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An extension to predicate logic of Ap-calculus
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Abstract

In [3], one of the authors introduced the system Ap-calculus in the case of impli-
cational propositional logic. While the typed A-calculus gives a natural deduction
for intuitionistic logic, the typed Ap-calculus gives a natural deduction for classical
logic. We extend it into predicate logic.

1 Typed Ap-calculus

Definition 1 (Individual terms).
Assume to have an infinite sequence of individual variables u, v, w, . ... Individual terms

are defined as follows:
t o= u|(ft...t)

Individual ters are denoted by “s”, “t”.

Definition 2 (Types).
In types, we use three operators 1, — and V. Types are defined as follows:

T o= L|pt...t| 707 | Vur
Types are denoted by lower-case Greek letters except “A” and “p.

Definition 3 (Typed Ap-terms).
Assume to have an infinite sequence of A-variables z,y, z,w, . . . and an infinite sequence
of p-variables a,b,c,d,.... Typed \p-terms are defined as follows:

M:0—-17 N:o

z7 1 7 (typed A-variable), (MN): 1 (application),
|27 : 0] [a” : 7]
M W
= _M:T g,
Gaty g7 I G gy (prabetrect)

%)—U—A%—T- (p-absurd), (A—A]\I/I%? (L-absurd),



ol - (generalization), M : vur (instantiation).

(UM), : Vu (FM)e : [t/u]T

Typed Ap-terms are denoted by “M”, “N”, “P", “Q”.

The type of a term M is denoted by Type(M), and the set of types that a (\- or p-)
variable f has in M is denoted by Type(f, M).

In (A-abstract), x is a A-variable that satisfies Type(z, M) C {c}. In (p-abstract), a is
a p-variable that satisfies T'ype(a, M) C {7}. In (generalization), for all of free variables
in M, u has no free occurrence in the types that they have in M.

Note that p-variables are not terms.

We use the following notations:

e f,9,--- denotes arbirary (- or p-) variables,

e FV(M) denotes the set of free variables in M,
e \a.M denotes pa.M,so Aazx.M = pa.(Az.M),

We identify a-equivalent terms.
Types on the shoulder of terms and parentheses are sometimes omitted from terms.
Example 4 (Peirce’s Law).
Aza. 2P Oy (a*y*)?) : ((a— B) = a) = a.

This term is written in a tree form as follows:

a®:a yY*:a

(a°y*)’ : B
z:(a—=B)—a a—f M
@ 40
& Az

((a=B)—ma)—a

To define the contraction of Ap-terms, we have to define several kinds of substitution.
The following are easy to define.

e [t/u]M the substitution of ¢ for free occurrences of u in types on the structure of

M,

e [N/z]M the substitution of N for free occurrences of = in M where T'ype(z, M) C
{Type(N)},

e [b/a]M the substitution of b for free occurrences of a in M,



Definition 5 (p-substitution).
For typed Ap-terms M, N and a p-variable a, we define [Az.b°(z*?N)/a]M to be
the result of substituting Az.b°(z**N) for every free occurrence of a in M, where

Type(a, M) C{a— B}, N:a,z ¢ FV(M)UFV(N),bg FV(M)U FV(N) U {a}.
Notice that the expression Az.b?(z*’ N) is not a typed Ap-term.

1. pzb(zN)/a)M = M where a & FV(M),
2. \eb(zN)/a)(MQ) = (Da.b(zN)/a]M Meb(zN)/a]Q),

3. Pab@N)/a(My-M)*™) = (Az.\z.b(zN)/a][z° /y]M)*" where z is new,
4. \z.b(@N)/a)((pe. M)T) = (pd.[\z.b(zN)/a)[d/]M)" where d is new,

5. Pz.b(zN)/a)((@**M)*) = (b*(\z.b(zN)/a]M N))°,

Dz.b(@N)/a)((TM)?) = (" [Ma.b(zN)/a)M)? where c# a,
Dz.b(@N)/a)(AM)°) = (A[z.b(xzN)/aM)°,

Dz.b(@N)/a)(IM),) = (J[Az.b(zN)/a]fv/u)M), where v is new,

9. Pz.b(zN)/a(FM),) = (Fe.b(N)/a]M).

© N o

M
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In 3, “z is new” means “z is a A-varable that does not occur in the expression of the
left side” i.e. 2z does not occurin M and N, 2 # z, and z Zy . “d is new” in 4 and
“vis new” in 8 are similar meanings respectively. We use the phrase “f/u is new” in a
similar meaning after this.

Definition 6 (F,-substitution).
For typed Ap-terms M and a p-variable a, we define [Az.b/“*(Fz"®),/a]M to be
the result of substituting Az.b/“*(Fz"4), for every free occurrence of a in M, where

Type(a, M) C {Vua}, x & FV(M), b€ FV(M) U {a}.
Notice that the expression Az.b*/ "}"‘(vam)t is not a typed Ap-term.

1. Pzb(Fe)/alM = M where a & FV(M),

2. Pz.b(Fzr)/a)(MQ) = ([Mz.b(Fz)/a)M [Mz.b(Fz)/a]Q),

3. [Mz.b(Fz)/a)((Ay.M)>") = (Az.[Az.b(Fz)/a][2°/y|M)*>" where z is new,
4. [Mx.b(Fz)/a)((pc.M)™) = (pd.[A\z.b(Fz)/a][d/c]M)” where d is new,

5. [\z.b(Fz)/a)((a™M)°) = (bM/Y(F [Ax.b(Fz)/a]M),)°,
[Az.b(Fz)/a]((cM)®) = (c[Az.b(Fz)/a]M)° where c# a,
Pz.b(Fz)/a](AM)7) = (A[xz.b(Fz)/a]M)°,

[Az.b(Fz)/a)(UM),) = (J[Az.b(Fz)/a][w/v]M), where w is new,
[Az.b(Fz)/a]((FM),) = (F[\z.b(Fz)/a]M),.

I )



Definition 7 (A,-substitution).
For typed Ap-terms M and a p-variable a, we define [A/a]M to be the result of sub-
stituting A for every free occurrence of a in M, where T'ype(a, M) C {L}.

—

[AJa]M = M  where a ¢ FV(M),
[A/d)(MN) = ([A/a]M [A/a]N),
[A/a)(Az.M)*T) = (Az.[A/a] M),
[A/a]((pb.M)") = (pb.[A/a]M)",
[A/al((a*M)7) = (A[A/a]M)",
[A/a]((c"M)?) = (c"[A/a]M)? where c#a,
[A/al(A(a*M)*)7) = (A[A/a]M)?,
[A/al(AM)7) = (A[A/a]M)’,

(A/al(JM).) = (J[A/a]M)u,

(A/a)((FM)) = (F[A/a]M);.

&
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Definition 8 (p3-contraction).

(Az.M)" N 1 [N/z|M,
(pa.M)*™ N >1, (pb.([Az.b"(z°"N)/a]M)N)7,
where x, b are new,
(a*M)° "N >1 (a*M)T,
(AM)™N >1a (AM),
(FUM)u)e s [t/u]M,
(F(pa.M)"™"), 1, (pb.(FAz.b/UIT (L™, [a) M), /17
where , b are new,
(F(a®*M)™); >, (a® M)t/
(F(AM)Y™7); D1e, (AM)¥T,
(A(pa-M)1)T 14, (A[A/a]M)T,
(A(@ M) 1, (@ M),

Example 9 (p-contraction).
(pa-(ay))N D1, pb.([rz.b(zN)/a](ay))N = pb.(b(yN))N

These therms before and after the contraction are written in tree forms as follows:



I
Q:0—=T Y:0—=T y:o—=1 N:o

(ay)* :o—>T I b:7 T I
T—=T PA N:g >y, (BEN)TT 0T N:o

(pa.(ay))N : 1 pb.(b(yN))N : 7

Definition 10 (pS-contraction, pS-reduction).

A “pB-redex” is any typed Ap-term of form ((Az.M)°"N), ((pa.M)*"N), ..., or
(A(a*M)*L).

If M contains a pB-redex P and N is the result of replacing P by its contractum, we
say “M ppB-contracts to N”, or M >1,8 N.

If M D1y My D1yg My D1pp - D1pg My =N (n > 0), we say “M pB-reduces to N”,
or M>,5N.

2 Subject-reduction theorem

Lemma 11.
For any typed Ap-terms M, N,

o Type([t/u]M) = [t/u]Type(M),
o Type([N/z]|M) = Type(M) and FV([N/z]M) C (FV(M) — {z}) U FV(N),

o Type([Mz.bP(z*PN)/a)M) = Type(M) and FV ([Az.bP(z>PN)/a|M) C (FV(M)—
{a}) UFV(N),

o Type([Mz.bt/¥7(Fz¥7),/a]M) = Type(M) and FV ([Az.bl/¥" (Fz¥7),/a]M) C (FV(M)—
{a}) U {0},
o Type(|A/a]M) = Type(M) and FV([A/a]M) C FV(M) — {a}.
Proof. By induction on the structure of M. 0

Theorem 12 (Subject-reduction theorem).
For any typed Ap-terms M, N,

My N = Type(N)=Type(M) and FV(N) C FV(M).

Proof. 1t is enough to take care of the case in which M is a redex and N is its contractum.
By the previous lemmas, it is easy to prove. g



3 Church-Rosser theorem

Theorem 13 (Strong normalization theorem).
For any typed Ap-term M, all pB-reductions starting at M are finite.

Proof. Similar to the case of propositional logic. cf. [3]. O

Theorem 14 (Theorem 3.10 in [2]).
If a translation { has the following properties, then t>,5 has a Church-Rosser property.

For any typed Ap-terms M, N,

(1) M|>Pﬁ M*a
(2) M1 N = Nb,gM,
(3) M|>1pﬂN = Mt s Nt

Lemma 15.
With the strong normalization theorem of Ap-terms, if a translation { has the following
properties, then > ,g has a Church-Rosser property.

For any typed Ap-terms M, N,

<1> M Dos Mt)
(2) M|>1pﬂ N = N[>p5 Mf,

Proof. 1t is enough to prove that normal form is decided uniquely on the assumption.
cf. [2). O

Definition 16 (Translation t).

L (=Nt =

2. ((r xM)”N) = [N'/z]M,

3. ((pa.-M)*"N)t = (pb.([Az.b"(z""N1)/a) M) N,

4 (@M Nt = (a*MY,

5. (AM)*N)t = (AM')T,

6. (FUM).))' = [t/ulMT,

7. (F(pa.M)™))t = (pb.(F [Az.b/“7 (FZ¥7), /a] M), )/,
8. (F@*M)™))t = (a*MhHt/7,

9. (FIAM)™"))t = (AMHE/ur

10. ((A(pa.M)* )t = (A[A/a]MT)",
11 (A(a*M)))t = (a*MT)7,
12. (MN)t = MINt,



13. ((Ax.M)™)t = (a. M),
14. ((pa. M)t = (pa. M),

15. ((@*M)°)t = (a*Mt)e,

16. (AM)°)" = (AM*)°,

17. (UMY = (UMY,

18. ((FM),)t = (FM?'),.

Here we choose to apply the rule with smallest number if many rules can apply to M.

Lemma 17.
For any typed Ap-term M, N, if M > 5 N then

o [t/ulM Dy [t/u]N,
o [Q/z]M >y [Q/z]N,
o [M/z]Q > [N/z]Q,
o [0/a)M >,5 [b/a]N,
o PzbP(zoPQ)/AlM 1,5 [Nz.bP(z*PQ)/a]N,
o Dz.bB (2P M)/a)Q o5 [Mz.bP(2°EN)/a]Q,
o [Az.blt/vea(Fz¥e), /a]M >,5 [Az.blt/¥e(Fz¥4e), /a]N,
o [A/a]M ©>,5 [A/a]N.
Lemma 18. For all Ap-term M,
FV(M') C FV(M).

Proof. By induction on the structure of M. 4
Lemma 19. For all Xp-term M,

M> o8 Mt
Proof. By induction on the structure of M. a

Lemma 20. For all Ap-term M, N,
MipgN = NopsM.

Proof. By induction on the structure of M. O

Theorem 21 (Church-Rosser theorem).
For any typed Ap-terms M, P, Q, if M t>,3 P and M D> ,5 @, then there exists a typed
Ap-term N such that
Pp,sN and Q>4 N.



4 Subformula property
Definition 22 (Subterm).

1. Subt(z”) = {z7},

2. Subt((MN)) = Subt(M)U Subt(N)U {(MN)},
Subt((Az.M)*") = Subt(M) U {z} U{(\z.M)*"},
Subt((pa.M)7) = Subt(M)U{a"}U{(pa. M)},
Subt((a”M)°) = Subt(M)U {a"} U{(a"M)°},
Subt((AM)?) = Subt(M) U {(AM)"},

Subt((JM)u) = Subt(M) U {(JM).},
Subt((FM),) = Subt(M)U {(FM),}.

H
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Definition 23 (Subfomula).
For any types a, 3, “a is a subformula of 8” or a < 3 is defined inductively as follows:

d <6,
0 <a=66< a—-Pandd < B—aq,
§ < [t/ula = § < Vuo

Theorem 24 (Subformula property).
For any typed Ap-term M, if M is a p8-normal form then for any type 4

8 € Type(Subt(M)) = & < Type(FV(M)U{M}).

Proof. By induction on the structure of M. a

5 Correspondence to Gentzen’s LK

Theorem 25 (LK to HK).
For any set of types ' and a type 7, if a sequent I' = ~ is provable in LK, then

r *-HK Y-

Lemma 26 (HK to Ap-terms).
For any set of types I and a type «, if I' gk 7, then there exists a typed Ap-term M
such that ' D Type(FV,\(M)), Type(FV,(M)) = ¢, Type(M) = ~.

Proof. By induction on the proof of ' gk . O

Lemma 27.
For any typed Ap-term M, if M is a pB-normal form then a sequent

Type(FVy(M)) = Type(FV,(M) U {M})

is provable in LK without cut.



Proof. By induction on the structure of M. O

Lemma 28 (Ap-terms to LK).
For any typed Ap-term M, a sequent

Type(FVA(M)) = Type(FV,(M)U{M})
is provable in LK without cut.

Proof. By the strong normalization theorem of Ap-terms and the previous lemma. a

The previous lemmas are written in a figure as follows:

Th.25 =7 = Lem.26
Lem.28
trivial ﬂ & »U« Th.13

L(%&W ( normal form )\g

Theorem 29.
For any set of types I' and ©, a sequent I = © is provable in LK if and only if there
exists a typed Ap-term M such that T' D Type(FV\(M)) and © D Type(FV,(M)U{M}).

Proof. By the previous lemmas. O

Theorem 30 (Cut elimination theorem of LK).
For any set of types I and O, if a sequent I"' = © is provable in LK, then it is also
provable in LK without cut.

Proof. By the previous lemmas. 0
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