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Abstract

In the past, we proposed a safe semi-supervised learning based on weighted likelihood.
We also showed that our method improves the supervised learning asymptotically in view
of information geometry. In this study, we discuss its converse. If we are given a geomet-
rical object (influence function), can we recover its associated estimator? As a result, we
derive a set of all influence functions of regular and asymptotically linear estimators in semi-
supervised setting. In this analysis, we do not assume that the model of p(y|z) is correctly
specified. Next, given an influence function, we reconstruct an estimating function such that
the resultant estimator has the given influence function.

1 Semi-Supervised Learning

We review the setting of semi-supervised learning. Suppose that we have a data set:

(wl.:yl)ﬂ (1‘2,1/2), Ty (wna yn) ~ p(ﬂ’f, y)7 iid.

zy,ah, -z ~ p(@) = /p(a:',y)dy. ii.d.

Our interest is to estimate the conditional distribution p(y|z). For this purpose, we prepare two
models:

My = {g(z:n)|n e R}
A = {p(ylr;a)|a € RY.

The goal of semi-supervised learning is to estimate « such that p(y|z; a) is as close to p(y|z) as
possible in a certain distance measure.

2 Notations

We introduce several notations used in this paper. Let u,,u, be some estimating functions of
parameter a and 7 and s, and s, be score functions with the models .#, and .#. We define
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the following symbols:

Sp 1= sn(x;no),s;; = sp(@'sm0), up = 8,7(:(,‘;7]0),’(1,;] = 8,(z'3m0), Ua = Ua(2’; 20),

Oua(X, Y3 a0)] - Oun(X,Y;m0) T T\T
{—"2“557«'—:1 ,‘If? = ~—EIP(E,ZJ) I:_”J——bn—T_— 96 = ((X T ) ’

Gss = p(2,y) [uﬂ (X,Y; a())“(x(Xa Y aO)T] ) G'f]ﬁ = Ep(m,y) [un(X’ Y, 770)“7)(X’ Yino )T] )
Gan = Elua(X,Y:00)sy(X;70)7], Gaa = Elua(X,Y; a0)sa(Y]X; a0)"].

ri=n/n',Ja = —Epqy)

As for G.., we listed only two examples above. The rule is to use tilde to express a general
estimating function. Without tilde, it indicates a score function. We also use the following
acronyms:

IF Influence Function
SIF Semi-super?ised Influence Function
ITF Interest Influence Function

NIF Nuisance Influence Function.

3 Background

Let us consider an arbitrary supervised estimator defined as

n
supervised estimator & = argsolve E Ui, yis0) =0 ¢,
aeRd =1

1 n
supervised influence function  /n(& — ap) = 7 E JZ Mua(@i, yi; ao) + 0p(1).
i=1

where u,(z,y; @) is an estimating function (i.e., Eynp(yleia) [0(X,Y;a)] = 0 for any ). Fur-
ther, ag := argsolve, { E[uy (X, Y; a)] = 0}. Kawakita and Takeuchi (2014) showed that DRESS
I improves the supervised estimator if g(z;7) is a correct model and p(y|z; ) is a wrong model.
DRESS 1 is defined as the solution of the following estimating equations:

n
DRESSI a = argsolve {Z Ua (i, yi; @)w(zs; 7, 7)) = O} ,

acRd

i=1
mn
A = argsolve {Z sp(xssm) = O} ,
neRd’ i=1
n'
7 = argsolve Zs,,(x;-;n') =0. (1)

TeR? | j=1
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where w(z;n,7") = g(x;7')/g(z;n). Its influence function was also elucidated as

. 1 w—, N _
OF Vn(d—ay) = 7 Z (J3 Yug (i, yis o) — J5 1Gd,7Gm715,7(m7;;770))
1
e S VT Gan Gl s(aimn) + op(1),
Vit
~ 1 " —_
NIF \/77(7] — ’r][]) = _ﬁ Z G,-mlsn(xi; "70) + OP(I)’
i=1

, R
NIF  Vn(i —m0) = \/;ﬁ Z Gy 59(2370) + 0p(1)- (2)
i=1

Kawakita and Takeuchi (2014) showed that IIF can be interpreted as
V(& — ag) = J3 ug — (1 + )T Tuals, — Vs, ol
This can be illustrated geometrically as in Fig. 1. In this figure, DRESS I corresponds to the

VnzTB
r=0.45

=  DRESS I
...... DRESS 11

Va

Figure 1: Geometry of estimators.

blue line. It is easy to see that the blue line is always shorter than the black line (supervised
estimator) unless 7 < 1. As in Kawakita and Takeuchi (2014), an existence of better estimator
is suggested from this figure. That is a red line. Its IF is given by

V(& — ag) = I3 Mg — TI[JS Mualsy — vV7s)].

However, we are not sure whether such an estimator exists or how to obtain it? In (Kawakita
and Takeuchi, 2014), such an estimator was heuristically found. That is DRESS II estimator
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defined as
DRESSII & = argsolve {Z ua (i, yi; @)w(zg; H,0) = 0},
acRd
7 = argsolve {Z sp(xym) = O} ,
neR? =1
n
7 = argsolve Zs,,(:n,, )+ an ) =03 . (3)

nerd | =1

Its influence function is given by
. 1 ¢ -1 -1
IIF  Vn(é—ag) = "\7—; Z J5 Ua(i yis o) — Jg GdnGrm sn(i3m0) (4)
i=1
+J3 GanGry s(xfimo) + 0p(1),

. 1
NIF Va(h—m) = —= ) Gy syl@ino) +op(1),
\/7):11:1

vr —1-iG_13 (z";10) + 0p(1).(5)
r+1\/»,7]_:1 m Sm\Zj5 710 p\L)-

Our goal is to establish the method to do these. More concretely, we aim at giving answers to
the following questions:

n
N _ T 1 -1 .
NIF  Vn(i —m) = i ;:1 Gy sn(45

e For each IF, is there an estimator corresponding to it?

o If it exists, how can we obtain it?

3.1 Problem formulation

Suppose that

(xl,yl)’(3:27y2)7"' ’(mn’yn) ~ p(a:)p(y|ar), iid.
Ty, xy ~ p(a'), 1id..

Further, suppose that we are given estimating functions

estimating function for @ us(z,y; @)

estimating function for n  u,(z;7) (this is not necessary. just a virtual concept.)

Define two target parameter values as the the function of p(z, y):

a(p) = argsolve {Epzpua(X,Y;a)] =0} (6)
n(p) = algbolve{ p(a)[un(X;m)] = 0} . (7)
neRd

Note that a(p) clearly depends on u,. Our goal is

e to elucidate the set of all ITF of regular and asymptotically linear estimators of &,

e for any fixed IIF, to derive the set of estimating equations yielding the estimator which
has the given IIF.
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3.2 Class of all influence functions
Again, we focus on the regular estimators.

Definition 1 (local data generating process). Let {p,(y|z)} and {pn(z)} be sequences of
conditional and marginal probability density functions such that

(xnlaynl)a(xn253/n2),">' :(mnnaynn) ~ pn(x,y), i.1.d.
' Ty Tyt s T~ Dp() =/pn(m',y)dy, ii.d.

where pp(x,y) = pp(z)pn(ylz). Define

n(z) = Vn pa(x) — plz)
) = f( P@) )
Wiz, y) = Vn (Pn,(y|;()y|—mz)3(y\a:)> .

We say (pn(z), pn(y|x)) is a local data generating process if 6, (z) and vy (z,y) converge to some

functions.

We write a(pn(x,v)), a(p(z,y)), n(pn(z)) and n(p(x)) as an, oo, 7n, Mo respectively. For any
LDGP, the following lemma holds.

Lemma 2. For any LDGP, \/n(an—ag) and v/n(1, —1m0) converge to some constant vectors.

Proof. Assume that p,(z) and p,(z,y) are LDGP. Then, we have

pn(z) = p(z) (H%én(:ﬁ)),
polile) = plolo) (1+ iz

pu@yy) = pu@)pn(ylz) = pla: )(1+76< T )+o 1/n).

By their definitions, it holds that

Ep, [ua(X,Y 0m)] = 0,
Ep, [un(Ximn)] = 0.

By Taylor-expansion, we have

[ua(x,Y; a0) + 282 (0, — ag) + o<1/\/ﬁ)} 0,

Epn

daT
Ouy '
Ep,, |un(Xs5m0) + W("?’n — o) +o(1/vn)| =
Multiplying /n,
Ey, |:\/ﬁua(X7Y; ap) + g—z—;—\/ﬁ(an —ag) + 0(1)} =0,

Epn [\/EUH(X,T]()) + g:—;\/ﬁ(nn - 770) + 0(1)} =0. (8)



128

Under the assumption that u, and u, are of C! class, we have

ou ou ou ou,
b [t ] = & 50]  B [57] - 2 5]

The first term is evaluated as
1
\/?i/p(w) (1 + 75—5,1(90)) (23 m0)dzdy

/P($)57,(x)'un(at;r]0)dxdy

[ P8 (@) (510 ) oy

I

VREy, [u,(X;m0)]

Il

Define b}, := Gm]lEp 200 (2)uy(X5m0)]. Then, M[d,(x)|u,] = u,:';b;l Using this,

\/ﬁEpn [u"](X; 770)] = Gﬁﬁbln
As a result, we have
Ginbp — Jyv/n(nn —mo) +0(1) = 0

Hence, it holds that
V(i —no) = J' ]Grmb, +o(1).

Because d,(z) converges to a some function, {b],} also converges to a some constant vector ¥’ so
that
V(e —m0) = J7 ' Gagb' + o(1).

Similarly, the other first term is evaluated as

\/EEI)n [ua(Xs Y;Ozo)] = \/-ﬁ'/p(x,y) <1 + "\;—Eén(l‘) + %Wn(x’y) + O(l/n)) )

ua(z,y; ag)dzdy

[ P02 652(0) + 3002200l )y + 0 (%) )

Il

The orthogonal projection of 4, (z) + v,(x,y) onto u, is decomposed as

H[(S )+ '7n($ Y ;ua] = H[(Sn(l)hj'a] + H[’Yn(xa y)’ua]'
Let by, := GaaFp(z)|0(z, y)ua(X,Y; a0)] so that My, (z,y)|ua] = blua. On the other hand,
dn(z) is decomposed into 6, (z) = u%“b; + (6n(z) — uTb’ 7.)- We write (d,(x) — Tb;l) as hy(z) for

short. We can further decompose 6,(z) as

ou(x) = U, + halua] + (6n(z) — T[6,(2) ug))
= (G; 1Gaﬁb'>7‘ua+n{h |ta) + (8n () — N[5 (@) [ua))

Let ¢, 1= Gz3Ep(z)[Anta] so that II[hy|ua] = cTus. As a result,

on(z) = (Gg[}deﬁb;w + cn)Tua + (0 (z) — T[05 () |ual)-



Note that ¢, also convel geb to a some constant ¢ because h, converges to a some function.
Similarly, let b, := G=1 36 Eo(ey (@, v)ua] so Mz, y)|ua] = bTu,. Because of the same reason
again, b, converges to a some constant b. Summarizing these, we have

H[(Sn(;r) + ’)ﬂn(I, y)|ua¢] = (GgéG&ﬁbfn +cn + bn)Tua

Substituting this into Eq. (9), we have

VB, lua(X.Yiaa)) = [ p(x,w(an(x)+w.fn,<x,y>>ua(w,y;awdmwo(%)

= [ bl () + 30002 9) ol ysao)dody + O (%ﬁ)

7)
d

= Gaa(G3rGrabl, + cn +by)

q
~

= (Gjaby, + Gaalen + by))

swr\

0(
S (Gral + Cagle+1)) + 0 %

\_/

Hence, from Eq. (8),
Vi(om — ag) = J3 H(Gasb' + Gaalc+b)).
0

Lemma 3. For any LDGP (pn(x),pn(y|x)), 6n(x) and v, (x,y) satisfy the following proper-
ties:

1. Both 6,(z) and v,(z,y) have zero mean.
2. The function 6,(x) is perpendicular to any function a(x,y) such that Epy . [a(X,Y)]=0.
3. The function v,(z,y) is perpendicular to any function a(z).

Proof. Taking expectation, we have

[r@swis = [pova (?—%{{@) 2 = V& [ (oal2) = ple))s =0,
/p(x,y)%(w,y)dwdy = /p(x, y)vn (p"(y|$) _p(y‘$)> dz

p(ylz)

- Vm / p(@) (P (ylz) — ply|))dady = 0.

For any function a(x,y),
Epl6n(X)a(X,Y)] = /p(z,y)én(g;)a(m,y)d;vdy = /p(m)on(x) /p(ylm)a(x,y)dydx.

Therefore, if [ p(y|z)a(z,y)dy = 0, then &, is perpendicular to a. For any function a(z),

E,lm(X, Y)a(X)] = / P, y)a(@) (2, ) = / p(z)alz) / p(y|7) v (2 ) dydlz = 0.

129
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From this lemma, we immediately know that d, is perpendicular to v,.

Lemma 4. Consider an LDGP (p,(z),pn(y|z)). Define two probability density sequences:
truth  pon (va) := iy p(wi, 1) 21p(a)),
LDGP pln(vn) = H?:lpn(l'iyyi)H?/:1pn(x;')~

If and only if Ep(r)[%%%l%f)l] and Ep(ylz)[%lflmﬁ)z%] are finite, then, Ep)[0n(X)?] and
Ep(

2 (X.Y)?] are finite for any n.

Proof. By definition, we have

—o(x 2
Ep(z)[n(X)?] = /p(a") (ﬁ%M) da
- (Pn(2)® — 2pn(2)p(2) + p(2)?)
= n/( p(z) )da:

= [ (o) (ZEL) - pa(0) + 5100 ) a
o {for ()

Therefore, the finiteness of the squared expectation norm of p, /p is equivalent to the finiteness
of E[62]. Similarly, we have

Ep(x,y)['Yn(X, Y)Q] _ /p(m,y) (\/ﬁ(Pn(ylx |
= (Pa(yl2)* ~ 2o (Wl2)p(yle) + (@)
- n/( p(y|x) )d.rdy

Y
n [+ (o) (2L ) — 2pu) + plain) ) docy

p(y|z)

(o5,

Lemma 5. Consider an LDGP (pp(z),pn(y|x)). Define two probability density sequences:

a

truth  pon(vn) = I p(zs, 1)1 p(2),
LDGP  pin(vn) = Iy pp (@i, 1)1 1 pn ().

If Ep(m)[%’(-(f%%"(—%l] and Ep(yiz) [%ﬁﬁl%] are finite, then, p1, is contiguous to pon.



Proof. By definition, we have

10g (pln(vn)>
pOn(”n)
H".‘ 1]9,1(501,?,/2‘)1—1;'/ 1pn( /')
= log =
H —1P mnyz)nj 1p( )

= log (H:Llp(xzv,y» (14 n(a0) + Sl ) + Hnaon(aaso))
T p(e}) (1+ =n(s5) ) ) = log (Waplon, ) Tap)

= log ( (1 + \/1_5 o (i) + "‘\/1—-—'711(-73137 yi) + l5n(mi)%($i’%)> I ( \}ﬁ )>
Vo

= Zlog (1+ —=0n ;) + \/—’)’n(i’hyz)+ 5 (Tz)%(Tz,yz)JerOg (1+ On (2 ))

j=1

Note that by Taylor-expansion around t = 0, there exists ¢ € [0, ¢] such that

2.

11
log(1+1) =¢— =
og(1 +1) 21+c

Let t = ﬁén ]+ ﬁ% + %5,,,% so that ¢ — 0. Then, there exists a real sequence ¢, such that
¢n — 0 and the first term is evaluated as

n
1 1 1
1st te - 1 1 P i e i Ui iy NV (Zis Yi
st term 7;';':1 og( + \/ﬁ5n(x ) + NG v (Zi, yi) + - n (i)Y (xz,yz))

(1 1 1
= Z( 571 -Tz —= (l‘1 yz + 07L(51T7,)"/71($z,y1)>

s \/— \/—
n 2
1 1 1 . 1 1
Le2T+ ¢, (ﬁ()"(zi) T ﬁ%(mi,%) + ’5n($z’)”/n(5¢1:,yi)> :

=1

/1
= Z(ﬁ (%1)+ \/——’Yri(xzayz)+ 67’1(:1‘1)’”71(‘1.@'%))

i=1
"1 1

21+cy,
=1

1 1 9 2
(;M:ci)? + oo + 26 @0a(aiw) + o)

n

1
= \/T—IZ +'Yn xz,y? Z() Z; ’Yn Iwyz)
=1

REN

ni:12l+c

- % > (On(@i) + (i 3i)) — ;12' (% Z (6 (:)* + ﬂ/n(:ci,y,;)Q)) +o(1)
=1

i=1

. (0n(®:)® + (@i, yi)® + 200 (i)W (i, 11)) + 0(1)

The first term converges in distribution to N (0, Ep(, 4 [62 +v2]). The second term converges in
probability to

5 (Bya Bn(X)? + (X, V).

131
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By denoting Ep; (02 + ~2] by 72, log (ﬁl—”” converges in distribution N(—(1/2)7%,72).

Thus, by LeCam’s lemma, py, is contiguous to pos. O

Using these lemmas, we provide a theorem corresponding to Theorem 3.2 of Tsiatis (2006)
under model misspecification.

Theorem 6 (semi-supervised setting). Let &, be asymptotically linear with influence func-
tions (¢1,pe) such that Ey[¢1¢7] and E,[¢2¢3] are continuous in the neighborhood of p. If Gy is

reqular and both Ey, )[7(%17’" Jr)] and Ep(y1z) [;j(%%l ﬁﬁ—'j—] are finite, then there ezists a function

a(x) : Z — R such that
, - 1
$1(z,y) = J5 uale,y; a0) — ZP@). (10)

Proof. Let (pn(z),pn(y|z)) be any LDGP. By Lemma 2, \/n(a, — ag) and v/n(1n, — 1) converge
to some constant vectors. Define two probability densities

truth  pon(vn) = H,{"zlp(:c,;,yi)ﬂylﬂp(iﬂg)’
LDGP pln(vn) = H?:lpn(xi’ yi)H?,:lp" (.’L‘;)

By asymptotic linearity, it holds that

Vild, — ag) = % ; (i, ys) \/— Z p2(x;) + 0p, (1)

By Lemma 5, p1,, is contiguous to pg,. Therefore, 0,(1) with po, is still 0,(1) with p1,. Further,
b1(xs, ys; ) converges to ¢1(x;, ¥i; ) under suitable smoothness assumptions. Similarly to ¢o.
Thus, under LDGP, we also have

1 « 1 &
Vb, — ag) = T 21 é1(xs, ;) + 7 Z ¢2(x}) + 0py, (1)

Using this, we have

\/ﬁ(&n - an) = \/"_i(afn - aO) - \/_( - Ot(]))
= %Z%(ﬂ%yz \/——ZW J)"'Opln( ) = Vn(an — ag))
i=1

= \/iﬁ Z (6r(@iw) — Ep[or(X. YY) (1)
Z - Ep,[02(X")]) (i)
\/ﬁzn:Epn [61(X,Y)] (i)
+ﬁ ZEM [p2(X")]  (iv)

—\/ﬁ(an ap)) (v)
+0p,,. (1). (11)



The left hand side /n(G, — o(pn)) has a limit distribution independent of LDGP because of
its regularity. Because ¢y — E,, ¢1 has zero mean and finite variance, the term (i) converges to
N(0, E,, [¢167]) by CLT. By the assumption, E,, [p1¢7] converges to E,[¢147]. As a result,
the term (i) converges to N(0, E,[¢147]) in’ distribution under LDGP. Similarly, the term (ii)
converges to N(0, Ep[¢2¢%]). Recalling that the term (i) and the term (ii) are statistically
independent, their sum is subject to N(0, Ep[p167 + 262 ]). The term (iii) is calculated as

=2 Eo(XY) = Vi [ pale.)or(o)dady
=1

Vi [ v (1 +Z=(@) + T (w)) o1z, y)dedy + O (7)
— [ 5e.9) (5u(@) +20(:0)) 61w, )dndy + O (-—}ﬁ-.) .

Il

Similarly, the term (iv) is calculated as
1 & 1
— Y E, (X)) = \/7/ NEAS x'd:v’:\/_’/ z' <1+———-6‘ z’) z")dz'
f; [B2(X) O FACLICD W [ p(a) (1+ Z=bu(a’) ) 2(e')

= % / ()60 (' o).

By the process of proof of Lemma 2, the term (v) is
Vilon o) = [ o)) + 90, )) 5 v )ty + 0 (=)
Because the right-hand side of Eq. (11) must be independent of LDGP, we have
0 = [ plew) (6afa) + ) @ )dedy + = [ )5 )on(a)i

~ [ b 5)(8nl0) +n(2,)) 5 ol ys a0y + O (%>

JEe (@1 (2,9) = TS ta(@, y; 00) + %@(w)) dedy
+ / p(@, v)m(z,y) ($1(z,y) — I3 ua(z,y; a0)) dady + o(1)

for any 6, and 4, sequences. The last term requires that ¢; — J - “u, must be a function of only
z. That is, there exists a function a(z) : 2~ — R? such that ¢ 1($ y) = J; 'ug +a(z). Therefore,
the second last term requires that

a(x) + —;—;(p‘g(x) =0.
D

We can obtain the similar theorem for nuisance influence function by the same way as
Theorem 6.

133
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Theorem 7 (semi-supervised setting). Let 7, be asymptotically linear with influence func-
tions (¢1,¢2) such that E,q, y)[d)lqﬁl} and Ep, (23] are continuous in the neighborhood of
p(x,y). If iy is regular, then ¢ must be a function of only x and

b1(z) + %mx) = J5 "y (@5 m0)- (12)

Proof. Only the difference is the term (v) in the proof of Theorem 6. From Lemma 2, Eq. (12)
is replaced with

0 - / P(,9) (4n(®) + (2, ) 61 (2, y)dzdy + —= / p(2')bn (') oo (&)t

~ [ 9(e)3u )75 (e m)dady + O (%)

n
= /p(zsy)o'n(a‘r) (dn(:v,y) 5 (3 m0) \/- )dfdy

+ /'pu,ym(a:,y)m (2, y)dzdy + o(1).

The last term requires that ¢; should be a function of only z. [

For a given u,, we call the influence function satisfying Eq. (12) a u,-proper NIF while any
function (v, v9) satisfying only

(@) [01(X)] = Epey[p2(X)] =

Both ¢1 and ¢ have the proper covariance matrix.

is just called an NIF. We show that some examples of influence function of & in this setting
satisfies the above conditions. Suppose that we are given uq(z, y; @) and uy,(x;n) = s,(z;n) by
which the solution ag and 7y is defined.

Example 1: supervised learning IF is given by
o1(z,y) = J3 'ua(z,y;0), ¢2 =0.
It is trivial that this IF satisfies Eq. (10).
Example 2: DRESS I IIF is given by
o1(x,y) = I3 ua (@, y;00) — J5 ' GanGry sn(@smo) , d2(2') = VI3 GanGrp sn(z'imo).
Therefore, we have

é1(z,y) + %aﬁz(w) = J; ua(z, y; @0).

Example 3: DRESS II IIF is given by

, 1 _ /
o1(z,y) = J; ua(z,yicn) — T;—J 'GanGrpy sn(a'sm0) ,
052(37/) = _‘\/“——J IGanGr_rr,lsn(x,§770)'

1L+

Therefore, we have

1
¢1(-’17,y) + W¢2($) = J(-;lua(a:,y;ao).



Let us see some examples where the nuisance estimator also satisfies Eq. (12).

DRESS I The first NIF is given by (¢1,¢2) = (J,ﬁ‘ls.,,(x; 7m0),0). Clearly, this satisfies the NIF
condition. The second NIF is given by (¢1,¢2) = (0, \/FJﬁ_ Lsp(2'3m0)). Tt is also trivial to
see the NIF condition is satisfied.

DRESS II The first NIF is the same as DRESS I. The second NIF is given by

r —
o).

(¢1,92) = (

oo
mGnnlsn(m;’ﬂo),

Substituting this into Eq. (12), we have

r . 1 T -
( G 1sn(:c;'r)o) + W;—%Gm}sn(m; 7]0)) = Gn,}.s,,(a:;no).

r4+1"™M

3.3 Decomposition of influence function

In this section, we show that any IIF in semi-supervised setting can be decomposed into some
IIF and NIFs. For this purpose, we provide a series of lemmas.

Lemma 8. Let (¢1,$2) be an interest influence function in semi-supervised setting. For any
interest influence function () (x,y), ¢5(x')), there exists a function p of only = such that
p: & — R
Ep(z)[p(X)] =0,

and (@1, ) is decomposed as

(¢15¢2) = (¢Il (rbIQ) + (p17p2)
where

(p1,p2) = (p, —VTp) . (13)

Proof. Define p(z) := ¢1(x) — ¢} (x). Because (¢} + p1, ¢} + p2) must satisfy Eq. (10), it must
hold that 1
(qb/l + pl) = J(;lua - ”\/—7(¢f2 + /)2)'

Because ¢ is an IIF, we have

1 1,
qué(x) +p) =J5 ug — ﬁ(% + p2).

(J(;lua -
Thus, we obtain p; + %pg = 0. To guarantee the finiteness of (p1, p2)’s covariance, it suffices
to show that for any z € R¢ 2T E[(¢1 — ¢;)(¢1 — ¢,)7]z is finite. Note that
2 El(en — $1)(01 = 01)T)z = 2T Elong] )2 + 2" Elg1(64) ]z = 2" Bl (91))z — 2T El¢h 9] .

Because E[¢1¢7] and E[¢}(#})7] are finite, the first and second terms are finite. As for the
remaining term, we can show the finiteness similarly by using Cauchy Schwartz inequality. O

From this lemma, it is immediate to see that such a pair (p1, p2) is neither IIF nor NIF
because it does not satisfy neither Eq. (10) nor Eq. (12).
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Assumption 1 (model enlargement). Assume that 4, is correctly specified with d' < d.
Then, we can enlarge the model up to d-dimension as

My = {g(a;n) = gla;m) exp(mT(z) — () |m € RY, m e R&Y  n = ,nd)T}

where (n) = log([ g(z;m) exp(nd T(x))dz). Clearly, this model also contains p(x) and has a
score function :

P 7 T 91o z
sulain) = (—@igf”—“) - [ atein X ELE D 4o 1) - [ g(:c;n)T(x)dw) .

Lemma 9. Assume that d < d'. Let p: & — R¢ such that E,[p(X)] = 0 and p has a finite
covariance matriz. Then, for any given full-rank matriz A € R | there isv : & — R such
that Ep[v(X)] = 0 and v has a proper covariance matriz and p(x) = Av(zx).

Proof. When d < d', let us prepare an arbitrary function vy : 2 — R¢ ~¢ such that E[v2(X)] = 0
and v, has a proper covariance matrix and linearly independent of p. Without loss of generality,
A is decomposed as A = [A; Ay] where A; € R4 is non-singular and Ay € (¢ =9, Define

n(z) = AT p(z) — AT  Agws ().

Then, v(z) := (1(z)T,v2(2)T)T. Tt is easy to see that

Av(z) = [A1 Ag] ( Z;g; ) = A1 (z) + Aan(z) = p(x) — Agva(x) + Asn(z) = p(z).

Clearly, Ep[v(z)] = 0. By construction, E[pp”] is proper because E[pp”] and E[vou]) are
finite and v(z) is linearly independent of each other. (|

Lemma 10. Let v(z) : Z — R? be a function of z such that Ep[v(X)] =0 and v(z) has
a proper covariance matriz. Then, for any 1o, there is up(x;n) such that

{Bun (X5m0)

v(z) = —Ep) ot

r un(;m0)

and
Ey[un(X:imo)] = 0.

Proof. Let V := Eyy[v(X)v(X )T]. By assumption, V is non-singular. Define
Co(z) =V lu(x).
This &(x) is a dual basis of v(x), i.e.,
Ev(X)o(X)T) = Ep(X)v(X) )V T=vVv =1

Let C be any fixed non-singular (d x d) matrix. Let further a : 2 — R¢ be a vector-valued
function such that each component is perpendicular to Span(v(z)). Using these, define

C(z;n) = exp ((a(z) — ()" (n — m)) C.
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We write the k-th row of C' and C(z;7n) as ¢k and cx(z;7)

cg cl('x;n);

C_ ca(z;m)
c=| 7|, Clan = :

cl ca(zn)T

By the chain rule of differential, we have
( )T dei(zn

T 6022:5 n

Oup(z;m)

onT :
V(:L‘)T 8(:5$’.r;rl)
Using these, define
un(z;n) = C(z;n)v(z).
First, noting that u,(z;n9) = Cv(z). we have
= CEpq)[v(X)] =

Ep ) [un (X3 1m0)]

Next, we calculate du,/dnT. From its definition

8Ck(w;7]> eXp(((L(iU) — y( )) (n— 7]0))CA( ( ) - D(T»T'

onT
Taking its expectation with respect to p(x) at 7 = 9, we can calculate the k-th row of
E[0u,(X;mn0)/0nT] as
By (v(X)Ter)(a(X) — 9(X))] = Ep( ) [(civ(X))(a(X) = 5(X))T]
= —c:%Ep(x) [I/(X)Ij(X)T] =—ctly=—ct.
Therefore, we have
Ouy(x;1m0)
P|—l_Z = _C.
[ onT ¢
As a result,
Ju, (X -1 _
P i) = —(=C) A O) = vl
O

_Ep(m) [ onT

Lemma 11 (scale decomposition). Let v(x) be an. influence function of 7,i.e

1 &
vVnr(fi—ng) = — v(x;) + op(1
Depending on which data set are used, its influence function for

for any data number n*.

Vn(f = ng) varies as written as
only labeled data (1,0) - v(x)
only unlabeled data  (0,/7) - v(x)
both labeled/unlabeled data (-l—r—r-, -13%) v(z)
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where (1,0)-v(z) denotes (v(x),0) for ezample. Next, consider a pair of function a-(1, —/7)-v(x)
where a is a some real number. We can decompose it into the above terms’ difference for some
constants:

1 (]-a _\/;)
-1 (1’ —\/;)

(1,0) — (0,/7)
(0,vr) — (1,0)

ril'(l’—‘/;) = (L0 (?ﬁr\—/fl)
‘7-i1'(1"ﬁ) - (r-{r—l’r\fl)_(l’o)
7-11'(1’_‘/;) - (711 r\-/l—_l) (0, v7)
—7'11'(1"\/;) = (0~ (r+1 r\fl)

where -v(x) is omitted in each term for simplicity.

Proof. When only the labeled data are used, it is trivial. When only the unlabeled data are
used, we have

V! (f — o) = -—% Z v(a}) + 0p(1)
j=1

Because /7vn/ = /n,
V(i = Z \/—' ) +0p(1

Similarly, when both the labeled data and unlabeled data are used, we have

1
Vn+ /(i) —no) = Z Iz+2 ) |+ op(1).

vn+n'

By multiplying v/n/v/n + n/,

Vit~ m) = =L fzxfml fzﬁu(x +op(1).

It is immediate to confirm the decomposition from the above results. O

We say that an influence function of & is a SIF if its influence function has the form
(J5 *ua(z,y; a0),0). Clearly, this corresponds to a some supervised estimator.

Theorem 12 (decomposition theorem). Assume that d < d'. Suppose that we are given an
interesting influence function (¢1(x,y), ¢2(z)). For any IIF (¢}, ¢%), any (dx d') full-rank matriz
A and nuisance parameter value ng, there exrist two nuisance influence functions associated with
10 such that (¢, d2) is decomposed as

(¢17¢?) = (d)/lagbi?)+A(Vl7V2) —A(V;,Ué). (14)
and two NIFs satisfy Eq. (15) in the proof.



Proof. By the series of previous lemmas, it is almost trivial. By Lemma 8 with an arbitrary IIF
(4}, ¢5)), there exists function p(z) such that E,[p(X)] = 0 and E,[p(X)p(X)T] < oo and

(d)l: (/)2) (¢1>@2) ( (.T), —\/r—p(,v)) :

By Lemma 9, for any full-rank (d x d') matrix A, there exists v(z) such that E,(z)[v(X)] =
and v has a proper covariance matrix. Hence, we have

(qblv(/’)Q) (d)ly(bZ) +A ( ) \/_V j))

Otherwise, by Lemma. 10, there exists u,(z;n) = C(z;n)v(x) with a given 79 such that

[dun (X;m0)

07] } UT]<X§ 770) = l/(l‘)

and
Eluy(X:m)] =0.
For any NIF (v{(x), vy (x)) associated with 1o and un(z;7), define
(1(2), 55(2)) 1= (@), ~V/7v(2)) + (v} (2), v ).
Then, they satisfy
(v, =Vrv) = (D1, 2) — (], V}). (15)
This pair of function (1, ) satisfies

vy (z) + %ﬁa(ﬂ) = v(z) +vi(z) + —= ( V() + vy(z)) = vi(z) + *\%Vﬁ(x) = J; "ty (2370)

by Theorem 7. This indicates that (771(x), U2(z)) is also another NIF. a

4 Construction of Estimating Equations

By the decomposition theorem, we know that any IIF consists of an IIF and two NIFs. Using
this fact, let us specify estimating equations yielding the estimator with the given IIF. We
immediately have the following corollary from the decomposition theorem:

Theorem. 13. In semi-supervised setting, suppose that we are given an interest function
(¢1, ¢2) of regular and asymptotically linear estimator é&. If the estimating function correspond-
ing to the supervised influence function is available (written as py ), there exist two estimating
functions p, and p,y such that the solution of the following equation

Zﬂa(ﬂ%,yi;Cv)f(w(l“iﬂ]:??')) = 0,
i=1

n n
Zun(x'iayiQTI)‘f'ZNn(x;?Tl) = 0,

n n’
> un@oysn) + Y () = 0. (16)
i=1 =1

has the given interest influence function. Here, f is any function such that f(1) = 1 and

Fy=1.
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Proof. Note that

of (w(zin,n'))
on
—-———————af(w(;,;,n’n)) = f'(w(@n,n))wlz;n,n)sp(zin’),

= f'(w(x;n,n' )w(z;n,1') sy (25 1),

By Taylor-expansion around (ag, 70,70), we have

ez, yis
0 = ZUQ Ly, Yis 050 Z"_ﬂn—(az;y_o—)'\/ﬁ(a—ao)

L. T
+; ; talTi, s ao) (df(u (z(.;;?m’ 770))) V(i —mo)

1 il 6 Ls k] T ~f
+fZ;La(xi,yi;ao) ( f(w(a(;ﬁ;r/o 770))) V(i — o)
=1

= \/—Z,ua('llayz 060) Zgﬁa(j;la"—%l—g(ﬁ\/ﬁ(&—ao)
1

i=
n

1 5
—Zua i, Yi; 00 sp(i;m0) T V(A — m0) — _Z,Ula(Tz\yzaaO)Sn(xzu’IO) V(i = 10)

i=1

- ) A
- % Z ta(Ti, yis a0) — Jav/n(& — ag) + Gan V(' —no) — Ganv/n(H — mo).-
" i=1
Therefore, we have
V(& — a) Z I3 Hal@i, 953 00) + I3 Canv/nliy = m) = Iz ' Canv/n(h — ).

By Theorem 12 with A = J;Gay, 7o = 0 and (8}, ¢5) = J; 'Gan, (¢1,62) can be decomposed
as

(¢17 d)Z) = (ngde 0) + A(Vly V?) - A(VL Vé)
where (1/1, vo) and (v}, v}) are influence functions associated with estimating functions un(z;7n) =
exp(—nTo(z))v(z) and up(x;n) = Vrexp(—n To(x))v(z). This form is equal to the IIF given
by solving Eq. (16). O

Using this theorem, we can recover the estimating equation of DRESS I and DRESS II
from their influence functions. However, their recovery is not unique. We cannot guarantee the
recovery of the original estimating equations without any prior knowledge about them.

5 Effective and Efficient Class of Influence Function and Its As-
sociated Estimators

We derive the most efficient influence functions associated with regular and asymptotic linear
estimators.
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Theorem 14. Let (¢1, ¢2) be an arbitrary interest influence function of RAL estimator. The
IIF (1, ¢2) improves (overcomes or is equal to) the supervised influence function J3 Yug(z, ;@)
with respect to the asymptotic variance of the associated estimator if and only if

0 < %(ngEp(m)[ﬂa(X;ao)(bz(X)T}—i—Ep(x)[qig(X)ﬂa(X;ag)T}Jd_T)

_ (1 + %) Ep(ay62(X)2(X)].

where Ua(z; @) i= Epyyjz)[ua(X,Y;a)| X = z].
Proof. For any IIF (¢1,¢2), the asymptotic covariance of its associated estimator is calculated
as

Avar(a) = Epy)(01(X,Y)d1 (X, Y)T] + By [d2(X ) (X')T]

E [(ngua(X,Y;cm) - %‘1’2(){)) (ngu“(X’Y;(m) \/JZ)2 X)>TJ

+Ep(an[d2(X)da(X")T]
1 1
= I3 GaadiT = =B [0 ualX, Yia0) I 7] = B I3 ua(X, Vi a0)0a(X)]

By [62(X)82(X)] + By 02X )n (X))

I

where Avar(&) is defined as the variance of the limit distribution of /n(& — «p). Because the
first term is just the asymptotic covariance of supervised estimator, we obtain the statement. [J

Theorem 15. The most efficient interest influence function is

, - 1
(@1:‘;’52) = (Ja 1“(1 - 7‘—4——1J& 1ucv(l'§050) \_{_—1 J— Ua(J/ ao))

Proof. Let z € R¢ be any real vector. Define

H(go) = ZT<J§1E[%(X;CYO)¢2(X)T]+E[¢2(X)ﬁa(X;ao)T]J5T
- Blga(X)0a(X )])
= E[zTngua(X:ao)m(X)Tz+zT¢2(X>aa<X;ao> JiTz Tj;lz%z( )po(X)2

= F [QZTngﬂa(X;Cko)q')g(X)T 7’\—/%-7_'1 (ZT@Q(X))Q} .

By variation method with respect to ¢2(x), we have

(2{-’1] Lo (X ag) — 2701 (2 T¢2(X))> 2=0

NG

for any z. Therefore, ¢9 is

T
7'{1 Jd IUQ(X; Ozo).



142

In this case, the asymptotic covariance is calculated as follows. Let
Ga = By [tia(X; a0)ta(X; a0)T).

It is straightforward to see that

E[uil] = Elu,al]=Ga
-1 . 1 ry| _ __1 I L R T S o
E[Jd ua(X,Y; ap) <—ﬁ¢2(X) )] = H_lE[Jd uaihJ5T| = ——J5'Cal;

#|(en) (o) ] - e o] - s e

Using these, we have

2
Elp1¢1] + El¢2#3] = J3'GaaJy” + (— A +( vr ) )ngéaa o~

6 Conclusion

We specified the set of all possible influence functions of regular and asymptotic linear semi-
supervised estimator under the conditional misspecification. We also showed that DRESS type
estimating equation is universal because, for any given influence function of regular and asymp-
totic linear estimator, this type of estimating equation can yield an estimator having the given
influence function. However, this construction is less useful. In real situations, we are not given
a fixed influence function but given an influence function as a functional of joint distribution. It
is valuable to extend our result to this case.
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