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ABSTRACT. We study here semiclassical resonances for the Schr\"odinger operator on $L^{2}(\mathbb{R}^{n})$ ,
when the associated trapped set consists of a hyperbolic fixed point and an associated $h(\succ$

moclinic trajectory. Thanks to a new approach for this kind of problem, well-suited for
the geometry we consider, we obtain a quantization condition for resonances, and describe
precisely their location. Our proof also provides polynomial semiclassical resolvent estimates.

1. INTRODUCTION

We are interested in resonances for Schr\"odinger operators on $\mathbb{R}^{n}$

(1.1) $P=-h^{2}\Delta+V(x)$ ,

with a smooth potential $V$ . We consider the semiclassical regime $harrow 0$ , and Bohr’s cor-
respondance principle asserts that the underlying classical system should play an important
role. Indeed, it is now well known that the main role is played by the set of bounded classical
trajectories, which is usually referred to as the trapped set. We recall in Section 1.3 below
some of the known results for existence and location of resonances related to the nature of
trapped set.

In some sense, we study here the simplest configuration for which there is no result so
far, namely that where the trapped set consists exactly of a hyperbolic fixed point, and an
associated homoclinic trajectory $\gamma$ . The 1-dimensional case has been studied in [9], and we
are interested here in the full $n$-dimensional setting.

In this short introduction, we would like to emphasize that we have had to develop a new
approach to obtain the asymptotics of the resonances, due to the geometry of the problem.
Indeed, our results rely heavily on the study of what we call a microlocal Cauchy problem, of
the form

(1.2) $\{\begin{array}{ll}(P-E)u=v microlocally in \Omega,u=u_{-} microlocally near S_{-},\end{array}$

where $\Omega$ is some neighborhood of the trapped set, and $S_{-}$ is a suitable hypersurface in the
incoming region of $\Omega$ . As a matter of fact, we prove our main resolvent estimate (and therefore
absence of resonances) in some region of the complex plane of energies (see Section 3.2) by
establishing a uniqueness result for the above problem. On the other hand, we prove the
existence and give the precise location of resonances using the existence of solution to the
inhomogeneous microlocal Cauchy problem (see Section 3.3). One may notice also that we
obtain that way a Bohr-Sommerfeld hke quantization condition for the resonances, which
implies in particular that they accumulate on precisely defined curves as $harrow 0.$
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For the study of (1.2), one of the main tools is the connection formula for microlocal
solutions near a hyperbolic fixed point that we have established in [2]. This result permits us
to describe the solution on the outgoing stable manifold associated with the fixed point, in

terms of its value on the incoming stable manifold.

This note is a brief review of part of the forthcoming paper [3]. In that paper, we also
obtain asymptotics of the resonances for more general trapped set, for example consisting of
several singular points, homoclinic or heteroclinic orbits.

The first and third authors acknowledge partial support from the ANR project Nosevol.
The second author is supported by a JSPS Grants-in-Aid for Scientific Research.

1.1. Definition of resonance. For the potential $V(x)$ , we assume

(A1) $V(x)$ is a real-valued smooth function on $\mathbb{R}^{n}$ and analytic in a sector

$S=\{x\in \mathbb{C}^{n};|{\rm Im} x|\leq(\tan\theta_{0})|{\rm Re} x|$ and $|{\rm Re} x|>C\},$

for some positive constants $0< \theta_{0}<\frac{\pi}{2}$ and $C$ . Moreover

$V(x)arrow 0$ as $|x|arrow\infty$ in $S.$

The opertor $P$ is self-adjoint on $L^{2}(\mathbb{R}^{n})$ and its essential spectrum $\sigma_{ess}(P)$ , is equal to $\mathbb{R}_{+}.$

First, we define the resonances of $P$ by complex dilation (see [1]), assuming a stronger
condition $(A1)_{g1}$ with

$S_{g1}=\{x\in \mathbb{C}^{n};|{\rm Im} x|\leq(\tan\theta_{0})\langle{\rm Re} x\rangle\},$

including the whole real space, instead of $S$ in (A1). For a function analytic in $S_{g1}$ , let

$(U_{\theta}f)(x):=f(e^{i\theta}x)$

for real small $\theta$ , and $P_{\theta}$ $:=U_{\theta}PU_{\theta}^{-1}=e^{-2i\theta}(-h^{2}\triangle+e^{2i\theta}V(e^{i\theta}x))$ . This new operator $P_{\theta}$ is

no longer self-adjoint and $\sigma_{ess}(P_{\theta})=e^{-2i\theta}\mathbb{R}+\cdot$ There eventually exist eigenvalues (with finite
multiplicities) in the sector $\mathcal{E}_{\theta}$ $:=\{z\in \mathbb{C}\backslash \{O\};\arg z\in(-2\theta,$ $0$ We call these eigenvalues
resonances and the corresponding eigenfunctions resonant states, and we write

${\rm Res}(P):=\sigma_{disc}(P_{\theta})\cap \mathcal{E}_{\theta}.$

Remark that the set ${\rm Res}(P)$ is independent of $\theta$ in the sense that

${\rm Res}_{\theta’}(P)\cap \mathcal{E}_{\theta}={\rm Res}_{\theta}(P)$ for $0<\theta<\theta’.$

When we assume only (A1), we replace $e^{i\theta}x$ in the definition of $U_{\theta}$ by $x+i\theta F(x)$ , with
$F(x)=0$ in a compact set and $F(x)=x$ for large $|x|$ , it corresponds to a complex distortion
introduced by Hunziker, see [16].

Equivalently, we can define the resonances of $P$ by showing that the resolvent $(P-E)^{-1}$ :
$L_{comp}^{2}(\mathbb{R}^{n})arrow L_{1oc}^{2}(\mathbb{R}^{n})$ has a meromorphic extension from the upper half plane to $\mathcal{E}_{\theta}$ across
$(0, \infty)$ . We have

(1.3) $\chi(P-E)^{-1}\chi=\chi(P_{\theta}-E)^{-1}\chi$

for any cut-off function $\chi$ whose support is in $\{x\in \mathbb{R}^{n};F(x)=0\}$ . The poles are the
resonances and the multiplicity of a resonance is the rank of the projector

$- \frac{1}{2\pi i}\oint(P-E)^{-1}dE.$
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In particular when $n=1$ and $V(x)\in C^{\infty}(\mathbb{R})$ is compactly supported, $E$ is a resonance if
and only if there exist a non-trivial $u$ and $(\alpha, \beta)\neq(0,0)$ such that

$\{\begin{array}{l}Pu=Eu,u=[Case]\end{array}$

The function $\Psi(t, x):=e^{-iEt/h}u(x)$ is a time decaying solution of
$h\partial$

$\overline{i}\overline{\partial t}^{\Psi+P\Psi=0}$ ’

which behaves like an outgoing wave near the spatial infinity. The decay rate is formally
given by $|e^{-iEt/h}|=e^{-|{\rm Im} E|t/h}$ , hence resonances close to the real axis correspond to resonant
states with long life time.

Resonances are defined also as poles of scattering matrix. In fact, in this one-dimensional
case, the scattering matrix is a $2\cross 2$ matrix expressing the outgoing waves in terms of the
incoming ones. In [12], Helffer and Martinez have established the equivalence between the
different notions of resonances.

1.2. Trapped set and resonances. Let

(1.4) $p(x, \xi)=\xi^{2}+V(x)$ ,

be the classical Hamiltonian corresponding to the Schr\"odinger operator (1.1) and

$H_{p}:=\partial_{\xi}p\cdot\partial_{x}-\partial_{x}p\cdot\partial_{\xi}=2\xi\cdot\partial_{x}-\nabla_{x}V\cdot\partial_{\xi},$

the corresponding Hamiltonian vector field. We denote by $\exp(tH_{p})(x_{0}, \xi_{0})$ the integral curve
of the Hamiltonian vector field and we call it a Hamiltonian curve starting from the point
$(x0, \xi_{0})$ . Note that the symbol $p(x, \xi)$ is invariant along any Hamiltonian curve.
Now we fix $E_{0}>$ O. Let $K(E_{0})$ be the set of trapped trajectories on the energy surface

$p^{-1}(E_{0})$ :
$K(E_{0})=\{(x, \xi)\in p^{-1}(E_{0});t\mapsto\exp(tH_{p})(x, \xi)$ is bounded $\}.$

This set is compact (see [10]), There is a close relationship between the semiclassical distri-
bution of resonances near a real energy $E_{0}$ and the geometry of $K(E_{0})$ of the corresponding
classical dynamics.

We will use throughout this report the following notations.

$D(r):=\{E\in \mathbb{C};|E|<r\},$

(1.5) Box$(c_{1}, c_{2})$ $:=\{E\in \mathbb{C};|{\rm Re} E-E_{0}|<c_{1}, -c_{2}<{\rm Im} E<0\}.$

In the non-trapping case, the following results have been obtained by Briet, Combes, Duclos
[5], and Helffer, Sj\"ostrand [14] in the analytic case, and by Martinez in [17] in the $C^{\infty}$ case.
The Gevrey case has been treated by Rouleux [18].

Theorem 1.1 ([5], [14]). Assume $(A1)_{g1}$ and that $K(E_{0})=\emptyset$ . Then there exists $\epsilon>0$ such
that ${\rm Res}(P)\cap Box(\epsilon, \epsilon)=\emptyset$ for sufficiently small $h.$

Theorem 1.2 ([17]). Assume (A1) and that $K(E_{0})=\emptyset$ . Then there exists $\epsilon>0$ such that,
for any $C>0,$ ${\rm Res}(P)\cap Box(\epsilon, Ch|\log h|)=\emptyset$ for sufficiently small $h.$
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1.3. Some known results about the asymptotic distribution of resonances. When
$K(E_{0})\neq\emptyset$ , on the contrary, what is the asymptotic distribution of resonances as $harrow 0$ in a
complex neighborhood of $E_{0}$? Here we recall the most closely related known results.

The first one is about resonances created by a simple closed trajectory and is due to G\’erard

and Sj\"ostrand [10].

Theorem 1.3 ([10]). Assume $(A1)_{g1}$ and $K(E_{0})$ consists of a simple closed trajectory whose
Poincar\’emap is hyperbolic ($i.e$. none of the eigenvalues is ofmodulus 1). Then, in Box$(\epsilon, Ch)$ ,
there is a bijection $b_{h}$ between ${\rm Res}(P)$ (counted with their multiplicity) and the set of roots
of the equation

$A(E)=2k \pi h+ih\log\rho(E)-ih\sum_{j=1}^{n-1}\alpha_{j}\log\theta_{j}(E) , k\in \mathbb{Z}, \alpha_{j}\in \mathbb{N},$

such that $b_{h}(E)=E+o(h)$ . Here $A(E)$ is the action, $\theta_{1}$ , . . . , $\theta_{n-1}$ are the eigenvalues of the
Poincar\’e map with modulus $>1$ and $\rho(E)$ is some analytic function of $E$ satisfying

$|\rho(E)|=|\theta_{1}(E)\cdots\theta_{n-1}(E)|^{-\frac{1}{2}}.$

The second one is the case where $K(E_{0})$ reduces to a point $K(E_{0})=\{(x_{0},$ $\xi_{0}$ necessarily
with $\xi_{0}=$ O. We may assume that $x_{0}=$ O. In this case, Sj\"ostrand [20] has obtained the
following result.

Theorem 1.4 ([20]). Assume $(A1)_{g1}$ and $K(E_{0})$ consists of a non-degenerate saddle point
$(0,0)$ . We may assume, after a linear change of variables, that the Taylor expansion of $V(x)$

$is$

(1.6) $V(x)=E_{0}- \sum_{j=1}^{d}\frac{\lambda_{j}^{2}}{4}x_{j}^{2}+\sum_{j=d+1}^{n}\frac{\mu_{j}^{2}}{4}x_{j}^{2}+\mathcal{O}(|x|^{3})$ as $xarrow 0$

with $E_{0}>0,$ $\lambda_{j},$ $\mu_{j}>0$ . Define the pseudo-resonances $E_{\alpha,\beta}$ by

$E_{\alpha,\beta}=E_{0}+h \sum_{j=d+1}^{n}\mu_{j}(\beta_{j}+\frac{1}{2})-ih\sum_{j=1}^{d}\lambda_{j}(\alpha_{j}+\frac{1}{2})$

for each $(\alpha, \beta)=(\alpha_{1}, \ldots, \alpha_{d}, \beta_{d+1}, \ldots, \beta_{n})\in \mathbb{N}^{n}$ . Then for any $C>0$ such that no pseudo-
resonance is on the boundary of Box$(Ch, Ch)$ , there exists a bijection $b_{h}$ in Box$(Ch, Ch)$
between ${\rm Res}(P)$ and the set ofpseudo-resonances such that $b_{h}(E)=E+\mathcal{O}(h^{3/2})$ .

Remark 1.5. The case $d=n$ was also studied by Briet, Combes and Duclos [6] under $a$

virial condition.

Remark 1.6. The case $d=0$ has been studied in more detail in the so called “well in an
island”’ setting. Especially the imaginary part of resonances is exponentially small and the
decay rate is given by the Agmon distance from the well to the sea (see Helffer, Sj\"ostrand [14]
and Lahmar-Benbernou, Martinez with the second author [8]).

Finally we recall the result in one dimension about the resonances created by a homoclinic
trajectory.
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Theorem 1.7 ([9]). Assume $n=1$ , (1.6) with $d=1$ and $(A1)_{g1}$ . Moreover, we suppose that
$K(E_{0})=\{(0,0)\}\cup\gamma$ , where $\gamma$ is a homoclinic trajectory associated with $(0,0)$ . Then, for any
$C>0$ , the resonances in Box$(C \frac{h}{|\log h|}, C\frac{h}{|\log h|})$ satisfy

(1.7) $E_{k}=E_{0}- \lambda_{1}\frac{A-(2k+1)\pi h}{|\log h|}-i\frac{\log 2}{2}\lambda_{1}\frac{h}{|\log h|}+\mathcal{O}(\frac{h}{|\log h|^{2}})$ ,

where $A= \int_{\gamma}\xi\cdot dx$ is the action along the homoclinic curve $\gamma$ and $k\in \mathbb{Z}$ . In particular,

${\rm Im} E_{k}=- \frac{\log 2}{2}\lambda_{1}\frac{h}{|\log h|}+\mathcal{O}(\frac{h}{|\log h|^{2}})$ .

Our problem is to generalize the last theorem to higher dimensions. Theorem 1.7 together
with Theorem 1.4 suggest a lattice structure of resonances, where the first (closest to the real
axis) horizontal line has imaginary part of order $-Lh$ with $L= \frac{1}{2}\sum_{j=2}^{n}\lambda_{j}$ and the distance

between two neighboring resonances is of order $2 \pi\lambda_{1}\frac{h}{|\log h|}$ , where the homoclinic trajectory
is assumed to be in the $x_{1}$-direction.

In the next section, we recall the microlocal study of solutions near a hyperbolic fixed
point in [2], more precisely we state without proof the uniqueness and construction theorems
of microlocal Cauchy problem (Theorems 2.5 and 2.8).

The main results will be given in the last section. We assume that the trapped set consists of
a hyperbolic fixed point and an associated single homoclinic trajectory, which is a transversal
intersection of the outgoing and incoming stable manifolds. We first give the quantization
condition of resonances which defines pseudo-resonances (Definition 3.3), and then prove the
polynomial estimate of the resolvent away from the pseudo-resonances (Theorem 3.6) and the
existence of resonances close to each pseudo-resonances (Theorem 3.12).

2. MICROLOCAL STUDY OF SOLUTIONS NEAR A HYPERBOLIC FIXED POINT

In this section, we study the operator (1.1) locally in a neighborhood of the origin, where
we assume that the potential is smooth and satisfies:

(A2) The origin $x=0$ is a non-degenerate local maximum of $V(x)$ , i.e., after a linear change
of variables, we have

$V(x)=E_{0}- \sum_{j=1}^{n}\frac{\lambda_{j}^{2}}{4}x_{j}^{2}+\mathcal{O}(|x|^{3})$ as $xarrow 0,$

with $0<\lambda_{1}\leq\lambda_{2}\leq\cdots\leq\lambda_{n}.$

2.1. Stable/unstable manifolds. Under (A2), the origin $(x,\xi)=(0,0)$ is a fixed point of
the Hamiltonian vector field $H_{p}$ . In the above coordinates, the corresponding fundamental
matrix

$F_{p}:=D_{(0,0)}H_{p}=(\begin{array}{ll}\frac{\partial^{2}p}{\partial x\partial\xi} \phi_{\partial\xi}^{\partial^{2}}-\overline{\partial}\partial^{2}x\not\in -\frac{\partial^{2}p}{\partial\xi\partial x}\end{array})|_{(0,0)}^{=}(\begin{array}{ll}0 2Id\frac{1}{2}diag(\lambda_{j})^{2} 0\end{array}),$

has $n$ positive eigenvalues $\{\lambda_{j}\}_{j=1}^{n}$ and $n$ negative eigenvalues $\{-\lambda_{j}\}_{j=1}^{n}$ . The eigenspaces
$\Lambda_{\pm}^{0}$ corresponding to these positive and negative eigenvalues are respectively outgoing and
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incoming stable manifolds for the quadratic part $p_{0}$ $:= \xi^{2}-\sum\lambda_{j}^{2}x_{j}^{2}/4$ of $p$ :

$\Lambda_{\pm}^{0}=\{(x, \xi)\in \mathbb{R}^{2n};\exp(tH_{p0})(x, \xi)arrow(0,0)as tarrow\mp\infty\}$

$= \{(x, \xi)\in \mathbb{R}^{2n};\xi_{j}=\pm\frac{\lambda_{j}}{2}x_{j}, j=1, . .. , n\}.$

By the stable/unstable manifold theorem, we also have outgoing and incoming stable mani-
folds for $p$ :

$\Lambda\pm=\{(x, \xi)\in \mathbb{R}^{2n};\exp(tH_{p})(x, \xi)arrow(0,0) as tarrow\mp\infty\},$

which are tangent to $\Lambda_{\pm}^{0}$ at $(0,0)$ . The manifolds $\Lambda\pm are$ Lagrangian manifolds and can be
written near $(0,0)$ as

$\Lambda_{\pm}=\{(x, \xi)\in \mathbb{R}^{2n};\xi=\frac{\partial\phi\pm}{\partial x}(x)\},$

where the generating functions $\emptyset\pm(x)$ behave like

(2.1) $\emptyset\pm(x)=\pm\sum_{j=1}^{n}\frac{\lambda_{j}}{4}x_{j}^{2}+\mathcal{O}(|x|^{3})$ as $xarrow 0.$

2.2. Microlocal Cauchy problem near a hyperbolic fixed point. First we recall some
microlocal terminology.

Definition 2.1. Let $\chi(x, \xi)$ be a function in $S(1)$ , i.e. smooth and bounded with all its
derivatives. The pseudodifferential operator $\chi^{w}(x, hD)$ with symbol $\chi$ is defined, for all
$u\in S(\mathbb{R}^{n})$ , by

$( \chi^{w}(x, hD)u)(x)=\frac{1}{(2\pi h)^{n}}\iint e^{i(x-y)\cdot\xi/h}\chi(\frac{x+y}{2}, \xi)u(y)dyd\xi.$

Definition 2.2. Let $u(x, h)\in L^{2}(\mathbb{R}^{n})$ witl] $\Vert u\Vert=\mathcal{O}(h^{-c})Ior$ some $c\in \mathbb{R}$ . We say that $u=0$

microlocally at $(x_{0}, \xi_{0})$ if there exists $\chi(x,\xi)\in S(1)$ with $\chi(x_{0}, \xi_{0})=1$ such that

(2.2) $\Vert\chi^{w}(x, hD)u\Vert_{L^{2}(\mathbb{R}^{n})}=\mathcal{O}(h^{\infty})$ as $harrow 0.$

The complement of the set of such points is called frequency set and denoted by FS $(u)$ , see
Guillemin and Sternberg [11].

The frequency set of a function $u$ is a closed set.

Example 2.3. Let $u(x, h)=a(x, h)e^{i\phi(x)/h}$ , where $\phi(x)$ is a real-valued $C^{\infty}$ function and

$a(x, h)\in S(1)$ . Then FS $(u) \subset\{(x, \xi)\in \mathbb{R}^{2n};\xi=\frac{\partial\phi}{\partial x}(x)\}.$

Eventually, we state the theorem of propagation of singularities which was first proved by
H\"ormander [15] in the classical setting.

Theorem 2.4 (Propagation of singularities). Let $u$ be a solution to $Pu=Eu$ with $\Vert u\Vert\leq 1$

and $E=E_{0}+\mathcal{O}(h)$ . Then FS $(u)\subset p^{-1}(E_{0})$ . Moreover, for all $(x_{0}, \xi_{0})\in p^{-1}(E_{0})$ ,

$(x_{0}, \xi_{0})\in FS(u)\Leftrightarrow\forall t\in I, \exp(tH_{p})(x_{0}, \xi_{0})\in FS(u)$ ,

where $0\in I$ is the maximal interval of existence of $\exp(tH_{p})(x_{0}, \xi_{0})$ .
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Let us come back to our problem. Suppose $V(x)$ is smooth and satisfies (A2) with $E_{0}=0.$

For $\epsilon>0$ small, let $S_{\pm}^{\epsilon}=\{(x, \xi)\in\Lambda_{\pm};|x|=\epsilon\}.$

Let $u_{-}\in L^{2}$ with $\Vert u-\Vert\leq 1$ satisfy $(P-E)u-=0$ microlocally near $S^{\underline{\epsilon}}$ (see Definition
2.2). We consider the microlocal Cauchy problem:

(2.3) $\{\begin{array}{ll}(P-E)u=0 microlocally near (0,0) ,u=u- microlocally near S^{\underline{\epsilon}}.\end{array}$

Remark that the initial surface $S^{\underline{\epsilon}}$ is transversal to the Hamiltonian flow for sufficiently
small $\epsilon$ . Since we want to study quantities associated to the resonances which are non real
in general, the spectral parameter $z$ may be complex but in a disc of center $0$ with radius
bounded with respect to $h.$

Theorem 2.5 ([2]). There exists a discrete set $\Gamma(h)\subset \mathbb{C}_{-}$ satisfying

(i) for any $C>0,$ $\#(\Gamma(h)\cap D(Ch))=\mathcal{O}(1)$ as $harrow 0,$

(ii) $\Gamma(h)\subset\{{\rm Im} E<-\delta h\}$ for some $\delta>0,$

such that if

(2.4) dist $(E, \Gamma(h))>\nu h$

for some $\nu>0$ independent of $h$ , then, if $u_{-}=0$ and $u$ is a corresponding solution of (2.3)
with $||u\Vert\leq 1$ , then $u=0$ microlocally in a neighborhood of $(0,0)$ .

Remark 2.6. In the analytic category (i.e. the symbol $p$ is analytic near the origin and the
notion of $C^{\infty}$ -microsupport is replaced by the analytic microsupport (see Sj\"ostrand [19]), $we$

have the same theorem with more precision on the set $\Gamma(h)$ . In fact, one has

$\Gamma(h)=\{-ih\sum_{j=1}^{n}\lambda_{j}(\alpha_{j}+\frac{1}{2});\alpha=(\alpha_{1}, \ldots, \alpha_{n})\in \mathbb{N}^{n}\},$

and, modulo $o(h)$ , $E_{0}+\Gamma(h)$ is the set ofresonances generated by the barrier top (see Theorem
1.4).

Now we state the construction theorem of [2], i.e. we give the asymptotic formula of the
solution $u$ to the microlocal Cauchy problem (2.3) microlocally near a point $\rho+:=(x+, \xi_{+})$

on $\Lambda_{+}\backslash \{(0, O)\}$ for a Cauchy datum $u$-which we may suppose, thanks to the linearity, to be
supported microlocally in a small vicinity of a point $\rho-:=(x_{-}, \xi_{-})$ in $S^{\underline{\epsilon}}.$

From Helffer and Sj\"ostrand [13], the Hamiltonian flows $(x\pm(t), \xi_{\pm}(t))=\exp(tH_{p})(\rho_{\pm})$ are
known to behave as follows.

Lemma 2.7 ([13]). We have

$x\pm(t)=g\pm(x\pm)e^{\pm\lambda_{1}t}+o(e^{\pm\lambda_{1}t})$ a$s$ $tarrow\mp\infty,$

where $g\pm(x_{\pm})$ is the $x$-space projection of an eigenvectors of $F_{p}$ corresponding $to\pm\lambda_{1}.$

We assume

(2.5) $g-(x_{-})\cdot g+(x_{+})\neq 0.$

It follows, in particular, $g_{-}(x_{-})\neq 0$ , and we may assume without loss of generality that the
curve $x_{-}(t)$ is tangent to the positive $x_{1}$-axis at the origin.
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Theorem 2.8 ([2]). Assume (2.4) and $(2.\mathfrak{s})$ . Then the microlocal Cauchy problem (2.3) has
a unique solution $u(x, h)$ . MicrolocaJly near $\rho+$ , it has the form

$u(x, h)=a_{+}(x, h)e^{i\phi+(x)/h}$

with

(2.6) $a_{+}(x, h)= \frac{h^{\zeta(z)+\frac{1}{2}}}{(2\pi h)^{n/2}}\int_{R^{n-1}}e^{-i\phi-(e,y’)/h}d(x,y’;h)u_{-}(\epsilon, y’)dy’,$

where

(2.7) $E=hz,$ $\zeta(z):=\frac{1}{\lambda_{1}}(L-iz)$ and $L:= \frac{1}{2}\sum_{j=2}^{n}\lambda_{j}.$

The principal term of the symbol $d(x, y’;h)\in S(1)$ is computed explicitly (see [2]).

If, in particular, $u_{-}$ is of $WKB$ form

$u_{-}(x, h)=a_{-}(x, h)e^{i\psi(x)/h}, a_{-}\in S(1)$ ,

where $\Lambda$-and $\Lambda_{\psi}$ $:=\{(x, \xi);\xi=\partial_{x}\psi(x)\}$ intersect transversally along $\gamma=\exp tH_{p}(\rho_{-})$ ,
then, microlocally near $\rho+$ , the symbol $a_{+}(x, h)$ is given by

(2.8) $a_{+}(x+, h)=J(x+, x_{-};\zeta, h)a_{-}(x-, h)+S(h^{{\rm Re}\zeta+1-\mu})$ ,

for all $\mu>0$ , and

(2.9) $J(x+, x_{-}; \zeta, h)=\sqrt{\frac{\lambda_{1}}{2\pi}}e^{-\frac{\pi}{4}i}I_{\rho-arrow 0}I_{0arrow\rho+}h^{\zeta(z)}\frac{|g_{-}(x_{-})|\Gamma(\zeta(z)+\frac{1}{2})}{(i\lambda_{1}g+(x_{+})\cdot g-(x_{-}))^{\zeta(z)+\frac{1}{2}}}.$

Here $I_{0arrow\rho+}mdI_{\rho-arrow 0}$ are defined as follows. Let $(x+(t, y’),$ $\xi+(t,$ $y$ and $(x_{-}(t,$ $y$ $\xi_{-}(t,$ $y$

be parametrizations of $\Lambda+and\Lambda_{\psi}$ respectively near $\gamma$ by Hamiltonian flows such that

$(x\pm(O, O), \xi_{\pm}(O, O))=(x\pm, \xi_{\pm})$ , $\exp(tH_{p})(x\pm(0, y’),$ $\xi_{\pm}(0,$
$y$ $=(x\pm(t,$ $y$ $\xi_{\pm}(t,$ $y$

Set

(2.10) $D_{\pm}(t, y’):=| \det\frac{\partial x\pm(t,y’)}{\partial(t,y’)}|, D_{\pm}(t)=D_{\pm}(t, 0)$ .

Then the following limits exist and do not vanish

(2.11) $I_{0arrow\rho+}:= \lim_{tarrow-\infty}\sqrt{\frac{D_{+}(t)}{D_{+}(0)}}e^{-(_{2}^{\lrcorner^{\lambda}}+L)t}, I_{\rho-arrow 0}:=\lim_{tarrow+\infty}\sqrt{\frac{D_{-}(0)}{D_{-}(t)}}e^{(-\lrcorner^{\lambda}}2^{+L)t}.$

Remark 2.9. In (2.9), the term $(i\lambda_{1}g+(x_{+})\cdot g-(x_{-}))^{\zeta+\frac{1}{2}}$ should be interpreted as

$\exp(\frac{\pi}{2}i(\zeta+\frac{1}{2})$ sgn $(g+\cdot g$ $|\lambda_{1}g+\cdot g_{-1^{\zeta+\frac{1}{2}}}.$

Remark 2.10. The quantities $I_{0arrow\rho+}$ and $I_{\rho-arrow 0}$ come respectively from the transport equa-
tion for the principal symbol

$2\partial\phi+\cdot\partial a_{+}+(\Delta\phi_{+}-iz)a_{+}=0,$

$2\partial\psi\cdot\partial a_{-}+(\Delta\psi-iz)a_{-}=0,$
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and they can also be given by

(2.12) $I_{0arrow\rho+}= \exp(-\int_{-\infty}^{0}(\Delta\phi_{+}(x_{+}(t))-\sum_{j=1}^{n}\frac{\lambda_{j}}{2})dt)$ ,

(2.13) $I_{\rho-arrow 0}= \exp(-\int_{0}^{\infty}(\Delta\psi(x_{-}(t))-\sum_{j=1}^{n}\frac{\lambda_{j}}{2}+\lambda_{1})dt)$ .

The existence of the limit in $(2.11)$ is a consequence of the behavior of the generating functions
(2.1) and

$\psi(x)=\frac{\lambda_{1}}{4}x_{1}^{2}-\sum_{j=2}^{n}\frac{\lambda_{j}}{4}x_{j}^{2}+\mathcal{O}(|x|^{3})$ a$s$ $xarrow 0,$

and Lemma 2.7.

Brief derivation of $J$ :

Here, we explain very briefly the idea of the latter part of Theorem 2.8 where the initial
datum is of WKB form.

The main idea goes back to Helffer and Sj\"ostrand (see [13]). It consists in expressing the
solution $u$ microlocally near the fixed point $(0,0)$ as a superposition of WKB solutions to the
time-dependent Schr\"odinger equation:

(2.14) $u(x, h)= \frac{1}{\sqrt{2\pi h}}\int_{0}^{\infty}e^{i\varphi(t,x)/h}a(t, x;h)dt.$

The phase $\varphi(t, x)$ and the principal term $a_{0}(t, x)$ of the symbol $a(t, x;h) \sim\sum_{\ell=0}^{\infty}a_{\ell}(t, x)h^{\ell}$

satisfy respectively the eikonal and transport equations.

$\partial_{t}\varphi+p(x, \partial_{x}\varphi)=0,$

$\partial_{t}a_{0}+\partial_{x}\varphi\cdot\partial_{x}a_{0}+(\Delta\varphi-iz)a_{0}=0.$

They should be solved in such a way that $u$ has the prescribed asymptotic expansion $a-e^{i\psi/h}$

near $\rho-\cdot$ Then, they have the following asymptotic expansions as $tarrow+\infty$ with all its
derivatives (called expandible in [13]):

$\varphi(t, x)\sim\phi_{+}(x)+\sum_{k=1}^{\infty}\phi_{k}(t, x)e^{-\mu_{k}t}, a_{0}(t, x)\sim e^{-(\frac{1}{2}\Sigma\lambda_{j}-iz)t}\sum_{k=0}^{\infty}a_{0,k}(t, x)e^{-\mu_{k}t},$

where $0=\mu_{0}<\mu_{1}<\cdots<\mu_{k}<\cdots$ is a strictly increasing sequence of linear combinations
of $\{\lambda_{j}\}_{j=1}^{n}$ over $N$ , and $\phi_{k}(t, x)$ and $a_{0,k}(t, x)$ are polynomials in $t$ . In particular, $\phi_{1}$ and $a_{0,0}$

are independent of $t$ and

(2.15) $\phi_{1}(x)=-\lambda_{1}g_{-}(x_{-})\cdot x+\mathcal{O}(|x|^{2})$ .

Let us now roughly compute the contribution from $t=\infty$ of the integral (2.14). Recalling
that $\frac{1}{2}\sum\lambda_{j}-iz=\lambda_{1}(\zeta+\frac{1}{2})$

) one obtains

$a_{+}(x, h) \sim\frac{a_{0,0}(x)}{\sqrt{2\pi h}}\int^{\infty}e^{\frac{i}{h}\phi_{1}(x)e^{-\lambda_{1}t}}e^{-(\zeta+\frac{1}{2})t}dt,$
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FIGURE 1. An example of potential considered in Section 3.

and, after the change of variable $s=e^{-\lambda_{1}\iota}$ , the integral behaves like

$\frac{1}{\lambda_{1}}\int_{0^{e}}\dot{7i}^{\phi_{1}s_{S}\zeta-\frac{1}{2}ds\sim\frac{1}{\lambda_{1}}}(\frac{ih}{\phi_{1}})^{\zeta+\frac{1}{2}}\Gamma(\zeta+\frac{1}{2})$ as $harrow 0.$

The right hand side with (2.15) gives a part of $J$ in (2.9) which will play an important role
in the asymptotic distribution of resonances. Here we also see that the assumption (2.5) is
essential.

3. QUANTIZATION OF RESONANCES

We come back to the global problem of resonances. Let $\tilde{\Lambda}_{\pm}$ be the global evolution by the
Hamiltonian flow of $\Lambda\pm$ which was defined locally near the fixed point $(0,0)$ . We assume

(A3) The trapped set is
$K(E_{0})=\{(0,0)\}\cup\gamma,$

where $\gamma\subset\tilde{\Lambda}+\cap\tilde{\Lambda}_{-}=\{(0,0)\}\cup\gamma$ is a single homoclinic trajectory associated with
the fixed point $(0,0)$ . Moreover we suppose that the intersection is transverse, i.e.
$T_{\rho}\tilde{\Lambda}_{+}\cap T_{\rho}\tilde{\Lambda}_{-}=T_{\rho}\gamma$ at any point $\rho\in\gamma.$

Fix $\rho_{-}=(x-, \xi_{-})\in\gamma\cap\Lambda$-sufficiently close to $(0,0)$ and set $g\pm(x_{-})=:g\pm i.e.$

$\Pi_{x}\exp(tH_{p})(\rho_{-})\sim g\pm e^{\pm\lambda_{1}t}$ a$s$ $tarrow\mp\infty.$

Moreover, we assume

(A4) $g+\cdot g-\neq 0.$

Figure 1 provides a simple example of potential satisfying the assumptions $(A1)-(A4)$

Remark 3.1. Since there is only one homoclinic trajectory, and since the Hamiltonian
$p(x, \xi)=\xi^{2}+V(x)$ is even with respect to $\xi,$ $g+is$ collinear to $g_{-}$ and (A4) reduces to
$g-\neq 0.$

3.1. Quantization along a homoclinic trajectory. First, we setup notations for some
classical quantities. We recall that $\zeta$ $:= \zeta(z)=\frac{1}{\lambda_{1}}(L-iz)$ , $L= \frac{1}{2}\sum_{j=2}^{n}\lambda_{j}$ and $E=E_{0}+hz.$

Let also

(3.1) $A:= \int_{\gamma}\xi\cdot dx$

be the classical action along $\gamma$ , and

(3.2) $m( \zeta) :=\frac{\Gamma(\zeta+\frac{1}{2})}{(i\lambda_{1}g+\cdot g_{-})^{\zeta+\frac{1}{2}}}\sqrt{\frac{\lambda_{1}}{2\pi}}e^{-\frac{\pi}{2}(\nu+\frac{1}{2})i}|9-|\mathcal{I}_{0arrow\rho-}\mathcal{I}_{\rho-arrow 0},$
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FIGURE 2. The asymptotic description of the pseudo-resonances. At the
macroscopic scale $h$ , they accumulate on a curve whose behaviour is gov-
erned by the trapping situations at energies lower and higher than $E_{0}$ . At the
microscopic scale $\frac{h}{|\log h|}$ , they are regularly distributed on a horizontal line.

be the coefficient which measures the amplification after a complete turn around $\gamma$ . Here $\nu$

is the Maslov index of $\tilde{\Lambda}+$ along $\gamma$ , and the quantities $\mathcal{I}_{0arrow\rho-}$ and $\mathcal{I}_{\rho-arrow 0}$ are defined by

$\mathcal{I}_{0arrow\beta-}=\lim_{tarrow-\infty}\frac{\sqrt{D(t)}}{\sqrt{D(0)}}e^{-(_{2}^{\lambda}+L)t}\lrcorner, \mathcal{I}_{\rho-arrow 0}=\lim_{tarrow+\infty}\frac{\sqrt{D(0)}}{\sqrt{D(t)}}e^{(-\lrcorner^{\lambda}}2^{+L)t},$

where

(3.3) $D(t):=D(t, 0) , D(t, y’):=| \det\frac{\partial x(t,y’)}{\partial(t,y)}|,$

and $(x, \xi)=(x(t,$ $y$ $\xi(t,$ $y$ is a parametrization of $\tilde{\Lambda}_{+}$ near $\gamma$ such that

$(x(O, 0), \xi(0,0))=(x_{-}, \xi \exp(tH_{p})(x(0, y \xi(0, y =(x(t, y’), \xi(t,y$

Remark 3.2. The function $m(\zeta)$ is independent of the choice of the point $\rho-\in\gamma$ . In fact,
if $\rho_{-}’=\exp(\tau H_{p})(\rho_{-})\in\gamma$ , then since $g+(\rho_{-}’)=e^{\lambda_{1^{\mathcal{T}}}}g+(\rho_{-})$ , $g_{-}(\rho_{-}’)=e^{-\lambda_{1^{\mathcal{T}}}}g_{-}(\rho_{-})$ ,

$\mathcal{I}_{0arrow\rho_{-}’}=e^{(_{2}^{\lrcorner^{\lambda}}+L)\tau}\mathcal{I}_{0arrow\rho-}, \mathcal{I}_{\rho_{-}arrow 0}2^{+L)\tau},$

one can check that $|g-|\mathcal{I}_{0arrow\rho-}\mathcal{I}_{\rho-arrow 0}$ and $g+\cdot g-are$ both independent of $\rho_{-}.$

Definition 3.3 (Quantization condition). The set of pseudo-resonances is

$\overline{{\rm Res}}(P):=\{E\in \mathbb{C};h^{\zeta}m(\zeta)e^{iA/h}=1\},$

where $\zeta=\zeta(\frac{E-E_{0}}{h})$ .

The following proposition describes the semiclassical distribution of the pseudo-resonances.
The setting is illustrated in Figure 2.

Proposition 3.4. Let $\sigma\in \mathbb{R}$ . The pseudo-resonances $E$ , such that ${\rm Re} E=E_{0}+\sigma h+o(h)$ ,
are given by

(3.4) $E=E_{0}+ \lambda_{1}(2k\pi-\frac{A}{h})\frac{h}{|\log h|}-i(Lh-\lambda_{1}\log m(-i\frac{\sigma}{\lambda_{1}})\frac{h}{|\log h|})+o(\frac{h}{|\log h|})$ ,

for some $k\in \mathbb{Z}.$
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We will prove (see Theorem 3.12 below) that the asymptotic of the resonances is given by
the pseudo-resonances.

Remark 3.5. (i) As it can be seen in Figure 2, Proposition 3.4 implies that the pseudo-
resonances accumulate on the curve

(3.5) ${\rm Im} E=-Lh+ \lambda_{1}\log|m(-i\frac{{\rm Re} E-E_{0}}{\lambda_{1}h})|\frac{h}{|\log h|}.$

At the same time, two consecutive pseudo resonances on this curve differ from each over by
the almost real and constant quantity

$2 \pi\lambda_{1}\frac{h}{|\log h|}+o(\frac{h}{|\log h|})$ .

(ii) Since the asymptotic of the pseudo-resonances given in Proposition 3.4 is valid in
$[E_{0}-Ch, E_{0}+Ch]$ for any fixed positive constant $C$ , it is natural to study the behaviour of
the curve (3.5) when $({\rm Re} E-E_{0})/h$ goes $to\pm\infty$ . Using $g+\cdot g_{-}>0$ and the formula

$| \Gamma(\frac{1}{2}-i\sigma)|=\sqrt{\frac{\pi}{\cosh(\pi\sigma)}},$

we deduce from (3.2) the asymptotic

$|m(-i \sigma)|\sim\frac{|g-|}{\sqrt{9+g_{-}}}\mathcal{I}_{0arrow\rho-}\mathcal{I}_{\rho-arrow 0}\{\begin{array}{ll}e^{-\pi\sigma} as \sigmaarrow+\infty,1 as \sigmaarrow-\infty.\end{array}$

Thus, the concentration curve (3.5) satisfies

(3.6) ${\rm Im} E=-Lh+ \frac{h}{|\log h|}\{\begin{array}{ll}K-\pi\frac{{\rm Re} E-E_{0}}{h}+o(1) as \frac{{\rm Re} E-E_{0}}{h}arrow+\infty,K+o(1) as \frac{{\rm Re} E-E_{0}}{h}arrow-\infty,\end{array}$

where

$K:= \lambda_{1}\log(\frac{|g-|}{\sqrt{9+g-}}\mathcal{I}_{0arrow\rho-}\mathcal{I}_{\rho-arrow 0})$ .

This estimate illustrates the transition from the geometric situation below $E_{0}$ (which is gener-
ally trapping) to the geometric situation above $E_{0}$ (which is generally non-trapping). Such $a$

behaviour is consistent with the intuition $t\Lambda at$ the homoclinic regimes are generally instable.

(iii) In the 1-dimensional case, (3.4) coincides with the asymptotics given in (1.7) for the
resonances close to $E_{0}$ . Indeed, when $n=1$ and $\sigma=o(1)$ as $harrow 0$ , one has $L=0,$ $\zeta=o(1)$

and it turns out that $m(O)=-2^{-1/2}.$

3.2. Polynomial resolvent estimate away from the pseudo-resonances. For positive
$C$ and $\epsilon$ , we set

$B_{1}(C, \epsilon) :=Box(Ch, (L+\lambda_{1}-\epsilon)h)\backslash (\Gamma(h)+D(\epsilon h))$ .

Recall that $\Gamma(h)$ is the exceptional set for which the uniqueness of the microlocal Cauchy
problem near $(0,0)$ fails to hold (see Theorem 2.5).
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Theorem 3.6 (Polynomial estimate away from the pseudo-resonances). For any $C>0$ and
$\epsilon>0$ , there exists $M>0$ such that if $E \in B_{1}(C, \epsilon)\backslash (\overline{{\rm Res}}(P)+D(\frac{\epsilon h}{|\log h|}))$ , then, for
$\theta=h|\log h|$ , we have

$(P_{\theta}-E)^{-1}=\mathcal{O}(h^{-M})$ .

Recall that $P_{\theta}$ is the complex distorted operator obtained from $P$ as in Section 1.1.

Proof. We prove this theorem by a contradiction argument (see Burq [7] for the limiting
absorption principle). We assume that there exist $\epsilon>0,$ $C>0,$ $E\in B_{1}(C, \epsilon)\backslash \{\overline{{\rm Res}}(P)+$

$D( \frac{\epsilon h}{|\log h|})\}$ , and $u\in L^{2}$ with $\Vert u\Vert=1$ satisfying

(3.7) $(P_{\theta}-E)u=\mathcal{O}(h^{\infty})$ ,

and we deduce $\Vert u\Vert=\mathcal{O}(h^{\infty})$ , which is a contradiction.
Step 1.
We first reduce the problem to a neighborhood of the trapped set.

Lemma 3.7. If $u=0$ microlocally at each point of $K(E_{0})$ , then $\Vert u\Vert=\mathcal{O}(h^{\infty})$ .

Proof. Let $\varphi\in C_{0}^{\infty}(\mathbb{R})$ such that $\varphi=1$ near $E_{0}.$ $P_{\theta}-E\approx P-E$ is elhptic outside $p^{-1}(E_{0})$ ,
we have

$u=\varphi(P)u+\mathcal{O}(h^{\infty})$ .
Next, for $(x, \xi)$ close to $p^{-1}(E_{0})$ , $-Imp_{\theta}(x, \xi)\approx 2\theta E_{0}$ for large $x$ and $\mathcal{O}(\theta)$ elsewhere. Hence,
for $\chi\in C_{0}^{\infty}(\mathbb{R}^{n})$ with $\chi=1$ on a compact set, we get

$\mathcal{O}(h^{\infty})=-{\rm Im}\langle(P_{\theta}-E)u, u\rangle\geq\theta\Vert(1-\chi)u\Vert^{2}-\mathcal{O}(\theta)\Vert\chi u\Vert^{2}.$

Then

$\Vert(1-\chi)u\Vert\leq C\Vert\chi u\Vert+\mathcal{O}(h^{\infty})$ .
On the other hand, for $(x, \xi)$ close to $p^{-1}(E_{0})$ with $x$ in a compact set, the Hamiltonian flow
$\exp(tH_{p})(x, \xi)$ either diverges to $\infty$ or approaches the trapped set as $tarrow-\infty$ . In the former
case, $\exp(tH_{p})(x, \xi)$ belongs to the incoming region for negative large $t$ . Now, a theorem of
Michel and the first author [4] implies that the quasi mode $u$ is microlocally $0$ at such a point.
Hence $u=0$ microlocally at $(x, \xi)$ by the propagation of singularities (Theorem 2.4). In the
other case, if $\exp(tH_{p})(x, \xi)$ approaches the trapped set as $tarrow-\infty$ , we obtain also $u=0$
microlocally at $(x, \xi)$ using the assumption of the lemma and propagation of singularities. $\square$

Notice that at this point, we have not used the particular form of $K(E_{0})$ .
Step 2.

We now prove

Lemma 3.8. $u=0$ microlocally near each point of $\Lambda_{-}\backslash (\gamma\cup(0,0$

Proof. Let $\rho\in\Lambda_{-}\backslash (\gamma\cup\{(0,0$ Since $\rho\not\in K(E_{0})$ and $\exp(tH_{p})(\rho)arrow(0,0)$ as $tarrow+\infty,$

then $\exp(tH_{p})(\rho)$ should diverge to $\infty$ as $tarrow-\infty$ . Hence again by the theorem of Michel
and the first author, and propagation of singularity, we get the lemma. $\square$

133



J.-F. BONY, S. FUJII\’E, T. RAMOND & M. ZERZERI

FIGURE 3. The geometrical setting of Section 3.

Step 3.
On $\Lambda_{-},$ $u$ is supported only on $\gamma\cup\{(0,0 and$ hence, $by (A4)$ , we can apply the first part
of Theorem 2.8 for $(x, \xi)$ near each point $\rho+=(x+, \xi_{+})\in\Lambda+\cap\gamma$ . In particular, $u$ is of the
form

$u(x, h)=a+(x, h)e^{i\phi+(x)/h}$ microlocally near $\rho+,$

with $a+(x, h)\in S(h^{-c})$ for some constant $c>$ O. The standard Maslov theory tells us
that, after continuation along $\gamma$ , where $p$ is of real principal type, the solution $u$ is always a
Lagrangian distribution, and in particular of the form

(3.8) $u(x, h)=a_{-}(x, h)e^{i\tilde{\phi}+(x)/h}$ microlocally near $\rho-$

with $a_{-}(x, h)\in S(h^{-c})$ . Here $\tilde{\phi}+is$ the generating function of the evolution of $\Lambda+$ near $\rho-,$

vanishing at the origin:

$\tilde{\Lambda}_{+}=\{(x, \xi);\xi=\partial_{x}\tilde{\phi}_{+}(x)\}, \tilde{\phi}_{+}(0)=0.$

Step 4.
Now starting from the expression (3.8), we continue $u$ one more tour along $\gamma\cup\{(0, O)\}$ using
the latter part of Theorem 2.8 and the Maslov theory. Then we obtain another expression of
$u$ microlocally near $\rho-:=(x_{-},$ $\xi$

(3.9) $u(x, h)=\tilde{a}_{-}(x, h)e^{i\tilde{\phi}+(x)/h}$ microlocally near $\rho-\cdot$

At the “principal level the value $\tilde{a}_{-}(x, h)$ is determined by the value $a(x_{-}, h)$ . More precisely

Lemma 3.9. We have

$\tilde{a}_{-}(x, h)=\mathcal{M}(x, x_{-};\zeta, h)a_{-}(x_{-}, h)+S(h^{{\rm Re}\zeta-c+1-\mu})$ ,

where $\mathcal{M}(x, x_{-};\zeta, h)\in S(h^{Bs\zeta})$ is a symbol satisfying

(3.10) $\mathcal{M}(x_{-}, x-;\zeta, h)=h^{\zeta}m(\zeta)e^{iA/h}.$

Here $A$ and $m$ are given by (3.1) and (3.2), and $\mu$ is any positive constant.

Proof. By Theorem 2.8, we have, for each point $\rho’=(x’, \xi’)\in\Lambda+$ with g$+(x’)\cdot g_{-}(x_{-})\neq 0,$

$u(x’, h)=a_{+}(x’, h)e^{i\phi+(x)/h},$

with

(3.11) $a_{+}(x’, h)=J(x’, x_{-};\zeta, h)a_{-}(x_{-}, h)+S(h^{{\rm Re}\zeta-c+1-\mu})$ .
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On the other hand, by Maslov theory, $\tilde{a}(x, h)$ can be expressed by the value $a_{+}(x, h)$ when
$\rho=(x, \xi)=\exp(TH_{p})(\rho’)$ with $\rho’=(x’, \xi’)\in\Lambda_{+}$ :

(3.12) $\tilde{a}_{-}(x, h)=e^{iA/h}e^{-\frac{\pi}{2}\nu i}e^{izT}\sqrt{\frac{D(t_{\rho’},y’)}{D(t_{\rho},y)}}|_{y=y_{0}}, a_{+}(x’, h)+S(h^{{\rm Re}\zeta-c+1})$ ,

where $D(t, y)$ was defined by (3.3) and $t_{\rho},$ $t_{\rho’}$ and $y_{0}’$ are such that $\rho=(x(t_{\rho}, y_{0} \xi(t_{\rho}, y\’{o}))$

and $\rho’=(x(t_{\rho’},$ $y_{0}$
$\xi(t_{\rho’},$

$y_{0}$

To obtain $\mathcal{M}(x_{-}, x_{-};\zeta, h)$ , we compute the product of (3.11) and (3.12). Taking into
account the different parametrization by time on the curve $\gamma$ . We have $g+(\rho’)=g+(\rho_{-})e^{-\lambda_{1}T},$

and
$I_{0arrow\rho’}=\mathcal{I}_{0arrow\rho’}e^{-(_{2}^{\lrcorner^{\lambda}}+L)T}, I_{\rho-arrow 0}=\mathcal{I}_{\rho-arrow 0}$

and finally

$\sqrt{\frac{D(t_{\rho’},y’)}{D(t_{\rho-},y’)}}|_{y’=y_{\acute{0}}}=\mathcal{I}_{\rho’arrow\rho-}.$

Then we get

$\mathcal{M}(x_{-}, x_{-};\zeta, h)=h^{\zeta}e^{iA/h}\frac{\Gamma(\zeta.+\frac{1}{2})}{(i\lambda_{1}g+g_{-})^{\zeta+\frac{1}{2}}}\sqrt{\frac{\lambda_{1}}{2\pi}}e^{-\frac{\pi}{2}(\nu+\frac{1}{2})i}|g_{-}|$

(3.13) $\cross \mathcal{I}_{0arrow\rho’}\mathcal{I}_{\rho’arrow\rho-}\mathcal{I}_{\rho-arrow 0}\frac{e^{izT}e^{-(^{\lambda}}2^{+L)T}\lrcorner}{e^{-\lambda_{1}T(\zeta+\frac{1}{2})}},$

and the lemma follows. $\square$

Step 5.
$Rom(3.8)$ , (3.9) and Lemma 3.9, we obtain, microlocally near $\rho-,$

(3.14) $a_{-}(x, h)=\mathcal{M}(x, x-;\zeta, h)a_{-}(x_{-}, h)+S(h^{{\rm Re}\zeta-c+1-\mu})$

At $x=x-$ , we obtain, using (3.10),

$a_{-}(x-, h)= \frac{\mathcal{O}(h^{{\rm Re}\zeta-c+1-\mu})}{1-\mathcal{M}(x_{-},x_{-};\zeta,h)}=\frac{\mathcal{O}(h^{-c+1-\mu})}{h^{-\zeta}-me^{iA/h}}.$

Since $m\neq 0$ , we have the following lemma.

Lemma 3.10. If $E$ is outside $\overline{{\rm Res}}(P)+D(\epsilon\frac{h}{|1\circ gh|})$ , then $|h^{-\zeta}-me^{iA/h}|\geq\nu$ for an h-
independent positive constant $\nu.$

Using this fact, we get
$a_{-}(x_{-}, h)=\mathcal{O}(h^{-c+1-\mu})$ .

Substituting this in (3.14), we obtain

$a_{-}(x, h)\in S(h^{{\rm Re}\zeta-c+1-\mu})$ .

On the other hand, ${\rm Im} E>(-L-\lambda_{1}+\epsilon)h$ implies ${\rm Re} \zeta>-1+\frac{\epsilon}{\lambda_{1}}$ . Hence

$a_{-}(x, h)\in S(h^{-c+\frac{\epsilon}{\lambda_{1}}-\mu})$ .

Thus we obtain $a_{-}\in S(h^{-c+\frac{\epsilon}{\lambda_{1}}-\mu})$ from the assumption $a_{-}\in S(h^{-c})$ . Repeating this argu-
ment, we conclude that

$a_{-}(x, h)\in S(h^{\infty})$ .
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This means that $u$ is microlocally $0$ near $\rho_{-}$ , and a last application of Theorem 2.5leads us to
the conclusion that $u=0$ microlocally in a neighborhood of $(0,0)$ and hence all over $K(E_{0})$

by the propagation of singularities. This implies $\Vert u\Vert=\mathcal{O}(h^{\infty})$ by Lemma 3.7, which finishes
the proof. $\square$

3.3. Existence of resonances. In this section, we prove that the set of resonances and the
set of pseudo-resonances are close to each other in $B_{1}(C, \epsilon)$ in the following sense.

Definition 3.11. Let $A,$ $B$ and $C$ be subsets in $\mathbb{C}$ . We say that

dist $(A, B)\leq\epsilon$ in $C,$

if and only if
$\forall a\in A\cap C,$ $\exists b\in B$ $s.t.$ $|a-b|\leq\epsilon$ , and

$\forall b\in B\cap C, \exists a\in A s.l. |a-b|\leq\epsilon.$

Theorem 3.12 (Asymptotics of resonances). In $B_{1}(C, \epsilon)$ , it holds that

dist $({\rm Res}(P), \overline{{\rm Res}}(P))=o(\frac{h}{|\log h|})$ as $harrow 0.$

Proof. The existence of a pseudo-resonance close to each resonance is already proved in The-
orem 3.6. We prove the existence of a resonance close to each pseudo-resonance also by a
contradiction argument. We assume that there exist $\epsilon>0$ and $\tilde{E}\in\overline{{\rm Res}}(P)\cap B_{1}(C, \epsilon)$ such
that there is no resonance in the interior of the circle $C:= \{z\in \mathbb{C};|z-\tilde{E}|=\frac{\epsilon h}{|\log h|}\}.$

For $E\in C$ , we consider the inhomogeneous equation

(3.15) $(P_{\theta}-E)u=v,$

where $v$ is chosen as follows. Let $H_{-}$ be a hyperplane containing $x=x$-and transversal to
$\Pi_{x}\gamma$ , and let $\tilde{v}(x)=\tilde{\chi}(x, h)e^{i\tilde{\phi}+(x)/h}$ be the WKB solution of the microlocal Cauchy problem

$\{\begin{array}{ll}(P-E)\tilde{v}=0, \tilde{v}=\chi(x)e^{i\tilde{\phi}+(x)/h} on H_{-},\end{array}$

where $\chi\in C_{0}^{\infty}$ and $\chi=1$ near $x_{-}$ . We define

$v(x)=\psi[P, \varphi]\tilde{v},$

where $\psi$ and $\varphi$ are smooth cutoff functions with small compact support such that $\varphi$ is equal
to 1 in a neighborhood of $x-$ , and that $\psi$ is equal to 1 on supp [$P, \varphi]\tilde{v}\cap\gamma+$ , where $\gamma+=$

$\bigcup_{t<0}\exp tH_{p}(\rho_{-})$ . Obviously, $v$ is holomorphic in $E$ near $E_{0}.$

From Theorem 3.6, the solution $u=(P_{\theta}-E)^{-1}v$ of (3.15) is well-defined and satisfies
$\Vert u\Vert=\mathcal{O}(h^{-c})$ . Moreover, working as in (3.8), one can prove that $u$ is of the form

(3.16) $u=a_{-}(x, h)e^{i\tilde{\phi}+(x)/h}, a_{-}\in S(h^{-c})$ ,

microlocally near $x-\cdot$ Thanks to (3.15), $(P-z)u=0$ microlocally near $(0,0)$ . Moreover, on
$\Lambda_{-},$ $u$ is supported microlocally on $\gamma$ . Thus Theorem 2.8 implies that $u$ is of the form

$u+(x’, h)=a_{+}(x’, h)e^{i\phi+(x)/h},$

with

(3.17) $a+(x’, h)=J(x’, x_{-};\zeta, h)a_{-}(x_{-}, h)+S(h^{B\epsilon\zeta-c+1-\mu})$ ,
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microlocally on $\Lambda+\cap\gamma$ . On the other hand, along $\gamma,$ $u$ satisfies the following microlocal
Cauchy problem:

$\{\begin{array}{ll}(P-E)u=v microlocally along \gamma,u=u+ microlocally near S_{+}^{\epsilon}\cap\gamma.\end{array}$

The solution of this linear problem can be written as the sum $u_{1}+u_{2}$ of the solutions of the
microlocal Cauchy problems

$\{$ and $\{$

$(P-E)u2=0$ along $\gamma,$$(P-E)u1=0$ along 7,

$u_{1}=u+$ near $S_{+}^{\epsilon}\cap\gamma,$ $u2=0$ near $S_{+}^{\epsilon}\cap\gamma.$

As in (3.12), we have

$u_{1}(x, h)=(e^{iA/h}e^{-\frac{\pi}{2}\nu i}e^{izT}\mathcal{I}_{\rho’arrow\rho+}a(x’, h)+S(h^{{\rm Re}\zeta-c+1}))e^{i\tilde{\phi}+(x)/h}.$

Moreover, $v$ has been constructed so that $u_{2}=\varphi\tilde{v}$ microlocally near $\rho_{-}$ . Summing up, we get

(3.18) $a_{-}(x, h)=e^{iA/h}e^{-\frac{\pi}{2}\nu i}e^{izT}\mathcal{I}_{\rho’arrow\rho}a_{+}(x’, h)+\tilde{\chi}(x, h)+S(h^{{\rm Re}\zeta-c+1-\mu})$ ,

near $x-\cdot$ Combining (3.17) and (3.18), we obtain

(3.19) $a_{-}(x, h)=\mathcal{M}(x, x_{-};\zeta, h)a_{-}(x_{-}, h)+\tilde{\chi}(x, h)+S(h^{{\rm Re}\zeta-c+1-\mu})$ .

Lemma 3.13. $a_{-}\in S(1)$ .

Proof. Substituting $x=x-in(3.19)$ , we have, since $\tilde{\chi}(x-, h)=\chi(x_{-})=1,$

$a_{-}(x_{-})= \frac{1+\mathcal{O}(h^{{\rm Re}\zeta-c+1-\mu})}{1-\mathcal{M}(x_{-},x_{-};\zeta,h)}=\frac{h^{-\zeta}+\mathcal{O}(h^{-c+1-\mu})}{h^{-\zeta}-me^{iA/h}}$

For $E\in C$ , one has $(h^{-\zeta}-me^{iA/h})^{-1}=\mathcal{O}(1)$ by Lemma 3.10 and also $h^{-\zeta}=\mathcal{O}(1)$ . Hence
$a_{-}(x_{-})=\mathcal{O}(1)+\mathcal{O}(h^{-c+1-\mu})$ .

Using again (3.19), we obtain

$a_{-}(x)=S(1)+S(h^{-c+1-\mu})$ ,

under the assumption that $a_{-}\in S(h^{-c})$ . Then we get $a-\in S(1)$ by a boot-strap argument,
and the lemma follows. $\square$

By this lemma, (3.19) becomes

$a_{-}(x)= \frac{h^{-\zeta}}{h^{-\zeta}-me^{iA/h}}\tilde{\chi}(x, h)+S(h^{1-\mu})$ .

We integrate this identity with respect to $E$ along the contour $C$ , and we obtain

$\int_{C}a_{-}(x)dE=2\pi\lambda_{1}\frac{h}{\log h}\chi+S(h^{2-\mu})$ .

This is a contradiction because the left hand side should vanish if there is no resonance inside
the contour C. $\square$
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