 4! ... |y
be sets of variables. Then we have

T
Z HQA:‘/“i—l(fL'Z_l;q,t)P,\i/ui(yz;q,t)

(AL ut A2, AT)i=1

= H H SL‘ y 7Q1 ZQ;LT/V 7'":zT_l;qft)Ijuo/u(yla“'7yT;Q)t) (215)
0<i<ji<T

where the sum runs over (27 — 1)-tuples (A1, u1,A%,..., uT—1 AT) of partitions satisfying
wPeXoptcXopc ouT AT o uT. (2.16)

We define F‘[<s ](ac g,t) and Q7 Dol (x;q,t) for a pair (A, ) of partitions, a set z = (z1,22,...)
of independent variables and ¢ = il by

Py, (z;q.t if § = +1, Q x;q,t) if 6 =+1,
P[f\,ﬂ] (z;q,t) = ol . ) e s Q‘[;,\ p](q? ) = aud . ) e g
Qy/)\(xa g, t) if6=-1, Pp./)\(x, q, t) iféo=-1

Here we assume A D pif § = +1,and A C pif 6 = —1.

Corollary 2.3. Let n be a positive integer, and €= (61, .., €n) & sequence of +1, Fix a positive
integer T and two partitions A’ and A”. Let z!,..., ,z" be sets of variables. Then we have

Z HPA;1A1xq7)

(A1,A2,.. An—1) =1

= I 1654766 Qe tam-10)Prop{a'}e=r10:t), (2.17)

i<j
(e5,¢5)=(-1,+1)

n
Z Hina-l’,\i](mi; q,t)

(/\1,,\2,‘..,A"‘1) =1
= H (% 27;9,t) Y Pansu ({2 eim-1: ¢, 1) Q0 ({' }ei= 415 0, 1), (2.18)
v

(et m =1, 41)
where the sum runs over (n — 1)-tuples (A1, A2,...,A"~1) of partitions satisfying

i-1 ior.
{)\ DA if g =41, (2.19)

Al oAb if g = —1.

Theorem 2.4. (Warnaar [15, Proposition 1.3, (1.17)])

S v 0mEen =1 Aren)li)e [ (it (300)

2
1 (%35 4%)oo 15 (#i%33@)00
where () is the number of rows of odd length.
Applying wg [7, V1.2, (2.14)] to the both sides of (2.20), we obtain
Corollary 2.5.
iy d)oo tTix;;
Zw’o‘ )b (q,t) Pa(z; g, t) H (twe; ) H sz, q)oo- (2:21)

i1 (Wi @)oo ;2 (%53 @)oo



59

From (2.21), we easily obtain

S 0Py - [[ it [ (it

wxuq)oo i (WTiTs @)oo

i>1
and
RAL=r) (tzi; @)oo (twavzxj,q)c,o
S w T FT g, 1) Pz g, t) = [] (2.23)
) 1 (Ti5 @)oo ;- (w:c,mj,q)

3 (g,t)-hook formula and Macdonald polynomials

We define ¢ (q t) and 1/)[,\ ] (g,t) for a pair (A, ) of partitions and 6 = +1 by

s _Jovulet) o=+l a/u(a,t) i 0 =+1,
(e ) = {Tlﬂu/,\(q,t) fo=_1 Yhu@d= {¢M/)‘(q, £ ifd=-1.

Here we assume A > p if § = +1, and A < p if § = —1. We also write

A= pls = A—p| ifd=+1,
lw—=Al ifd=-1.

Let n be a positive integer. Let € = (e1,...,¢,) be a sequence of £1. Let (A%, A1,...,A") be an
(n + 1)-tuple of partitions such that Ai=1 = A? if e = +1, and A"! < A% if ¢ = —1. Then we write

n n
¢FA0,)\1,...,X"](q1 t) = H ¢E,{i—1y,\i](q7 t), %oy»r,q,\n](q, t) = wa;‘i—l,)\i](% t).
i=1 =1

Let a be a strict partition, and let n be an integer such that n > «;. Define a sequence
€ = en(a) = (€1,...,€y) of £1 by putting

{+1 if k is a part of a,

ex(a) = cp g s

—1 if k is not a part of a.

For example, if « = (8,5,2,1) and n = 10, then we have ¢ = (+ + — — + — — + ——). Let
n € &/(P) a P-partition for the the shifted shape P = P,(a). For each integer k = 0,...,n
we define the kth trace w[k] to be the sequence (..., 72 k+2, 71 k+1) Obtained by reading the kth
diagonal from SE to NW. Here we use the convention that w[k] = @ if ¥ > . For example, if 7 is
the P-partition of shifted shape o = (8,5,2,1) in Figure 1, then we have 7[0] = (74, 733, 722, 711),
7[1] = (w34, M3, m12), 7[2] = (m24,m13), 7[3] = (mas5,714), 7[4] = (726, 715), #[5] = (m6), 7[6] =
(m17), w[T) = (m18), n[8] = w[9] = n[10] = 0, and

w[0] = «[1] > =[2] < «[3] < 7[4] = 7[5] < #[6] < =[7] > =[8] < w[9] < =[10].
By direct computation one can easily check
Wp(7;9,t) = b3 (q, t)wf,fff))]‘_,,,,r[w”(q, t) = b0 ¥m(0]/m (11 ¥n(1] /(2] Prl3] /(2]
X Pr(4)/7(3)¥r(4)/x[5)Prl6] /7 (5] P (7] /(6] Y [7) /(8] Pr0] /(8] Pr[10] /9] -
In the following we write

f(pn» ) (anvn+1)
flp m,O)(f)m,m-!-l)

T -~ z+91,_ 7 — _91
q’%(m’p,gaq:t) - p)0 Q> H mp o !
i=m+1

@, (p,0;4,),

BT (p,6;,t) =
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in short, where p = (pm,...,pn) and 8 = (6, ...,0,) satisfy (1.18), and Z = (Zp,...,Zn) are
indeterminates. For example, if m# = (o, 7; f) is the P-partition of the bird P = P3(a, 3; f) for
a=(4,3), 3= (4,2) and f = 2 (see Figure 1) and satisfies (1.9), then we have

. -3 . (8)
Wp(m;q,t) = (I’?)(Py 0;q. t)’/’fgﬁ))],___,ag]](q, t)¢;r[0],.‘.,1‘[4]](q’ t)‘
Proposition 3.1. (1) Let P = Py(a) be the shifted shape associated with a strict partition «

such that £(a) = r, and let n be an integer such that n > a;. If 7 € &/(P) is a P-partition
satisfying the condition (1.8), then we have

b [](q, t) (a)

Wp(m; g, )—b«[o](q, )'lﬁ[,r[o] ,,,,, "[n]](q, t) = _(q_t)¢["[0]’ ;,r[n]](Qa t) (3.1)

and "
Zﬂ» — wmlﬂl:gﬁﬂﬂ'_l Hziﬁi(a) |7"[1’_1]-7r[i“c,>(n), (3.2)

i=1

where w and z; (1 <4 < n) are as in Proposition 1.11 (1).

(2) Let a = (a1, a2) and 8 = (p1, B2) be strict partitions such that £(a) = ¢(8) = 2. Let f >0
be a positive integer, and set P = P3(a, 8; f) the bird associated with o, 3 and f. Let m
(resp. n) be a positive integer such that m > a3 (resp. n > B1). If # = (0,7;p,0) is a
P-partition satisfying the condition (1.9), then we have

W (m;0,t) = 34 (0,0, ) U)oty (D 1) Bt ooy (1) (3.3)
and
~P0+90 H ~Cl(a) |a[1 1] o[’”t,(a) H ~ 6.(/3) |T[1' 1]_7' z]le,({i) H ~Pl+01—Pg 1—80;_1 (34)
i=1
where z; (0 <4< f), ¥ (1 <i<n)and Z (1 <i<m) are as in Proposition 1.11 (2).

Proof. (1) From (1.16) and (2.8) we have

[1];—7[0 ; i .
ND(ﬂ, q t) H1<1,<] fg’zrl] ]4—7[1'011..7:‘,1].7 z)l) Hz 2 wjﬂ(za)l l,m[d) ](q t) if 61(&) =+,
Z 5 [Tizz '»0[67;[7—)1 ,r[i](q7 t) if €(a) = -

Similarly, from (1.17) and (2.2) we have

f(m[0]:—m(1];:5—%) : -
fD(7r'q t) _ {H1<z<3 fg g '—W?J+I,J % bﬂ[O](qa ) if 6l(at) =+,
o [ 8 - 70| —7 J—1 .
H1<’L<J f(rw[0]; —= [0 ji:,; i) b‘lr[O (q’ t) if 61(a) ="
Hence we obtain (3.1) from (1.20) since
F(m[0)i—m(1]5;5—1) f(w[1])i == [0]) 4155 —1) . _
O L i i v
0],m[1 ’ i—=T ;7—1) f(m{0]i —7[1} 4155 —2 . _
rioh=tl Hlisz PRIl A =D rrOhoatt =y i e(@) ==

Meanwhile, (3.2) can be easily obtained from

n
el | A

=1



(2) Asin (1) we have

a(054.1)
f(0'12 — 011, ) H7,=2 ’(peal(’:x)l Lo [d)] (q t) if 61(0{) =
fons-esaffon-cuifloin ”“”>IL=2w;§“lgﬂﬁmt> if e1(a) =
From (1.16) and (2.7) we have
ng(T' q,t)
_ [ =m0 [T, 612, 1@ 9 if e1(8) =
O N

Hence, if we use (2.7) or (2.8), then we obtain (3.3) from (1.21). On the other hand, (3.4) is
easily obtained from

! m . . N
z‘rr — z(;]n-f—dzz Hzfi+0i Hziei(a) IU[Z-—I]—U[Z]IH(”) Hg’ift(ﬁ) ,7[7'_1] T[t]'ei(ﬁ)

=1 i=1 i=1

, ; ~ —0:_
using 21 +om [[1 2l 0 = (20F,)Po+0e [T, &,/+% #-17%1 where we use the conven-
tion 011 = po and o9 = 6.

O

Theorem 3.2. (1) Let P = P;(a) be the shifted shape associated with a strict partition « of
length r. Let n be an integer such that n > a3, and let af be the strict partition formed by
the complement of « in [n]. Then we have

> We(mgt)"= [] F(~;012a;) Zw b )P (Ban - Zari 00t), (3.5)
€L (P) ag <oy
where w and z; (i = 1,...,n) are as in Proposition 1.11 (1).

(2) Let a = (a1, ) and B = (B1,B2) be strict partitions such that £(a) = £(8) = 2. Let f >0
be a positive integer, and set P = P;(a, 8; f) to be the bird associated with o, 8 and f. Let
m (resp. n) be a positive integer such that m > oy (resp. n > B1). If 7 = (0,7;p,0) is a
P-partition satisfying the condition (1.9), then we have

Z Wp(m;q,t) H F(aczaj,qt) H F(yﬂcygj,qt)

wEL(P) af <o Bi<B;
x Y L (&; p,0; 4, t) Pog o) (T0Zay» FoZas’ € 1)Q(00,0) (Uss» 7823 4, ) (36)
(p,8)

where the sum on the right-hand side is taken over all pairs (p,8) with p = (po, ..., ps) and
6 = (o, ...,0f) satisfying

<po<By< <0y (3.7)
Here 7; (0 <i < f), y; (1 <4< n)and 2 (1 <i<m)are as in Proposition 1.11 (2).
Proof. (1) Since

)~'|7r[’i—1]—7"[i]| — P'rr[i 1]/x[i] (Eza% t)

Qﬂ'[’b ]/wli— l]( z ! 34, )

Yfiz1)/n[i) (0 ¢

bty mti-1y (g, )7,



(see [7, VL7, (7.14)(7.14’)]), we can use (2.17) to take the sum of the product of (3.1) and
(3.2), then we obtain

ZWP W.q)

H F ( ac Zm) Z bfrl[o] (Qf t)w(lﬂ[OH_T(W[O]l))/zpw[O (za1 ''''' Zar7 q9, t)’

ag <o (0]
where the sum on the right-hand side runs over all partitions {0].

(2) Again, using (2.17) to take the sum of the product of (3.3) and (3.4), we obtain

Z Wp(m;q,t)z" = H F (";cl’z“m) H F (yﬂc yﬂ:) ~po+6o
™ ag<au Bi<Bi
X Z %] (P G)Epo+oopo[0](za1 ) Zagi @ )QT[O] (5[31) Y6259 t)a
(»,0)

where the sum on the right-hand 51de runs over all pairs (p, 0) satisfying (3.7) with o[0] =

7[0] = (60, po). Finally we use Z§° OP(go p0)(Zays Zags G5 t) = P(65.p0) (T0Zar > T0Zaz; 4> t)-
O

If we apply Warner’s formula (2.23) to (3.5) we can obtain the (g, t)-hook formula (1.22) for shifted
shapes. This gives another proof of [8, Proposition 4.5 (b)]. Now we look at the right-hand side of
the conjectured identies in the cases of birds. From Proposition 1.11 we can derive the following
theorem.

Theorem 3.3. Let o = (a1, a2) and B = (B1, B2) be strict partitions of length 2. Let f > 0be a
positive integer, and set P = P3(a, B; f) the bird associated with f, o and 3. Let m,n be integers
such that m > £(a) and n > £(3), and let a® (resp. B3°) be the strict partition formed by the
complement of a (resp. 3) in [m] (resp. [n]). Then we have

F (z[Hp); g, t) H F( Zge zaJ,qt> H F (ggg’gﬂj;q.Q

af<aj BE<B;

A2
x 35> > ka 0) £ (l;, 0)zf "

e <z 150 Kok 20 lilﬁ‘i{;_oz i=1

ba112(@t) o (=~ ~ = ~ o~

ba-112(0,t) P\(Z1Zay, T12ag5 6, 1) @0 (Up,, UB23 @5 ) (3.8)
b/\(qvt)

where 7; (1 <4< f, % (1 <i<n)andz (1 <i<m)are as in Proposition 1.11 (2).
Proof. From (2.6) we have
2
H F (Elgﬁjza.'; q, t) = ZPu(flzauEEIZaz)Qu(?jﬁngﬁz)'
i,j=1 u
By the binomials theorem we have

f f
[IrGsaty= 3 Ifks00z

Eyyenky >04=1

2
HF —szk,qt = > Hfzz,or“‘ 7 [] oz

kl 1 I, 4l 201i=1 k,l=1

L+l
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By [7, V1.4, (4.17)] and (2.5) we obtain

PSRN | -~ ~ ~ o~ ~ ~ ~ o~
(.2732122) Pu(xlzawxlzaz) = P/,L-Hvl2 (zlzauzlzaz)

- - b.(q,t -~
(y1y2)l Qu(yﬁl ) yﬂz) = #(lz(qlt_) Q/L+l~12 (yﬂu ?/[32).
p+l y

From (1.23) we obtain

Fm)at) = ] F(aczaj,qt) II F(gﬁ—;gﬂj;q.t)

af<aj Bf<B;

f
X Z Z Z Z Hf(ki,O)f(li’())i:fi—li

120 5y kryek 20 Ll 20 i=1

L4 lp=l
bu(‘]a t)

)] P12 (Z120y 120,34, £)Quit12 (U1, UB23 4 £)-
LRl ’

This immediatey impies (3.8). O

4 Proof by Gasper’s formula

Now we are in. position to prove Okada’s conjecture for Birds and Banners, i.e., Theorem 1.9. We
use the fact that Macdonald’s polynomials are the basis of Ap. (cf. [6]). To prove the birds case,
we fix integers pp and 6y such that 6y > po > 0, and nonnegative integers rq, ..., 7. If we compare
the coefficient of Hzf=1 z; - Pa(T12ay: T1%0: 4, 1)@ (¥B,, Us2; o ) in (3.6) and (3.8), the following
identity must hold:

> 8l (p,6;q,t —fo: ) boo—t,00-1) (4, ) Hf 1:;0) f(Ii + 745 0)
0(.07 39, )‘ b0 (q,t) J f( X f i Ti5U),

(P11-s0f) 1=0 11,...,1420 (60.p0) i=1

0<ps<--<p1<pp ttlp=l

where (61, ...,60y) is determined from 6, and (p1, ..., ps) by using the equations 6; = p;_1 + 6,1 +
—p; fori=1,..., f. Since (2.1) implies

;1
b(6o,00) = f (60 — po; 0)}-(0];(—_()/););—15f(po; 0),

we obtain
b(9o—l,po—l) (q7 t) _ f(pO -1 O)f(90 — 1 1)

b(66,00)(9: ) f(p0; 0)f(60;1)

Hence it is enough to prove

po f
Yo eeen=>. 3 Feo = 50)1 (60 — Hfl,,o)fl+n,0) (4.1)
i=1

(P1seon pf) =0 11,120 (P0,0)f 00’1)

0<ps<---<p1<p0 Ii+tip=t

In fact a more general formula holds. If we prove the following theorem, then the proof of (4.1)
are done.

Theorem 4.1. Let m and n be nonegative integers. Let ko, po, 6o be integers such that 0 < kg <
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po < 6, and let 71,...,7, be nonnegative integers. Then we have
ST f(on = ko;0)f (8 — koym +n)

y ﬁ flpi=1 — pi;0)f(6ic1 — piz;i+m —1)f(8; — pi_y;i+m —1)f(6; — 0;_1;0)
f(6s — pizi+m —1)f(0; — pi;i +m)

i=1

= Y, Floo =Y ki;0)f (B0 — Y kssm) [T £ (ki 0) (ki + %5 0), (4.2)
=0 i=0 i=1

ky,.... kn 20
ki+-+kn<po—Pm41

where the sum on the left-hand‘side runs over all n-tuples (p1, . .., pn) of nonnegative integers such
that kg < p, <--- < p1 < po, the sum on the right-hand side runs over all n-tuples (k1, ..., kp) of
nonnegative integers which satisfy k; + -+ + kn < po — Pm+1, and 6; is determined from p;, pii-1
and 6;,_; by 0; =~ +80i-1+pi-1—pi fori=1,...,n.

Before we prove this theorem, we need the following lemma which is a special case (i.e., n = 1)
of this theorem.

Lemma 4.2. Let m be a nonnegative integer. Let kg, po and 6y be integers such that 0 < kg <
po < g, and let v be a nonnegative integer. Then we have

f(po — p;0)f(B0 — p;m) f(68 — po; m) f(6 — 6o; 0)
f@—p;m)f(6—pym+1)

Po
Y (o= ko3 0)f(8 — koym +1)
=ko
’ po—ko
= 3" flpo— ko — k;0)f(60 — ko — k; m) f(K; 0) £ (k + 7 0), (43)
k=0

where 8 =y + po + 6o — p.
Proof. Set S; to be the left-hand side of (4.3). If one puts k = pg — p, then p = pp ~ k and
6 = k + « + 6y. Hence one obtains

po—ko

Si=Y_ flpo—ko—k;0)f(k+7~+ 60 —koym +1)
k=0

y f(k;0)f(k+~ 460 — po;m)f(k 4+ 6o — po;m) f(k + 7;0)
f@k+7+00 - po;m)f 2k +7+0 —poym+1)

If we use . . » -
(@ )2k = (e¥; r(—at; (ot at; g )e(—atqti gk,
then the factors in the denominator are wriltten as

t+q. 19— ,—t‘#qutﬂ#qw}_tﬂ#quﬁ“ Frats ;q)
f(2k+~y+60—po; m) = f(v+680—po; m) ( Y¥00-potl 1 2tP0-potl 100 _pote T N
t%q 2 —t%q 2 t%q 2 —t%q 2 ;q)
k

and f(2k +v+ 60 — po;m +1) = f(y+ 6o — po;m + 1) X
(tﬂ#q1+’9~e“,_,ﬂ¥—2q1+°9'£° 7tﬂg-_2q~r+9n;m+l1_tr_n_g_-3q7+9n;pn+l:q

(tm¥q7+eu—pg+l ?_tg?-_l_q'H'au_- 71 ,tﬂi’iq7+ou—gu+2 7_tm£th.,+gu_g +2T:j
k
-~ kg.
the numerator are f(po — ko — k;0) = f(po —ko;O)(t—_(ﬁg——;fT’ﬂ’;]T (%)k, flk+v+6p—ko;m+1) =

m+2 _~vy+6g—kg. m+1 +8p— .
fly+60—koym+1) (t(.t.lquwogk(%’xq;y;k , flk+~ 400 —po;m) = f(v+ 60— po; m)%ﬁr——w%ﬁ)%,
flk+60—po;m) = f(00—p0;m)%:—::£—.—;gz—g))f, f(k+v;0) = f(k-i—’y;O)%. Hence, substituting
these factors, we obtain

51 =C - 1,Wn (bc/d; (beg/ad)?, —(beq/ad)?, q(bc/d)*, —q(be/d)},

ab/d, aC/d, a, b7 ¢ q, q/a‘) )

. Meanwhile, the factors in
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where a = ¢, b=tg7, c = g7 rotko g =—mgPotko gpd
o = L(po — ko3 0)f(y + flo = ko;m + 1) f(8o — po;m) f(7:0)
f(y+60 — po,m + 1)
On the other hand, Set Sy to be the right-hand side of (4.3). If we use f(po — ko — k; 0) =
Floo = ko O) =i (8)", (0 — ko — ksm) = (60 — koim) i mrmoiis (£)" and

F(k+7;0) = f(k +v;0) t‘f:;;g:, then we obtain

q~po+ko, t“mq‘0°+k°, t,tqY q2
82 = f(po — ko; 0) (80 — ko;m) f(7;0)ads [t—lq—f’0+’“o+1, f-m—1g=O0-+ko+1 gr+15 D -t;} .

Hence Gasper’s formula (1.2) proves that S; = S;. The details are left to the reader. This
completes our proof. O

Proof of Theorem 4.1. We proceed by induction on n. If n = 1, then (4.2) is nothing but (4.3).
Let n > 2 and assume (4.2) is true for n — 1. If we set .S to be the left-hand side of (4.2), then we
have

= i f(po = p1;:0)f (6o = p13m) £ (61 — po;m)f(61 — 60;0)
pizho f(01 = p;m)f(61 - prym +1)

x Y. f(pn — ko; 0) f (6n — ko;m + )

(P2,:+5Pn)
ko<pn <. Spe<py

9 ﬁ f(pic1 = pis0)f (Bic1 — pisi +m = 1)F(6; — pim1;1 + m — 1) f(6; = 6i_1;0)
[0 — pisi+m—~1)f(6; — pi;i +m)

=2

We can use our induction hypothesis to obtain

n
S= > JIfGs0)fki +7:;0)
k2,.ens kn >0 =2
kgt +kn<po—kg

Po n n
X Z f(Pl—ko—Zkz‘;O)f(Bl—ko-zki;m‘f‘l)
p1=ko+3 7 o ki i=2 =2
f(po = p150) f (60 = p1;m)f(61 — po;m)f(61 — 6o;0)
(61 = p1;m)f (61 — pr;m + 1) '

X

If we use (4.3) again, then we obtain

S = Z Hf(ki;())f(ki+’)’i30)

k2,...,kn >0 =2
ko+--+kn<pg—ko

X > flpo =Y ki, 0)f (60 = Y kiym) f(ky,0)f (k1 + 71,0)

0<ki<po—ko— T, ks =0 =0
which equals the right-hand side of (4.2). This completes our proof. [}
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