An extension to predicate logic of $\lambda \rho$ -calculus

Fumika Yamakawa, Yuichi Komori Division of Fundamental Sciences, Graduate School of Science, Chiba University

Abstract

In [3], one of the authors introduced the system $\lambda \rho$ -calculus in the case of implicational propositional logic. While the typed λ -calculus gives a natural deduction for intuitionistic logic, the typed $\lambda \rho$ -calculus gives a natural deduction for classical logic. We extend it into predicate logic.

1 Typed $\lambda \rho$ -calculus

Definition 1 (Individual terms).

Assume to have an infinite sequence of *individual variables* u, v, w, \ldots *Individual terms* are defined as follows:

$$t ::= u \mid (ft \dots t)$$

Individual ters are denoted by "s", "t".

Definition 2 (Types).

In types, we use three operators \bot , \rightarrow and \forall . Types are defined as follows:

$$\tau ::= \bot \mid pt \dots t \mid \tau \rightarrow \tau \mid \forall u.\tau$$

Types are denoted by lower-case Greek letters except " λ " and " ρ .

Definition 3 (Typed $\lambda \rho$ -terms).

Assume to have an infinite sequence of λ -variables x, y, z, w, \ldots and an infinite sequence of ρ -variables a, b, c, d, \ldots Typed $\lambda \rho$ -terms are defined as follows:

$$x^{\tau}:\tau \ (\textit{typed λ-variable}), \qquad \frac{M:\sigma \rightarrow \tau \quad N:\sigma}{(MN):\tau} \ (\textit{application}),$$

$$\begin{array}{ll} [x^{\sigma}:\sigma] & [a^{\tau}:\tau] \\ \Pi & \Pi \\ \underline{M:\tau} \\ (\lambda x.M)^{\sigma \to \tau}:\sigma \to \tau \end{array} (\lambda \text{-abstract}), \quad \begin{array}{ll} [a^{\tau}:\tau] \\ \overline{M:\tau} \\ (\rho \text{-abstract}), \end{array}$$

$$\frac{a^{\tau}:\tau\quad M:\tau}{(a^{\tau}M)^{\sigma}:\sigma}\ (\rho\text{-}absurd), \quad \frac{M:\bot}{(\mathsf{A}M)^{\tau}:\tau}\ (\bot\text{-}absurd),$$

$$\frac{M:\tau}{(\mathsf{J}M)_u:\forall u\tau}\ (generalization),\quad \frac{M:\forall u\tau}{(\mathsf{F}M)_t:[t/u]\tau}\ (instantiation).$$

Typed $\lambda \rho$ -terms are denoted by "M", "N", "P", "Q".

The type of a term M is denoted by Type(M), and the set of types that a $(\lambda$ - or ρ -) variable f has in M is denoted by Type(f, M).

In $(\lambda$ -abstract), x is a λ -variable that satisfies $Type(x, M) \subseteq \{\sigma\}$. In $(\rho$ -abstract), a is a ρ -variable that satisfies $Type(a, M) \subseteq \{\tau\}$. In (generalization), for all of free variables in M, u has no free occurrence in the types that they have in M.

Note that ρ -variables are not terms.

We use the following notations:

- f, g, \cdots denotes arbitrary (λ or ρ -) variables,
- FV(M) denotes the set of free variables in M,
- $\lambda a.M$ denotes $\rho a.M$, so $\lambda ax.M \equiv \rho a.(\lambda x.M)$,

We identify α -equivalent terms.

Types on the shoulder of terms and parentheses are sometimes omitted from terms.

Example 4 (Peirce's Law).

$$\lambda x a. x^{(\alpha \to \beta) \to \alpha} (\lambda y. (a^{\alpha} y^{\alpha})^{\beta}) : ((\alpha \to \beta) \to \alpha) \to \alpha.$$

This term is written in a tree form as follows:

$$\frac{x:(\alpha \to \beta) \to \alpha}{\frac{(\alpha^{\alpha}y^{\alpha})^{\beta}:\beta}{\alpha \to \beta}} \lambda y$$

$$\frac{x:(\alpha \to \beta) \to \alpha}{\frac{\frac{\alpha}{\alpha}\rho\alpha}{((\alpha \to \beta) \to \alpha) \to \alpha}} \lambda x$$

To define the contraction of $\lambda \rho$ -terms, we have to define several kinds of substitution. The following are easy to define.

- [t/u]M the substitution of t for free occurrences of u in types on the structure of M,
- [N/x]M the substitution of N for free occurrences of x in M where $Type(x, M) \subseteq \{Type(N)\},$
- [b/a]M the substitution of b for free occurrences of a in M,

Definition 5 (ρ -substitution).

For typed $\lambda \rho$ -terms M, N and a ρ -variable a, we define $[\lambda x.b^{\beta}(x^{\alpha \to \beta}N)/a]M$ to be the result of substituting $\lambda x.b^{\beta}(x^{\alpha \to \beta}N)$ for every free occurrence of a in M, where $Type(a,M) \subseteq \{\alpha \to \beta\}$, $N: \alpha, x \notin FV(M) \cup FV(N)$, $b \notin FV(M) \cup FV(N) \cup \{a\}$.

Notice that the expression $\lambda x.b^{\beta}(x^{\alpha\to\beta}N)$ is not a typed $\lambda \rho$ -term.

- 1. $[\lambda x.b(xN)/a]M \equiv M$ where $a \notin FV(M)$,
- 2. $[\lambda x.b(xN)/a](MQ) \equiv ([\lambda x.b(xN)/a]M[\lambda x.b(xN)/a]Q),$
- 3. $[\lambda x.b(xN)/a]((\lambda y.M)^{\sigma \to \tau}) \equiv (\lambda z.[\lambda x.b(xN)/a][z^{\sigma}/y]M)^{\sigma \to \tau}$ where z is new,
- 4. $[\lambda x.b(xN)/a]((\rho c.M)^{\tau}) \equiv (\rho d.[\lambda x.b(xN)/a][d/c]M)^{\tau}$ where d is new,
- 5. $[\lambda x.b(xN)/a]((a^{\alpha \to \beta}M)^{\sigma}) \equiv (b^{\beta}([\lambda x.b(xN)/a]MN))^{\sigma}$
- 6. $[\lambda x.b(xN)/a]((c^{\tau}M)^{\sigma}) \equiv (c^{\tau}[\lambda x.b(xN)/a]M)^{\sigma}$ where $c \not\equiv a$,
- 7. $[\lambda x.b(xN)/a]((AM)^{\sigma}) \equiv (A[\lambda x.b(xN)/a]M)^{\sigma},$
- 8. $[\lambda x.b(xN)/a]((JM)_u) \equiv (J[\lambda x.b(xN)/a][v/u]M)_v$ where v is new,
- 9. $[\lambda x.b(xN)/a]((FM)_t) \equiv (F[\lambda x.b(xN)/a]M)_t$.

In 3, "z is new" means "z is a λ -variable that does not occur in the expression of the left side" i.e. z does not occur in M and N, $z \not\equiv x$, and $z \not\equiv y$. "d is new" in 4 and "v is new" in 8 are similar meanings respectively. We use the phrase "f/u is new" in a similar meaning after this.

Definition 6 (F_{ρ} -substitution).

For typed $\lambda \rho$ -terms M and a ρ -variable a, we define $[\lambda x.b^{[t/u]\alpha}(\mathsf{F} x^{\forall u\alpha})_t/a]M$ to be the result of substituting $\lambda x.b^{[t/u]\alpha}(\mathsf{F} x^{\forall u\alpha})_t$ for every free occurrence of a in M, where $Type(a,M)\subseteq\{\forall u\alpha\},\ x\not\in FV(M),\ b\not\in FV(M)\cup\{a\}.$

Notice that the expression $\lambda x.b^{[t/u]\alpha}(\mathsf{F}x^{\forall u\alpha})_t$ is not a typed $\lambda \rho$ -term.

- 1. $[\lambda x.b(Fx)/a]M \equiv M$ where $a \notin FV(M)$,
- 2. $[\lambda x.b(Fx)/a](MQ) \equiv ([\lambda x.b(Fx)/a]M[\lambda x.b(Fx)/a]Q),$
- 3. $[\lambda x.b(\mathsf{F}x)/a]((\lambda y.M)^{\sigma \to \tau}) \equiv (\lambda z.[\lambda x.b(\mathsf{F}x)/a][z^{\sigma}/y]M)^{\sigma \to \tau}$ where z is new,
- 4. $[\lambda x.b(\mathsf{F}x)/a]((\rho c.M)^{\tau}) \equiv (\rho d.[\lambda x.b(\mathsf{F}x)/a][d/c]M)^{\tau}$ where d is new,
- 5. $[\lambda x.b(\mathsf{F}x)/a]((a^{\forall u\alpha}M)^{\sigma}) \equiv (b^{[t/u]\alpha}(\mathsf{F}[\lambda x.b(\mathsf{F}x)/a]M)_t)^{\sigma}$
- 6. $[\lambda x.b(\mathsf{F}x)/a]((cM)^{\sigma}) \equiv (c[\lambda x.b(\mathsf{F}x)/a]M)^{\sigma}$ where $c \not\equiv a$,
- 7. $[\lambda x.b(\mathsf{F}x)/a]((\mathsf{A}M)^{\sigma}) \equiv (\mathsf{A}[\lambda x.b(\mathsf{F}x)/a]M)^{\sigma},$
- 8. $[\lambda x.b(\mathsf{F}x)/a]((\mathsf{J}M)_v) \equiv (\mathsf{J}[\lambda x.b(\mathsf{F}x)/a][w/v]M)_w$ where w is new,
- 9. $[\lambda x.b(\mathsf{F}x)/a]((\mathsf{F}M)_s) \equiv (\mathsf{F}[\lambda x.b(\mathsf{F}x)/a]M)_s$.

Definition 7 (A_{ρ} -substitution).

For typed $\lambda \rho$ -terms M and a ρ -variable a, we define [A/a]M to be the result of substituting A for every free occurrence of a in M, where $Type(a, M) \subseteq \{\bot\}$.

1.
$$[A/a]M \equiv M$$
 where $a \notin FV(M)$,

2.
$$[A/a](MN) \equiv ([A/a]M[A/a]N),$$

3.
$$[A/a]((\lambda x.M)^{\sigma \to \tau}) \equiv (\lambda x.[A/a]M)^{\sigma \to \tau}$$

4.
$$[A/a]((\rho b.M)^{\tau}) \equiv (\rho b.[A/a]M)^{\tau}$$
,

5.
$$[A/a]((a^{\perp}M)^{\sigma}) \equiv (A[A/a]M)^{\sigma},$$

6.
$$[A/a]((c^{\tau}M)^{\sigma}) \equiv (c^{\tau}[A/a]M)^{\sigma}$$
 where $c \not\equiv a$,

7.
$$[A/a]((A(a^{\perp}M)^{\perp})^{\sigma}) \equiv (A[A/a]M)^{\sigma},$$

8.
$$[A/a]((AM)^{\sigma}) \equiv (A[A/a]M)^{\sigma},$$

9.
$$[A/a]((JM)_u) \equiv (J[A/a]M)_u$$

10.
$$[A/a]((FM)_t) \equiv (F[A/a]M)_t$$
.

Definition 8 ($\rho\beta$ -contraction).

$$(\lambda x.M)^{\sigma \to \tau} N \rhd_{1\beta} [N/x]M,$$

$$(\rho a.M)^{\sigma \to \tau} N \rhd_{1\rho} (\rho b.([\lambda x.b^{\tau}(x^{\sigma \to \tau}N)/a]M)N)^{\tau},$$

$$where \quad x, \ b \ are \ new,$$

$$(a^{\alpha}M)^{\sigma \to \tau} N \rhd_{1a} (a^{\alpha}M)^{\tau},$$

$$(AM)^{\sigma \to \tau} N \rhd_{1A} (AM)^{\tau},$$

$$(F(JM)_{u})_{t} \rhd_{1J} [t/u]M,$$

$$(F(\rho a.M)^{\forall u\tau})_{t} \rhd_{1F_{\rho}} (\rho b.(F[\lambda x.b^{[t/u]\tau}(Fx^{\forall u\tau})_{t}/a]M)_{t})^{[t/u]\tau}$$

$$where \quad x, \ b \ are \ new,$$

$$(F(a^{\alpha}M)^{\forall u\tau})_{t} \rhd_{1F_{a}} (a^{\alpha}M)^{[t/u]\tau},$$

$$(F(AM)^{\forall u\tau})_{t} \rhd_{1F_{a}} (AM)^{[t/u]\tau},$$

$$(A(\rho a.M)^{\perp})^{\tau} \rhd_{1A_{\rho}} (A[A/a]M)^{\tau},$$

$$(A(a^{\alpha}M)^{\perp})^{\tau} \rhd_{1A_{\rho}} (a^{\alpha}M)^{\tau}.$$

Example 9 (ρ -contraction).

$$(\rho a.(ay))N \triangleright_{1\rho} \rho b.([\lambda x.b(xN)/a](ay))N \equiv \rho b.(b(yN))N$$

These therms before and after the contraction are written in tree forms as follows:

$$\frac{a: \sigma \to \tau \quad y: \sigma \to \tau}{\underbrace{(ay)^{\sigma \to \tau}: \sigma \to \tau}_{\bigcap \rho a \quad N: \sigma} \rho a \quad \prod_{N: \sigma \atop (\rho a.(ay))N: \tau} } \qquad \triangleright_{1\rho} \qquad \frac{y: \sigma \to \tau \quad N: \sigma}{\underbrace{(b(yN))^{\sigma \to \tau}: \sigma \to \tau}_{\bigcap \rho b.(b(yN))N: \tau}} \quad \prod_{N: \sigma \atop \rho b.(b(yN))N: \tau} \rho b$$

Definition 10 ($\rho\beta$ -contraction, $\rho\beta$ -reduction).

A " $\rho\beta$ -redex" is any typed $\lambda\rho$ -term of form $((\lambda x.M)^{\sigma \to \tau}N)$, $((\rho a.M)^{\sigma \to \tau}N)$, ..., or $(\mathsf{A}(a^{\alpha}M)^{\perp})^{\tau}$.

If M contains a $\rho\beta$ -redex \underline{P} and N is the result of replacing \underline{P} by its contractum, we say "M $\rho\beta$ -contracts to N", or $M \triangleright_{1\rho\beta} N$.

If $M \rhd_{1\rho\beta} M_1 \rhd_{1\rho\beta} M_2 \rhd_{1\rho\beta} \cdots \rhd_{1\rho\beta} M_n \equiv N \ (n \geq 0)$, we say " $M \ \rho\beta$ -reduces to N", or $M \rhd_{\rho\beta} N$.

2 Subject-reduction theorem

Lemma 11.

For any typed $\lambda \rho$ -terms M, N,

- Type([t/u]M) = [t/u]Type(M),
- Type([N/x]M) = Type(M) and $FV([N/x]M) \subseteq (FV(M) \{x\}) \cup FV(N)$,
- $Type([\lambda x.b^{\beta}(x^{\alpha \to \beta}N)/a]M) = Type(M)$ and $FV([\lambda x.b^{\beta}(x^{\alpha \to \beta}N)/a]M) \subseteq (FV(M) \{a\}) \cup FV(N)$,
- $Type([\lambda x.b^{[t/u]\tau}(\mathsf{F}x^{\forall u\tau})_t/a]M) = Type(M)$ and $FV([\lambda x.b^{[t/u]\tau}(\mathsf{F}x^{\forall u\tau})_t/a]M) \subseteq (FV(M) \{a\}) \cup \{b\},$
- Type([A/a]M) = Type(M) and $FV([A/a]M) \subseteq FV(M) \{a\}$.

Proof. By induction on the structure of M.

Theorem 12 (Subject-reduction theorem).

For any typed $\lambda \rho$ -terms M, N,

$$M \rhd_{\rho\beta} N \Rightarrow Type(N) = Type(M) \text{ and } FV(N) \subseteq FV(M).$$

Proof. It is enough to take care of the case in which M is a redex and N is its contractum. By the previous lemmas, it is easy to prove.

3 Church-Rosser theorem

Theorem 13 (Strong normalization theorem).

For any typed $\lambda \rho$ -term M, all $\rho \beta$ -reductions starting at M are finite.

Proof. Similar to the case of propositional logic. cf. [3].

Theorem 14 (Theorem 3.10 in [2]).

If a translation \dagger has the following properties, then $\triangleright_{\rho\beta}$ has a Church-Rosser property.

For any typed $\lambda \rho$ -terms M, N,

- $\begin{array}{lll} \langle 1 \rangle & M \rhd_{\rho\beta} M^{\dagger}, \\ \langle 2 \rangle & M \rhd_{1\rho\beta} N & \Rightarrow & N \rhd_{\rho\beta} M^{\dagger}, \\ \langle 3 \rangle & M \rhd_{1\rho\beta} N & \Rightarrow & M^{\dagger} \rhd_{\rho\beta} N^{\dagger}. \end{array}$

Lemma 15.

With the strong normalization theorem of $\lambda \rho$ -terms, if a translation \dagger has the following properties, then $\triangleright_{\rho\beta}$ has a Church-Rosser property.

For any typed $\lambda \rho$ -terms M, N,

- $\begin{array}{lll} \langle 1 \rangle & M \rhd_{\rho\beta} M^{\dagger}, \\ \langle 2 \rangle & M \rhd_{1\rho\beta} N & \Rightarrow & N \rhd_{\rho\beta} M^{\dagger}, \end{array}$

Proof. It is enough to prove that normal form is decided uniquely on the assumption. cf. [2].

Definition 16 (Translation †).

- 1. $(x^{\tau})^{\dagger} \equiv x^{\tau}$.
- 2. $((\lambda x.M)^{\sigma \to \tau}N)^{\dagger} \equiv [N^{\dagger}/x]M^{\dagger},$
- 3. $((\rho a.M)^{\sigma \to \tau} N)^{\dagger} \equiv (\rho b.([\lambda x.b^{\tau}(x^{\sigma \to \tau}N^{\dagger})/a]M^{\dagger})N^{\dagger})^{\tau},$
- 4. $((a^{\alpha}M)^{\sigma \to \tau}N)^{\dagger} \equiv (a^{\alpha}M^{\dagger})^{\tau}$,
- 5. $((AM)^{\sigma \to \tau}N)^{\dagger} \equiv (AM^{\dagger})^{\tau}$,
- 6. $((\mathsf{F}(\mathsf{J}M)_u)_t)^\dagger \equiv [t/u]M^\dagger$,
- 7. $((\mathsf{F}(\rho a.M)^{\forall u\tau})_t)^{\dagger} \equiv (\rho b.(\mathsf{F}[\lambda x.b^{[t/u]\tau}(\mathsf{F}x^{\forall u\tau})_t/a]M^{\dagger})_t)^{[t/u]\tau},$
- 8. $((\mathsf{F}(a^{\alpha}M)^{\forall u\tau})_t)^{\dagger} \equiv (a^{\alpha}M^{\dagger})^{[t/u]\tau},$
- 9. $((\mathsf{F}(\mathsf{A}M)^{\forall u\tau})_t)^{\dagger} \equiv (\mathsf{A}M^{\dagger})^{[t/u]\tau}$
- 10. $((\mathsf{A}(\rho a.M)^{\perp})^{\tau})^{\dagger} \equiv (\mathsf{A}[\mathsf{A}/a]M^{\dagger})^{\tau},$
- 11. $((\mathsf{A}(a^{\alpha}M)^{\perp})^{\tau})^{\dagger} \equiv (a^{\alpha}M^{\dagger})^{\tau}$,
- 12. $(MN)^{\dagger} \equiv M^{\dagger}N^{\dagger}$,

13.
$$((\lambda x.M)^{\sigma \to \tau})^{\dagger} \equiv (\lambda x.M^{\dagger})^{\sigma \to \tau}$$
,

14.
$$((\rho a.M)^{\tau})^{\dagger} \equiv (\rho a.M^{\dagger})^{\tau}$$
,

15.
$$((a^{\alpha}M)^{\sigma})^{\dagger} \equiv (a^{\alpha}M^{\dagger})^{\sigma}$$
,

16.
$$((AM)^{\sigma})^{\dagger} \equiv (AM^{\dagger})^{\sigma}$$
,

17.
$$((JM)_u)^{\dagger} \equiv (JM^{\dagger})_u$$
,

18.
$$((\mathsf{F}M)_t)^\dagger \equiv (\mathsf{F}M^\dagger)_t$$
.

Here we choose to apply the rule with smallest number if many rules can apply to M.

Lemma 17.

For any typed $\lambda \rho$ -term M, N, if $M \triangleright_{\rho\beta} N$ then

- $[t/u]M \rhd_{\rho\beta} [t/u]N$,
- $[Q/x]M \rhd_{\rho\beta} [Q/x]N$,
- $[M/x]Q \rhd_{\rho\beta} [N/x]Q$,
- $[b/a]M \rhd_{\rho\beta} [b/a]N$,
- $[\lambda x.b^{\beta}(x^{\alpha \to \beta}Q)/a]M \rhd_{\rho\beta} [\lambda x.b^{\beta}(x^{\alpha \to \beta}Q)/a]N$,
- $[\lambda x.b^{\beta}(x^{\alpha \to \beta}M)/a]Q \rhd_{\rho\beta} [\lambda x.b^{\beta}(x^{\alpha \to \beta}N)/a]Q$,
- $\bullet \ [\lambda x.b^{[t/u]\alpha}(\mathsf{F} x^{\forall u\alpha})_t/a]M \ \rhd_{\rho\beta} \ [\lambda x.b^{[t/u]\alpha}(\mathsf{F} x^{\forall u\alpha})_t/a]N,$
- $[A/a]M \rhd_{\rho\beta} [A/a]N$.

Lemma 18. For all $\lambda \rho$ -term M,

$$FV(M^{\dagger}) \subseteq FV(M)$$
.

Proof. By induction on the structure of M.

Lemma 19. For all $\lambda \rho$ -term M,

$$M \rhd_{\rho\beta} M^{\dagger}$$
.

Proof. By induction on the structure of M.

Lemma 20. For all $\lambda \rho$ -term M, N,

$$M \rhd_{1\rho\beta} N \Rightarrow N \rhd_{\rho\beta} M^{\dagger}.$$

Proof. By induction on the structure of M.

Theorem 21 (Church-Rosser theorem).

For any typed $\lambda \rho$ -terms M, P, Q, if $M \triangleright_{\rho\beta} P$ and $M \triangleright_{\rho\beta} Q$, then there exists a typed $\lambda \rho$ -term N such that

$$P \rhd_{\rho\beta} N$$
 and $Q \rhd_{\rho\beta} N$.

4 Subformula property

Definition 22 (Subterm).

- $1. Subt(x^{\tau}) = \{x^{\tau}\},$
- 2. $Subt((MN)) = Subt(M) \cup Subt(N) \cup \{(MN)\},$
- 3. $Subt((\lambda x.M)^{\sigma \to \tau}) = Subt(M) \cup \{x^{\sigma}\} \cup \{(\lambda x.M)^{\sigma \to \tau}\},$
- 4. $Subt((\rho a.M)^{\tau}) = Subt(M) \cup \{a^{\tau}\} \cup \{(\rho a.M)^{\tau}\},\$
- 5. $Subt((a^{\tau}M)^{\sigma}) = Subt(M) \cup \{a^{\tau}\} \cup \{(a^{\tau}M)^{\sigma}\},$
- 6. $Subt((AM)^{\sigma}) = Subt(M) \cup \{(AM)^{\sigma}\},$
- 7. $Subt((JM)_u) = Subt(M) \cup \{(JM)_u\},\$
- 8. $Subt((FM)_t) = Subt(M) \cup \{(FM)_t\}.$

Definition 23 (Subfornula).

For any types α , β , " α is a subformula of β " or $\alpha \leq \beta$ is defined inductively as follows:

$$\begin{array}{lll} \delta & \leq & \delta, \\ \delta & \leq & \alpha \implies \delta & \leq & \alpha \rightarrow \beta \text{ and } \delta & \leq & \beta \rightarrow \alpha, \\ \delta & \leq & [t/u]\alpha \implies \delta & \leq & \forall u\alpha. \end{array}$$

Theorem 24 (Subformula property).

For any typed $\lambda \rho$ -term M, if M is a $\rho\beta$ -normal form then for any type δ

$$\delta \in Type(Subt(M)) \Rightarrow \delta \leq Type(FV(M) \cup \{M\}).$$

Proof. By induction on the structure of M.

5 Correspondence to Gentzen's LK

Theorem 25 (LK to HK).

For any set of types Γ and a type γ , if a sequent $\Gamma \Rightarrow \gamma$ is provable in LK, then $\Gamma \vdash_{HK} \gamma$.

Lemma 26 (HK to $\lambda \rho$ -terms).

For any set of types Γ and a type γ , if $\Gamma \vdash_{HK} \gamma$, then there exists a typed $\lambda \rho$ -term M such that $\Gamma \supseteq Type(FV_{\lambda}(M)), Type(FV_{\rho}(M)) = \phi, Type(M) = \gamma$.

Proof. By induction on the proof of
$$\Gamma \vdash_{HK} \gamma$$
.

Lemma 27.

For any typed $\lambda \rho$ -term M, if M is a $\rho\beta$ -normal form then a sequent

$$Type(FV_{\lambda}(M)) \Rightarrow Type(FV_{\rho}(M) \cup \{M\})$$

is provable in LK without cut.

Proof. By induction on the structure of M.

Lemma 28 ($\lambda \rho$ -terms to LK).

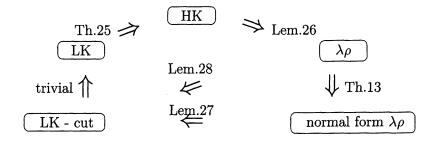
For any typed $\lambda \rho$ -term M, a sequent

$$Type(FV_{\lambda}(M)) \Rightarrow Type(FV_{\rho}(M) \cup \{M\})$$

is provable in LK without cut.

Proof. By the strong normalization theorem of $\lambda \rho$ -terms and the previous lemma.

The previous lemmas are written in a figure as follows:



Theorem 29.

For any set of types Γ and Θ , a sequent $\Gamma \Rightarrow \Theta$ is provable in LK if and only if there exists a typed $\lambda \rho$ -term M such that $\Gamma \supseteq Type(FV_{\lambda}(M))$ and $\Theta \supseteq Type(FV_{\rho}(M) \cup \{M\})$.

Proof. By the previous lemmas.

Theorem 30 (Cut elimination theorem of LK).

For any set of types Γ and Θ , if a sequent $\Gamma \Rightarrow \Theta$ is provable in LK, then it is also provable in LK without cut.

Proof. By the previous lemmas.

References

- [1] Y. KOMORI, "λρ-Calculus: A Natural Deduction for Classical Logic", Bulletin of the Section of Logic, Vol. 31 No. 2(2002), pp. 65-70.
- [2] M. H. SØRENSEN and P. URZYCZYN, 'Lectures on the Curry-Howard isomorphism', Studies in Logic and the Foundations of Mathematics, Vol. 149, Elsevier Science (2006).
- [3] Y. KOMORI, 'λρ-calculus II', Tsukuba J. of Math, Vol. 37 No. 2(2013), pp. 307-320.
- [4] Y. KOMORI, N. MATSUDA and F. YAMAKAWA, 'A Simplified Proof of the Church-Rosser theorem', Studia Logica (2013).

Fumika YAMAKAWA
Division of Fundamental Sciences,
Graduate School of Science,
Chiba University
Inage-ku Chiba 263-8522 JAPAN
email: yamakawa.fumika@gmail.com

Yuichi KOMORI Department of Mathematics, Faculty of Science, Chiba University email: komori.yuichi@gmail.com