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1 Introduction

In [5] Robert A. Proctor defined $d$-complete posets, which include shapes, shifted shapes and
trees, by certain local structural conditions and showed that arbitrary connected $d$-complete poset is
decomposed into a slant sum of irreducible ones. He also classified 15 exhaustive classes of irreducible
$d$-complete components and described all of the members of each class. In this article we define 6
types of posets called basic leaf posets which generalize the irreducible $d$-complete posets. By using
an operation of posets called joint sums, which is a slightly generalization of slant sums, we define
general leaf posets which include all $d$-complete posets.

Dale Peterson and Proctor [9] and Kento Nakada [4] proved that the multivariable generating

function of $P$-partitions for any $d$-complete poset $P$ has nice product formula independently. The
purpose of this article is to define multivariate hook length property as a multivariate analogue of
hook length property and to show that any leaf poset has multivariate hook length property which
is an extension of their result.

Throughout this article, let $\mathbb{Z},$
$\mathbb{N}$ and $\mathbb{Z}_{>0}$ denote the set of integers, non-negative integers and

positive integers, respectively. For a set $S$ , we denote the cardinality of $S$ by $|S|$ . From now on, $P$

is a partially ordered set (poset) and is assumed to be finite. If $x,$ $y\in P$ , then we say $x$ is covered
by $y$ (or $y$ covers x) if $x<y$ and no $z\in P$ satisfies $x<z<y$ . When $x$ is covered by $y$ , we denote
$x<y$ . A chain of length $m$ is a totally ordered set with $m$ elements, we denote a chain of length $m$

by $c_{m}$ . A tree $T$ is a finite connected poset with a maximum element such that every element except
the maximum element is covered by exactly one element.

Let $P$ and $Q$ be posets such that $P$ is non-adjacent to $Q$ , i.e. $P$ shares no element with $Q$ and
there is no order relation between the elements of $P$ and the elements of $Q$ . Set the three conditions
for elements $x,$ $y$ of $PUQ$ as follows: (i) $x,$ $y\in P$ and $x\leq y$ in $P$ , (ii) $x,$ $y\in Q$ and $x\leq y$ in $Q$ , (iii)
$x\in P$ and $y\in Q$ . Set $R_{1}$ and $R_{2}$ to be $P\cup Q$ as a set, and we define the order relation $x\leq y$ in $R_{1}$

(resp. $R_{2}$ ) if $x,$ $y$ satisfies the above conditions (i) or (ii) (resp. (i),(ii) or (iii)). We use $P+Q$ (resp.
$P\oplus Q)$ to denote this new poset $R_{1}$ (resp. $R_{2}$ ), and call it the direct sum of $P$ and $Q$ (resp. the
ordinal sum of $P$ and $Q$ ).

A $P$-partition is an order reversing map from $P$ to the set of non-negative integers $\mathbb{N}$ , i.e. a P-
partition $\varphi$ satisfies that $\varphi(x)\geq\varphi(y)$ if $x\leq y$ in $P$ , and we denote the set of all $P$-partitions by
$\mathscr{A}(P)$ . We write

$F(P;q):= \sum_{\varphi\in \mathscr{A}(P)}q^{\Sigma_{x\in P}\varphi(x)},$

which called the one variab}$e$ generating function of $P$-partitions. W\‘e-say that $P$ has hook length
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property if there exists a map $h$ from $P$ to $\mathbb{Z}_{>0}$ satisfying

$F(P;q)= \prod_{x\in P}\frac{1}{1-q^{h(x)}}$ . (1)

If $P$ has hook length property, then $h(x)$ is called the hook length of $x$ , and $h$ is called a hook length

function of $P$ . A hook length poset is a poset which has hook length property. Note that the order

in the above definition of hook length posets is the dual of the order in the original definition by

B. Sagan in [11]. In this article, for a hook length poset $P$ , let $h_{P}$ be a hook length function of
$P$ , i.e. $h_{P}$ is a map from $P$ to $\mathbb{Z}_{>0}$ satisfying the equality (1). Any tree $T$ is known to be a hook

length poset with the hook length $h(x)$ defined by $h(x)=|\{y\in T;y\leq x$ It is easy to see that the

direct sum of hook length posets is also a hook length poset. More general, Peterson and Proctor [8]

proved that any $d$-complete poset is a hook length poset. As an multivariate analogue of their result,

Peterson-Proctor [9] and Nakada [4] obtained the following.

Theorem 1.1 (Peterson and Proctor [9], Nakada [4]). Let $P$ be a $d$-complete poset, $T$ be the

top tree of $P$ and let $c$ be a $d$-complete coloring, i.e. $c$ is a map from $P$ to $\{1, 2, . . . , |T|\}$ satisfying

the following three conditions: (i) If $x$ and $y$ are incomparable, then $c(x)\neq c(y)$ , (ii) If $[x, y]$ is a
chain, then all $c(z)(z\in[x, y])$ are distinct, (iii) If $[x, y]$ is a $d_{k}$-interval, then $c(x)=c(y)$ , where $[x, y]$

is the interval between $x$ and $y$ , i.e. $[x, y]=\{z\in P;x\leq z\leq y\}$ . We define a map $H$ from $P$ to the

set of the monomials of elements $q_{1},$ $q_{2}$ , . . . , $q_{|T|}$ as follows:

$H(x):=\{\begin{array}{ll}H(a)H(b)H(y)^{-1} if [y, x] is a d_{k}- interval and a, b are incomparable in [y, x],\prod_{y\leq x}q_{c(y)} otherwise.\end{array}$

Then, we have

$\sum_{\varphi\in d(P)}\prod_{x\in P}q_{c(x)}^{\varphi(x)}=\prod_{x\in P}\frac{1}{1-H(x)}.$

This paper is organized as follows. In Section 2, we define 6 types of posets called basic leaf posets,
which is an extension of the irreducible $d$-complete posets, and define general leaf posets includes all
$d$-complete posets by using an operation called joint sums. In Section 3, we define multivariate hook

length property and multivariable hook length posets as an extension of hook length property and

hook length posets, and show that any basic leaf poset has multivariate hook length property. In

Section 4, we describe four kinds of methods in order to make a new multivariable hook length poset

(or a new hook length poset) from known multivariable hook length posets (or hook length posets)

and to show that any leaf poset is a multivariable hook length poset which is a generalization of

Theorem 1.1. In addition, we define extended leaf posets and multivariable extended leaf posets by

using these four kinds of methods. Also, by using a list of hook length posets described in Proctor’s

web page [1], we check whether there exists a hook length poset which is not extended leaf poset. In

the last section, we introduce a new class of multivariable hook length posets.

Note that, by the restriction of the number of pages, we define basic leaf posets by using diagrams

and omit all the proofs in this article. In [2], we described the detailed definition of basic leaf posets

and in our future paper [3], we will give all the proofs.

2 Leaf posets

In this section, we define leaf posets and describe our previous result. Before the definition of

general leaf posets, we will define 6 types of basic leaf posets, i.e. ginkgoes, bamboos, ivies, wisterias,

firs, chrysanthemums, which generalize 15 classes of irreducible $d$-complete posets.
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Definition 2.1 (Basic leaf posets). (i) Let $m\geq 2$ be an integer, and let $\alpha=(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m})$

and $\beta=(\beta_{1},\beta_{2}, \ldots, \beta_{m})$ be strictly decreasing sequences of non-negative integers of length $m.$

Let $\gamma$ be a non-negative integer. Then, a ginkgo $G(\alpha, \beta, \gamma)$ is a poset defined by Diagram 1.
In order to see this diagram as a Hasse diagram, 45 clockwise rotations of this diagram are

Diagram 1: Ginkgo and Bamboo

required.

(ii) Let $m\geq 2$ be an integer, and let $\alpha=(\alpha_{1}, \alpha_{2}, \ldots , \alpha_{m})$ , $\beta=(\beta_{1}, \beta_{2}, \ldots, \beta_{m-1})$ , $\gamma=(\gamma_{1}, \gamma_{2})$

be strictly decreasing sequences of non-negative integers. Let $\delta$ be a non-negative integer. Fix
$v=1$ or 2. Then, a bamboo $B(\alpha, \beta, \gamma, \delta, v)$ is a poset defined by Diagram 1.

(iii) Let $\alpha=(\alpha_{1}, \alpha_{2}, \alpha_{3})$ , $\beta=(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5})$ and $\gamma=(\gamma_{1}, \gamma_{2})$ be strictly decreasing sequences
of non-negative integers. Let $\delta$ be a non-negative integer. Fix $v=1$ or 2. Then, an ivy
$I(\alpha, \beta, \gamma, \delta, v)$ is a poset defined by Diagram 2.

(iv) Let $m\geq 2$ be a positive integer, and let $\alpha=(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m})$ , $\beta=(\beta_{1}, \beta_{2})$ and $\gamma=(\gamma_{1}, \gamma_{2})$

be strictly decreasing sequences of non-negative integers. Let $\delta$ be a non-negative integer. Fix
$v=1$ or 2. Then, a wisteria $W(\alpha, \beta, \gamma, \delta, v)$ is a poset defined by Diagram 2. In the diagram,
$\beta$ and $\gamma$ appear alternatively in the place under the left and $c_{*}$ equals $c_{\gamma_{v}+\delta}$ (resp. $c_{\beta_{v}+\delta}$ ) if $m$

is even (resp. $m$ is odd).
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(v) Let $m\geq 3$ be a positive integer, let $\alpha=(\alpha_{1}, \alpha_{2}, \alpha_{3})$ , $\beta=(\beta_{1},\beta_{2}, \ldots, \beta_{m-1})$ and $\gamma=(\gamma_{1}, \gamma_{2})$

be strictly decreasing sequences of non-negative integers. Let $\delta$ be a non-negative integer. Fix

positive integers $s,$
$t$ which satisfy $1\leq s<t\leq 3$ . Let $v\in\{s, t\}$ if $m$ is even, or let $v\in\{1$ , 2 $\}$

if $m$ is odd. Then, a fir $F(\alpha, \beta,\gamma, \delta, s, t, v)$ is a poset defined by Diagram 3. In the diagram, $\gamma$

Diagram 3: Fir and Chrysanthemum

and $(\alpha_{s}, \alpha_{t})$ appear alternatively in the place upper the right and $c_{*}$ equals $c_{\alpha_{v}+\delta}$ (resp. $c_{\gamma_{v}+\delta}$ )

if $m$ is even (resp. $m$ is odd).

(vi) Let $\alpha=(\alpha_{1}, \alpha_{2}, \alpha_{3})$ , $\beta=(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4})$ and $\gamma=(\gamma_{1}, \gamma_{2})$ be strictly decreasing sequences

of non-negative integers. Let $\delta$ be a non-negative integer. Fix $v=1$ , 2, 3 or 4. Then, $a$

chrysanthemum $C(\alpha, \beta, \gamma, \delta, v)$ is a poset defined by Diagram 3.

Next, we explain how to compose a general leaf poset from the basic ones. An operation called

slant sum which combines two posets in order to generate a new poset was introduced by Proctor.

Here we slightly generalize the definition, and call it ajoint sum to distinguish from the slant sum.

Definition 2.2 (Joint sums). Let $P$ be a finite poset and let $y_{1},$ $y_{2}$ , . . . , $y_{r}$ be any elements of $P.$

Let $Q$ be a finite poset which is non-adjacent to $P$ . Let $x_{1},$ $x_{2},$ $\cdots,$ $x_{m}$ be all the maximal elements

of $Q$ . Set $R$ to be $P\cup Q$ as a set, and make it a partially ordered set by inserting the additional

covering relations $x_{i}\ll y_{j}$ , where $1\leq i\leq m$ and $1\leq j\leq r$ , besides the order relations among the

elements of $P$ or $Q$ . We use $P^{y_{1},y_{2},\ldots,y_{r}}\backslash Q$ to denote this new poset $R$ , and call it the joint sum of $P$

with $Q$ at $y_{1},$ $y_{2}$ , .. . , $y_{r}.$

For example, let $P$ and $Q$ be finite posets defined by the following diagrams:

$Q=$

Then, we obtain the joint sum of $P$ with $Q$ at $y_{1}$ and the joint sum of $P$ with $Q$ at $y_{1},$ $y_{2}$ as follows:
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In the above diagrams, the thick lines are the additional covering relations.

An order ideal of a poset $P$ is a subset $I$ of $P$ such that if $x\in I$ and $y\leq x$ , then $y\in I$ . The order
ideal $\langle x\rangle=\{y\in P|y\leq x\}$ is the principal order ideal generated by $x.$

We define one more notation. Let $P$ and $Q$ be finite posets and $x$ be an element of $P$ , and let
$y_{1},$ $y_{2}$ , . . . , $y_{r}$ be all elements of $P$ which covers $x$ . Then we denote a poset $(P-\langle x\rangle)^{y_{1},y_{2},\ldots,y_{r}}\backslash Q$ by
$P(x, Q)$ . For example, if $P_{1},$ $Q_{1},$ $P_{2}$ and $Q_{2}$ are posets defined by

$Q_{1}=◇$
$Q_{2}=\vee$

and $P_{2}(x_{2}, \langle x_{2}\rangle)=P_{2}.$

Definition 2.3 (Joint elements and Joint pairs). Let $P$ be a poset and $x$ be an element of $P.$

If $x$ is not a maximal element of $P,$ $\langle x\rangle$ is a chain and $P$ is equal to $P(x, \langle x\rangle)$ , i.e. removing $\langle x\rangle$ from
$P$ and making the joint sum of $P-\langle x\rangle$ with $\langle x\rangle$ at $y_{1},$ $y_{2}$ , . . . , $y_{r}$ , which are all elements covers $x,$

recovers $P$ , then we say that $x$ is a joint element of $P$ . Also if $x$ is a joint element and $x$ is covered
by only one element $y$ , then we call a pair $(x, y)$ ajoint pair of $P.$

For example, in the following diagram, $x_{1},$ $x_{2},$ $y_{2},$ $x_{3},$ $x_{4},$ $x_{5},$ $x_{6}$ are joint elements and $(x_{1}, y_{1})$ ,
$(x_{2}, y_{2})$ , $(x_{3}, y_{3})$ , $(x_{4}, y_{4})$ , $(x_{5}, x_{4})$ , $(x_{6}, x_{5})$ are all the joint pairs of $P.$

Now we are in position to define the notion of general leaf posets as follows.

Definition 2.4. First we inductively define $k$-level leaf posets for a positive integer $k$ . A poset $P$

is said to be a 1-level leaf poset if it is a basic leaf poset, a tree, or obtained as a direct sum of
several basic leaf posets and trees. Let $LP_{1}$ denote the set of 1-level leaf posets. For $k\geq 2$ , let $Q$ be
$a(k-1)$-level leaf poset and $(x, y)$ is a joint pair of $Q$ and let $P_{1}$ be a 1-level leaf poset such that
$|P_{1}|=|\langle x\rangle|$ . If a poset $P$ satisfies $P=Q(x, P_{1})$ , then we say that $P$ is a $k$-level leaf poset. Let $LP_{k}$

denote the set of $k$-level leaf posets, and put LP: $= \bigcup_{k\geq 1}LP_{k}$ . We call an element of LP a leaf poset.

Note that a poset can be $k$-level leaf poset for several $k$ , i.e. there exist some $i\neq j$ such that

belongs to both $LP_{4}$ and $LP_{5}.$

By the definition of irreducible $d$-complete posets and basic leaf posets, we can realize each irre-
ducible $d$-complete poset as a basic leaf poset. The important fact is that the notion of “slant sum”
defined in [5] is included in that of ‘joint sum”. Hence, by the definition of general leaf posets and
$d$-complete posets, we can say that any $d$-complete poset is a leaf poset. Our previous result is the
following (cf. [2]), which is obtained as a corollary of our main result in this article.
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Theorem 2.5. Any leaf poset is a hook length poset.

As a corollary of this theorem, we can also obtain the following.

Corollary 2.6 (Peterson and Proctor [8]). Any $d$-complete poset is a hook length poset.

3 Multivariate hook length property

In this section, as a multivariate analogue of hook length property, we define multivariate hook

length property and multivariable hook length posets. Also, we show that any basic leaf poset has
multivariate hook length property.

Let $P$ be a finite poset, $\mathscr{Q}$ be a set of variables and let $\tilde{\mathscr{Q}}$ be the set of all monomials of elements
of $\mathscr{Q}$ . In this article, we set $\mathscr{Q}=\{p_{i}, q_{i}, r_{i};i\in \mathbb{Z}\}$ . Moreover, let $w$ be a map from $P$ to $\mathscr{Q}$ which is
called a weight of $P$ . For a $P$-partition $\varphi\in \mathscr{A}(P)$ , we write

$w^{\varphi}:= \prod_{x\in P}w(x)^{\varphi(x)}, F(P;w):=\sum_{\varphi\in d(P)}w^{\varphi},$

which called the multivariable generating function of $P$-partitions. For example, let $P$ be a chain of
length 2 with the maximum element $x_{0}$ and the minimum element $x_{1}$ , and let $w$ be a weight of $P$

defined by $w(x_{1})=q_{1}$ and $w(x_{0})=q_{0}$ . For a $P$-partition $\varphi$ defined by $\varphi(x_{1})=b$ and $\varphi(x_{0})=a$ , we
obtain that $w^{\varphi}=q_{0}^{a}q_{1}^{b}$ . Hence, we have

$F(P;w)= \sum_{\varphi\in d(P)}w^{\varphi}=\sum_{0\leq a\leq b}q_{0}^{a}q_{1}^{b}=\frac{1}{(1-q_{1})(1-q_{0}q_{1})}.$

Definition 3.1 (multivariate hook length property). Let $P$ be a finite poset and $w$ be a weight
of $P$ , i.e. $w$ is a map from $P$ to $\mathscr{Q}$ . We say that $P$ $(or (P, w))$ has multivariate hook length property

if there exists a map $H$ from $P$ to $\tilde{\mathscr{Q}}$ satisfying

$F(P;w)= \prod_{x\in P}\frac{1}{1-H(x)}$ , (2)

where $|H(P)|\geq 2$ if $|P|\geq 2$ . If $(P, w)$ has multivariate hook length property, then $H$ is called a hook
function of $(P, w)$ . A multivariable hook length poset is a poset which has multivariate hook length
property. For a multivariable hook length poset $(P, w)$ , let $H_{P,w}$ be a hook function of $(P, w)$ , i.e.
$H_{P,w}$ is a map from $P$ to $\tilde{\mathscr{Q}}$ satisfying the equality (2).

By the definition of multivariable hook length posets, it is easy to see that a multivariable hook
length poset is a hook length poset.

Let’s see some examples. By our previous example, a chain of length 2 is a multivariable hook
length poset. In general, for a tree $T$ , if a weight $w$ of $T$ satisfies that $|w(T)|\geq 2$ , then $(T, w)$ is a
multivariable hook length poset with the hook function $H$ defined to be $H(x)= \prod_{y\leq x}w(y)$ . Let $P$

be a $d_{3}$-interval and we define a weight $w$ of $P$ by

$w=^{q_{1}}◇_{}q_{0}^{q_{0}}q_{2},$

where the labeling means the image of the corresponding element by $w$ . Then, we can calculate that

$F(P;w)= \frac{1}{(1-q_{0}q_{1}q_{2})(1-q_{0}q_{1})(1-q_{0}q_{2})(1-q_{0})},$

72



hence $(P, w)$ is a multivariable hook length poset. Let $P$ be a ginkgo $G((2,1), (2,1), 1)$ and we define
a weight $w$ of $P$ and a map $H$ from $P$ to $\tilde{\mathscr{Q}}$ as follows:

where in the definition of $H$ we put $k_{1}k_{2}\ldots k_{m}:=q_{k_{1}}q_{k_{2}}\ldots q_{k_{m}}$ . Then, $H$ is a hook function of $(P, w)$

and hence $(P, w)$ is a multivariable hook length poset.

In general, we can obtain the following.

Proposition 3.2. Any basic leaf poset is a multivariable hook length poset.

Here, we will describe the sketch of the proof of this proposition in the case that $P$ is a ginkgo. Before
the calculation of the multivariable generating function of $P$-partitions, we prepare two notations.
For a sequence of variables $u=(\ldots, u_{-1}, u_{0}, u_{1}, \ldots)$ and integers $a$ and $b$ , we write

$u^{(a,b)}:=\prod_{i=a}^{b}u_{i}, (a, b)_{u}!:=\prod_{i=a}^{b}(1-u^{(i,b)})$ .

Also, we write $p:=(\ldots,p_{-1},p_{0},p_{1}, \ldots)$ , $q:=(\ldots, q_{-1}, q_{0}, q_{1}, \ldots)$ and $r:=(\ldots, r_{-1}, r_{0}, r_{1}, \ldots)$ .

Sketch of the proof: Let $m\geq 2$ be an integer, $\gamma$ be a non-negative integer, and let $\alpha=$

$(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m})$ and $\beta=(\beta_{1}, \beta_{2}, \ldots, \beta_{m})$ be strictly decreasing sequences of non-negative integers of
length $m$ . Let $P$ be a ginkgo $G(\alpha, \beta, \gamma)$ and let $w$ be a weight of $P$ defined by Diagram 4. Then,

Diagram 4: Weight of $G(\alpha, \beta, \gamma)$

by using lattice path method, the multivariable generating function of $P$-partitions is calculated as
follows:

$F(P;w)= \frac{\prod_{1\leq i<j\leq m}(1-q^{(\alpha_{j}+1,\alpha_{\mathfrak{i}})})(1-p^{(\beta_{j}+1,\beta_{i})})}{((1,\gamma)_{r}!)^{m-1}\prod_{i=1}^{\gamma}(1-r^{(1,i)}V)\prod_{i=1}^{m}(1,\alpha_{i})_{q}!(1,\beta_{i})_{p}!}$

$\cross\sum_{\lambda=(x_{m},x_{m-1}x_{1})\in \mathscr{P}},\ldots,(r^{(1,\gamma)})^{-x_{1}}s_{\lambda}(q^{(0,\alpha_{1})}r^{(1,\gamma)}, ..arrow,q^{(0,\alpha_{m})}r^{(1,\gamma)})s_{\lambda}(p^{(1,\beta_{1})}, \ldots, p^{(1,\beta_{m})})$
,

where $\mathscr{P}$ is the set of the partitions and $s_{\lambda}(y_{1}, y_{2}, \ldots, y_{m})$ is the Schur function, and we put V $=$

$( r^{(1,\gamma)})^{m-1}\prod_{i=1}^{m}q^{(0,\alpha_{i})}p^{(1,\beta_{i})}$ . By an extension of Cauchy identity:

$\sum_{\lambda=(\lambda_{1},\ldots,\lambda_{m})\in \mathscr{P}}w^{\lambda_{m}}\mathcal{S}_{\lambda}(x_{1}, x_{2}, \ldots, x_{m})s_{\lambda}(y_{1}, y_{2}, \ldots, y_{m})=\frac{1-\prod_{i=1}^{m}x_{i}y_{i}}{(1-w\prod_{i=1}^{m}x_{i}y_{i})\prod_{i,j=1}^{m}(1-x_{i}y_{j})},$
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we can obtain that

$F(P;w)= \frac{\prod_{1\leq i<j\leq m}(1-q^{(\alpha_{j}+1,\alpha_{i})})(1-p^{(\beta_{j}+1,\beta_{i})})}{(1,\gamma)_{r}!^{m-1}\prod_{i=1}^{m}(1,\alpha_{i})_{q}!(1,\beta_{i})_{p}!\prod_{i=0}^{\gamma-1}(1-r^{(1,i)}V)\prod_{i,j=1}^{m}(1-q(pr)}.$

Hence, ginkgo is a multivariable hook length poset. By almost same method, we can show that other
basic leaf posets are also multivariable hook length posets. $\square$

As a corollary of Proposition 3.2, we can easily see the following.

Lemma 3.3. Let $P$ be a basic leaf poset or a tree with $|P|\geq 2$ . There exists a weight $w$ of $P$

satisfying the following two conditions. (i) If $x$ is a joint element of $P$ , then $w(x)=w(y)$ for any
element $y$ of $\langle x\rangle$ . (ii) $(P, w)$ is a multivariable hook length poset.

4 How to make a new multivariable hook length poset

In this section we will explain four kinds of methods in order to make a new multivariable hook
length poset (or a hook length poset) from known multivariable hook length posets (or hook length
posets) and we define extended leaf posets and multivariable extended leaf posets by using our
methods.

Let $f$ be a map from a set $A$ to a set $C$ and $g$ be a map from a set $B$ to $C$ . If $A$ is non-adjacent to
$B$ , then, we define a map $f+g$ from $A\cup B$ to $C$ by $(f+g)(x)$ $:=f(x)$ if $x\in A$ and $(f+g)(x)=g(x)$
if $x\in B.$

We can obtain three kinds of methods as follows:

Proposition 4.1. Let $P$ and $Q$ be finite posets which are mutually non-adjacent, and let $w_{P}$ (resp.
$w_{Q})$ be a weight of $P$ (resp. $Q$ ).

(i) We have
$F(P+Q, w_{P}+w_{Q})=F(P;w_{P})F(Q;w_{Q})$ .

In particular, $(P, w_{P})$ and $(Q, w_{Q})$ are multivariable hook length posets, then $(P+Q, w_{P}+w_{Q})$

is a multivariable hook length poset.

(ii) Let $Q$ be a chain. Then, we have

$F(P \oplus Q;w_{P}+w_{Q})=\frac{F(P;w_{P})}{\prod_{y\in Q}(1-\prod_{z\in P}w_{P}(z)\prod_{z\in Q,z\leq y}w_{Q}(z))}.$

In particular, $(P, w_{P})$ is a multivariable hook length poset if and only if $(P\oplus Q, w_{P}+w_{Q})$ is a
multivariable hook length poset and the monomial $\prod_{z\in P}w_{P}(z)\prod_{z\in Q,z\leq y}w_{Q}(z)$ is an element
of $H_{P\oplus Q,w_{P}+w_{Q}}(P\oplus Q)$ for any element $y$ of $Q.$

(iii) Let $\tilde{Q}$ and $R$ be posets satisfying $Q=\tilde{Q}$ and $R=\emptyset$ or $Q=\tilde{Q}\oplus R$ and $R$ is a chain”. Let $x$

be ajoint element of $P$ satisfying $|\langle x\rangle|=|\tilde{Q}|$ and $\prod_{z\in\langle x\rangle}w_{P}(z)=\prod_{z\in Q^{-}}w_{Q}(z)$ . We denote the
weight $w_{P}|_{P-\langle x\rangle}+w_{Q}|_{Q^{-}}$ by $w_{P(x,\overline{Q})}$ . Then, we have

$F(P(x, \tilde{Q});w_{P(x,Q^{-})})=F(P;w_{P})F(Q;w_{Q})\prod(1-\prod_{y}w_{P}(z))\prod_{R}(1-\prod_{z\in Q^{-}}w_{Q}(z)\prod w_{Q}(z))y\in\langle x\rangle z\leqy\in z\in R,z\leq y.$

In particular, if $(P, w_{P})$ and $(Q, w_{Q})$ are multivariable hook length posets and all $\prod_{z\leq y}w_{P}(z)$

$(y\in\langle x\rangle)$ and all $\prod_{z\in Q^{-}}w_{Q}(z)\prod_{z\leq R,z\leq y}w_{Q}(z)(y\in R)$ are elements of $H_{P,w_{P}}(P)\cup H_{Q,w_{Q}}(Q)$ ,

then $(P(x,\tilde{Q}), w_{P(x,Q^{-})})$ is a multivariable hook length poset. Also, if $(P(x,\tilde{Q}), w_{P(x,Q^{-})})$ and
$(Q, w_{Q})$ are multivariable hook length posets and $\prod_{y\in Q}(1-H_{(Q,w_{Q})}(y))$ divides

$\prod_{y\in P(x\tilde{Q})y\in\langle x\rangle z\leq yy\in z\in R,z\leq y},(1-H_{(P(x,\tilde{Q}),w_{P(x,Q^{-})})}(y))\prod(1-\prod w_{P}(z))\prod_{R}(1-\prod_{z\in\tilde{Q}}w_{Q}(z)\prod w_{Q}(z))$
,
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then $(P, w_{P})$ is a multivariable hook length poset.

For example, let $P$ (resp. $Q$ ) be a $d_{7}$-interval (resp. $d_{3}$-interval). And let $w_{P}$ (resp. $w_{Q}$ ) be a
weight of $P$ (resp. $Q$ ) and $x,$ $y$ be elements of $P$ defined as follows:

$w_{Q}=qqE_{q}^{q}$

Then, we can see that $(x, y)$ is a joint pair of $P$ and $(P, w_{P})$ , $(Q, w_{Q})$ are multivariable hook length
posets satisfying $|\langle x\rangle|=4=|Q|,$ $\prod_{z\in\langle x\rangle}w_{P}(z)=q_{0}^{2}q_{1}q_{2}=\prod_{z\in Q}w_{Q}(z)$ and $\{\prod_{u\leq z}w_{P}(u);z\in$

$\langle x\rangle\}=\{q_{0}, q_{0}^{2}, q_{0}^{2}q_{1}, q_{0}^{2}q_{1}q_{2}\}\subseteq H_{P,w_{P}}(P)$ . Then, we have

and, by Proposition 4.1 (iii), this poset is a multivariable hook length poset. Also, we define posets
$P_{1},$ $P_{2}$ and their weights $w_{P_{1}},$ $w_{P_{2}}$ as follows:

$q_{0}$

$q_{1}$

$(P_{2}, w_{P_{2}})= \bigvee_{q_{0}}^{q_{1}q_{2}}$
$q_{2}q_{0}$

Then, by applying Proposition4.1 (iii) to the posets $(c_{3}+c_{4})\oplus c_{1}$ and $d_{3}$-interval (resp. Proposition4.1
(ii) to the above poset $(P_{1}, w_{P_{1}})$ ), then we can see that $(P_{1}, w_{P_{1}})$ $($resp. $(P_{2}, w_{P_{2}})$ ) is a multivariable
hook length poset. Note that $P_{2}$ is a poset described in Proctor’s web page [10] as a Stanley’s example

that $P+Q$ is a hook length poset but $P$ or $Q$ is not a hook length poset.

Note that for two multivariable hook length posets $(P, w_{P})$ and $(Q, w_{Q})$ such that $P$ is non-adjacent
to $Q$ , we can define a weight $w$ of $P+Q$ satisfying that $w(x)\neq w(y)$ for any pair of elements $(x, y)$

in $P\cross Q$ and $(P+Q, w)$ is a multivariable hook length poset. Therefore, by Proposition 3.2, Lemma
3.3, Proposition 4.1 and the definition of general leaf posets, we can conclude the following.

Theorem 4.2. Any leaf poset is a multivariable hook length poset.

As a corollary of Proposition 4.1, we can obtain the following.

Corollary 4.3. Let $P$ and $Q$ be finite posets which are mutually non-adjacent.

(i) We have
$F(P+Q;q)=F(P;q)F(Q;q)$ .

In particular, $P$ and $Q$ are hook length posets, then $P+Q$ is a hook length poset.

(ii) Let $Q$ be a chain. Then, we have

$F(P \oplus Q;q)=\frac{F(P;q)}{\prod_{i=1}^{|Q|}(1-q^{|P|+i})}.$

In particular, $P$ is a hook length poset if and only if $P\oplus Q$ is a hook length poset satisfying
$\{|P|+i;1\leq i\leq|Q|\}\subseteq h_{P\oplus Q}(P\oplus Q)$ .
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(iii) Let $\tilde{Q}$ and $R$ be posets satisfying $Q=\overline{Q}$ and $R=\emptyset$ or $Q=\tilde{Q}\oplus R$ and $R$ is a chain Let $x$

be ajoint element of $P$ satisfying $|\langle x\rangle|=|\tilde{Q}|$ . Then, we have

$F(P(x, \tilde{Q});q)=F(P;q)F(Q;q)\prod_{i=1}^{|Q|}(1-q^{i})$ .

In particular, if $P$ and $Q$ are hook length posets satisfying $\{1, 2, . . . , |Q|\}\subseteq h_{P}(P)\cup h_{Q}(Q)$ ,

then $P(x,\tilde{Q})$ is a hook length poset. Also, if $P(x,\tilde{Q})$ and $Q$ are hook length posets and

$\prod_{y\in Q}(1-q^{h_{Q}(y)})$ divides $\prod_{y\in P(x,Q^{-})}(1-q^{h_{P(x,Q^{-})}(y)})\prod_{i=1}^{|Q|}(1-q^{i})$ , then $P$ is a hook length

poset.

Note that Corollary 4.3 (i) is well known (cf. [12]).

For example, if $P$ is a $d_{3}$-interval, $Q$ is a poset removing the minimum element from $P$ and $c_{2}$ is a
chain of length 2, then by Corollary 4.3 (ii), $P\oplus c_{2}$ and $Q\oplus c_{2}$ are also hook length posets, i.e.

are hook length posets, where the labeling is the hook lengthes of corresponding element. Let $P_{1},$ $P_{2},$

$P_{3}$ and $Q$ be posets defined by

$Q=2\phi_{1}^{u}$

and let $\tilde{Q}=Q-\{u\}$ . We can easily see that integers 1, 2, 3, 4, where 4 is the cardinality of a poset
$Q$ , appear as hook lengthes of $P_{1},$ $P_{2}$ and $P_{3}$ . Hence, by Corollary 4.3 (iii), three posets $P_{1}(x_{1}, Q)$ ,
$P_{2}(x_{2},\tilde{Q})$ and $P_{3}(x_{3},\tilde{Q})$ are hook length posets and their hook lengthes are the following.

Note that the cardinality of the poset $P_{3}(x_{3},\tilde{Q})=:R$ is 8 and 8 appears as a hook length of $R$ . Hence,

by Corollary 4.3 (ii), we can see that $R-\{x_{0}\}$ is also a hook length poset, where $x_{0}$ is the maximum
element of $R$ . The poset $R-\{x_{0}\}$ was already described in this article as Stanley’s example.

In order to explain our fourth method, we define one more notation. Let $P$ be a poset, $A=$

$\{a_{1}, a_{2}, . . . , a_{r}\}$ be a subset of $P$ with $r$ elements and $m,$ $m_{1},$ $m_{2}$ , . . . , $m_{k}$ be positive integers, and let
$A_{1},$ $A_{2}$ , . . . , $A_{k}$ be subsets of $P$ . We write

$P(\begin{array}{l}Am\end{array}):=(\ldots(P^{a_{1}}\backslash c_{m})^{a_{2}}\backslash c_{m})\ldots)^{a_{r}}\backslash c_{m},$ $P(\begin{array}{llll}A_{1},A_{2} \cdots \cdots A_{k}m_{l} m_{2} \cdots m_{k}\end{array}):=P(\begin{array}{lll}A_{1} \cdots A_{k-1}m_{1} \cdots m_{k-1}\end{array})(\begin{array}{l}A_{k}m_{k}\end{array}).$
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For example, let $P$ be a $d_{4}$-interval and let $a_{1}$ (resp. $a_{2}$ ) be the maximum element (resp. the
minimum element) of $P$ , and let $b_{1}$ (resp. $b_{2}$ ) be the maximum element (resp. the minimum element)

Then, we have

Then, we can obtain the following fourth method.

Lemma 4.4. Let $(P, w_{P})$ be a multivariable hook length poset, $p_{1},p_{2}$ , . . . , $p_{r}$ be $r$ elements of $w_{P}(P)$ ,
and let $m_{1},$ $m_{2}$ , . . . , $m_{r}$ be positive integers. We write

$\tilde{P}:=P(^{w_{P}^{-1}(\{p_{1}\}),w_{P}^{-1}(\{p_{2}.\}).’\ldots w_{P}^{-1}(\{p_{r}\})}m_{1},m_{2},.,m_{r}’)$ .

For $1\leq i\leq r$ , we denote the cardinality of $w_{P}^{-1}(\{p_{i}\})$ by $n_{i}.$

(i) For $1\leq i\leq r$ , let $z_{1}^{(i)},$ $z_{2}^{(i)}$ , . . . , $z_{n_{i}}^{(i)}$ be all elements of $w_{P}^{-1}(\{p_{\iota’}\})$ . For $1\leq i\leq r$ and $1\leq j\leq n_{i},$

let $u_{j}^{(i)}$ be an element of $\tilde{P}-P$ satisfying $u_{j}^{(i)}\ll z_{j}^{(i)}$ in $\tilde{P}$ , and let $w_{j}^{(i)}$ be a weight of $\langle u_{j}^{(i)}\rangle$ . If

$\prod_{y\in\langle u_{j}^{(i)}\rangle}w_{j}^{(i)}(y)=\prod_{y\in\langle u_{k}^{(i)}\rangle}w_{k}^{(i)}(y)(=:V_{i}) (1\leq i\leq r, 1\leq j, k\leq n_{i})$
,

then for a weight $w$ of $P$ defined by

$w(x)=\{\begin{array}{ll}p_{i}V_{i} if x\in w_{P}^{-1}(\{p_{i}\})(i=1,2, \ldots, r) ,w_{P}(x) otherwise,\end{array}$

we have

$F( \tilde{P};w_{P}+\sum_{i=1}^{r}\sum_{j=1}^{n_{i}}w_{j}^{(i)})=F(P;w)\prod_{i=1j}^{r}\prod_{=1}^{n_{i}}F(\langle u_{j}^{(i)}\rangle;w_{j}^{(i)})$

and $( \tilde{P}, w_{P}+\sum_{i=1}^{r}\sum_{j=1}^{n_{i}}w_{j}^{(i)})$ is a multivariable hook length poset.

(ii) Let $w$ be a weight of $P$ defined to be $w(x):=q^{m_{i}+1}$ if $x\in w_{P}^{-1}(\{p_{i}\})$ for some $i\in\{1, 2, . . . , r\}$

and $w(x)$ $:=q$ otherwise. Then, we have

$F( \tilde{P};q)=F(P;w)\prod_{i=1}^{r}F(c_{m_{i}};q)^{n_{t}}$

and $\tilde{P}$ is a hook length poset.

For example, let $P,$ $a_{1},$ $a_{2},$ $b_{1},$ $b_{2}$ be the same ones in our previous example, and let $w_{P}$ be a weight
of $P$ defined by the following.

We write a poset $P(^{\{a_{1}’ a_{2}\},\{b_{1},b_{2}\}}2,1$ ) by $R$ and we define a weight $w_{R}$ of $R$ by Diagram 5. Then, we
can easily see that $(P, w_{P})$ is a multivariable hook length poset, $\{a_{1}, a_{2}\}=w_{P}^{-1}(\{q_{0}\})$ and $\{b_{1}, b_{2}\}=$

$w_{P}^{-1}(\{q_{1}\})$ . Hence, by Lemma 4.4, $(R, w_{R})$ is a multivariable hook length poset and $R$ is a hook
length poset with hook length function $h_{R}$ defined by Diagram 5.

As a corollary of Proposition 4.1 (iii) and Lemma 4.4 (i), we can also obtain the following.
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Diagram 5: $w_{R}$ and $h_{R}$

Corollary 4.5. Let $(P, w_{P})$ , $(Q, w_{Q})$ be multivariable hook length posets and $x$ be an element of
$P$ satisfying that $|w_{P}^{-1}(\{w_{P}(x)\})|=1$ . We define a weight $w$ of $P$ by $w(x)$ $:=w_{P}(x) \prod_{z\in Q^{w}}Q(z)$

and $w(y)$ $:=w_{P}(y)$ if $y\in P-\{x\}$ . Then, we have $F(P^{y}\backslash Q;w_{P}+w_{Q})=F(P;w)F(Q;w_{Q})$ and
$(P^{x}\backslash Q, w_{P}+w_{Q})$ is a multivariable hook length poset.

By using Proposition 3.2, we can see that Theorem 1.1 is correct for irreducible $d$-complete posets.

Therefore, by Corollary 4.5, we can obtain that Theorem 1.1 is true for all $d$-complete posets, and

it follows that any $d$-complete poset $P$ is also a multivariable hook length poset with the weight $w_{c}$

defined by $w_{c}(x)=q_{c(x)}$ , where $c$ is a $d$-complete coloring of $P.$

Remark 4.6. Let $P$ be a $d$-complete poset with top tree $T,$ $c$ be a map from $P$ to $\{1, 2, . . . , |T|\}$ , and

let $w_{c}$ be a weight of $P$ defined by $w_{c}(x)=q_{c(x)}$ . Then, it is not true that $(P, w_{c})$ is a multivariable

hook length poset if and only if $c$ is a $d$-complete coloring. For example, let $P$ be a $d_{4}$-interval, $c$ be

a map from $P$ to {1, 2, 3, 4} and $H$ be a map from $P$ to $\tilde{\mathscr{Q}}$ defined by

Then, $c$ is not $d$-complete coloring, but we can see that $H$ is a hook function of $(P, w_{c})$ and hence
$(P, w_{c})$ is a multivariable hook length poset.

Now, we are in position to define extended leaf posets and multivariable extended leaf posets.

Definition 4.7 ((Multivariable) extended leaf posets). If $P$ is a leaf poset, we also call $Pa$

$0$-level extended leaf poset (resp. a $0$-level multivariable extended leaf poset). For a positive integer
$k$ , we call $P$ a $k$-level extended leaf poset (resp. a $k$-level multivariable extended leaf poset) if $P$ is a
$(k-1)$-level extended leaf poset (resp. $a(k-1)$-level multivariable extended leaf poset) or $P$ is a hook

length poset (resp. a multivariable hook length poset) made from $(k-1)$-level extended leaf posets

(resp. $(k-1)$-level multivariable extended leaf posets) by using Corollary 4.3 and Lemma 4.4 (ii)

(resp. Proposition 4.1 and Lemma 4.4 (i) ). We call $P$ an extended leaf poset (resp. a multivariable
extended leaf poset) if $P$ is a $k$-level extended leaf poset (resp. a $k$-level multivariable extended leaf

poset) for some non-negative integer $k$ . We denote the set of the extended leaf posets (resp. the set

of the multivariable extended leaf posets) by ELP (resp. MELP).

For example, the following posets are all extended leaf posets.
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Here, the labeling of the above diagram is the hook length of the corresponding element, and $Parrow_{m}Q$

(resp. $Parrow_{\mathcal{C}}Q$ ) means that $Q$ is obtained from $P$ by using Lemma 4.4 (ii) (resp. Corollary 4.3).
Note that we can check that all the above posets are also multivariable extended leaf posets with
weights as follows:

where $\{p_{1},p_{2},p_{3}\}=\{q_{4}, q_{5}, q_{6}\}.$

Remark 4.8. It is easy to see that any multivariable extended leaf poset is an extended leaf poset,
but we cannot find an extended leaf poset which is not a multivariable extended leaf poset yet.

In Proctor’s web page [1], there exists a list of hook length posets with $k$ elements, where $k$ is
from 1 to 9. We checked his list in order to know what hook length poset is not an extended
leaf poset. In order to describe the result of our investigation, we denote the set of the connected
hook length posets with $k$ elements by $CHLP_{k}$ and the set of all $d$-complete posets by DCP. Then,
by using his list, we can see that $\bigcup_{i=1}^{5}CHLP_{i}\subseteq$ DCP, $|CHLP_{6}-DCP|=3,$ $CHLP_{6}\subseteq$ ELP,
$|CHLP_{7}-DCP|=6,$ $CHLP_{7}\subseteq ELP,$ $|CHLP_{8}-DCP|=51,$ $CHLP_{8}\subseteq ELP,$ $|CHLP_{9}-DCP|=133$
and $CHLP_{9}-ELP=\{R_{1}, R_{2}\}$ , where $R_{1}$ and $R_{2}$ are the following posets.

where the labelings are also hook lengthes. Note that we can obtain the hook length poset $R_{2}$ from
$R_{1}$ by using Corollary 4.3, in particular, $R_{2}=R_{1}(z, c_{1}+c_{1})$ . Hence, we have one question. What is
a poset $R_{1}$ ? At the last part of this article, we give an answer of this question.

5 A new class of multivariable hook length posets

In this section, we introduce a new class of multivariable hook length posets includes a poset $R_{1}$

which is a hook length poset but not extended leaf poset found in the previous section. From now on,
let $m\geq 2$ be an integer, and let $\alpha=(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m})$ and $\beta=(\beta_{1}, \beta_{2}, \ldots, \beta_{m})$ be strictly decreasing
sequences of non-negative integers of length $m$ . We can obtain the following.

Theorem 5.1. Let $\tilde{G}(\alpha, \beta)$ be a poset and let $w$ be a weight of $\tilde{G}(\alpha, \beta)$ defined by Diagram 6.
Then, we have

$F( \tilde{G}(\alpha, \beta);w)=\frac{1}{(1-r_{1})^{m}(1-V)\prod_{i=0}^{\beta_{1}}(1-r_{1}p^{(1,i)}V)\prod_{i=1}^{m}(1,\alpha_{i})_{q}!(1,\beta_{i})_{p}!}$

$\cross\frac{\prod_{1\leq\iota’<j\leq m}(1-q^{(\alpha_{j}+1,\alpha_{i})})(1-p^{(\beta_{j}+1,\beta_{i})})\prod_{k=1}^{m}(,1-r_{1}p^{(1,\beta_{k})}V)}{\prod_{i,j=1}^{m}(1-r_{1}q^{(0,\alpha_{i})}p^{(1,\beta_{j})})\prod_{k=1}^{m}(1-(q^{(0\alpha_{k})})^{-1}V)},$

where $V=r_{1}^{m}r_{2}\prod_{i=1}^{m}q^{(0,\alpha_{i})}p^{(1,\beta_{i})}$ , and $(\tilde{G}(\alpha,\beta), w)$ is a multivariable hook length poset.

Key equality of the proof of Theorem 5.1 is the following infinite sum of Schur functions.
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Diagram 6: $\tilde{G}(\alpha,\beta)$ and $w$

Lemma 5.2. Let $m$ be a positive integer and $u,$ $w$ be variables. Then, we have

$\lambda=(\lambda_{1},\lambda_{2},\ldots,\lambda_{2n+1})\in \mathscr{P}\sum u^{\lambda_{2n}}w^{\lambda_{2n+1}}s_{(\lambda_{1},\lambda_{3},\ldots,\lambda_{2n-1})(X_{m})s_{(\lambda_{2},\lambda_{4\cdots\prime}\lambda_{2m})}(Y_{m})s_{(\lambda_{2n-1},\lambda_{2n+1})}(1,z)}$

$= \frac{1}{\prod_{i=0}^{1}(1-uw^{i}z\prod_{k=1}^{m}x_{k}y_{k})\prod_{i=1}^{m}(1-x_{i})\prod_{i,j=1}^{m}(1-x_{i}y_{j})}$

$\cross(\frac{\prod_{i=1}^{m}(1-x_{i}z\prod_{k=1}^{m}x_{k}y_{k})}{\prod_{i=1}^{m}(1-y_{i}^{-1}z\prod_{k=1}^{m}x_{k}y_{k})}+\frac{(u-1)\prod_{k=1}^{m}x_{k}y_{k}}{1-u\prod_{k=1}^{m}x_{k}y_{k}})$ ,

where $X_{m}=(x_{1}, x_{2}, \ldots, x_{m})$ and $Y_{m}=(y_{1}, y_{2}, \ldots, y_{m})$ are sequences of variables.
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