Global stability and influence of feedback controls of delayed Lotka-Volterra systems with patch structure

室谷義昭 (早稲田大学·理工学術院)

Yoshiaki Muroya (Department of Mathematics, Waseda University)

1 Introduction

Motivated by our attention to recent works of Chen [1], Li et al. [5] and Faria and Muroya [3]) for Lotka-Voltera systems with feedback controls and Takeuchi et al. [8] and Faria [2] for Lotka-Voltera systems with patch structure, we investigate the global dynamics for the following n-species Lotka-Voltera system with infinite delays, feedback controls and patch structure.

$$\begin{cases} x_{i}'(t) = x_{i}(t) \left(b_{i} - \mu_{i} x_{i}(t) - \sum_{j=1}^{n} a_{ij} \int_{0}^{+\infty} K_{ij}(s) x_{j}(t-s) ds - c_{i} u_{i}(t) \right) \\ + \sigma_{i} u_{i}(t) + \sum_{j=1}^{n} \left(\alpha_{ij} \int_{0}^{+\infty} K_{ij}(s) x_{j}(t-s) ds - \alpha_{ji} x_{i}(t) \right), \\ u_{i}'(t) = -e_{i} u_{i}(t) + d_{i} x_{i}(t), \quad i = 1, 2, \dots, n, \end{cases}$$

$$(1.1)$$

with initial conditions of system (1.1):

$$\begin{cases} x_i(\theta) = \varphi_i(\theta), \ u_i(\theta) = \psi_i(\theta), \ \theta \in (-\infty, 0], \\ \varphi_i(0) > 0, \ \psi_i(0) > 0, \ i = 1, 2, \dots, n, \end{cases}$$
 (1.2)

where μ_i , $e_i > 0$, c_i d_i , $\sigma_i \ge 0$, $\alpha_{ij} \ge 0$ and b_i , $a_{ij} \in \mathbf{R}$, and φ_i , ψ_i , i, j = 1, 2, ..., n are non-negative and bounded continuous functions on $(-\infty, 0]$.

Hear, $x_i(t)$ (i = 1, 2, ..., n) denotes the number of species x in the patch i, $\gamma_{ij} \geq 0$ denotes the per capita death rate for the species during dispersion from patch j to i, b_i is the intrinsic rate for the species in patch i, μ_i represents the regulation and α_{ij} is the dispersal coefficient of the species from patch j to patch i, $u_i(t)$ denotes the feedback control variable and the kernels $K_{ij}:[0,+\infty) \to [0,+\infty)$ are L^1 functions, normalized so that $\int_0^{+\infty} K_{ij}(s) ds = 1$, for i,j = 1,2,...,n. For the species to disperse from patch j to i in the model, for simplicity, we neglect the per capita death rate for the species during dispersion from patch j to i (cf. Takeuchi et al. [8]).

The unique solution of (1.1) with initial conditions (1.2) is expressed by $(\mathbf{x}(t), \mathbf{u}(t)) = (\mathbf{x}(t;\varphi), \mathbf{u}(t;\psi))$ with $\mathbf{x}(t) = (x_1(t), x_2(t), \dots, x_n(t))$ and $\mathbf{u}(t) = (u_1(t), u_2(t), \dots, u_n(t))$.

Moreover, we suppose that for all i, the linear operators defined by $L_{ii}(\varphi_i) = \int_0^{+\infty} K_{ii}(s)\varphi_i(-s)ds$, for $\varphi_i: (-\infty, 0] \to \mathbf{R}$ bounded, are non-atomic at zero, which amounts to have $K_{ii}(0) = K_{ii}(0^+)$, and

an
$$n \times n$$
 matrix $[\alpha_{ij}]$ is irreducible. (1.3)

Put

$$\delta_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j, \end{cases} \quad \tilde{\alpha}_{ii} = \sum_{j=1}^{n} (1 - \delta_{ji}) \alpha_{ji}, \ i = 1, 2, \dots, n,$$
 (1.4)

and

$$M(0) = \begin{bmatrix} b_1 + \frac{\sigma_1 d_1}{e_1} - \tilde{\alpha}_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & b_2 + \frac{\sigma_2 d_2}{e_2} - \tilde{\alpha}_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n1} & \alpha_{n2} & \cdots & b_n + \frac{\sigma_n d_n}{e_n} - \tilde{\alpha}_{nn} \end{bmatrix}.$$
(1.5)

Let the stability modulus of an $n \times n$ matrix M, denoted by s(M), be defined by $s(M) := \max\{Re\lambda : \lambda \text{ is an eigenvalue of } M\}$. If M has nonnegative off-diagonal elements and is irreducible, then s(M) is a simple eigenvalue of M with a (component-wise) positive eigenvector. A positive equilibrium $E^* = (\mathbf{x}^*, \mathbf{u}^*)$ of (1.1) with $\mathbf{x}^* = (x_1^*, x_2^*, \dots, x_n^*)$ and $\mathbf{u}^* = (u_1^*, u_2^*, \dots, u_n^*)$, satisfies the following equations:

$$\begin{cases} x_i^* \left((b_i - \tilde{\alpha}_{ii}) - \mu_i x_i^* - \sum_{j=1}^n a_{ij} x_j^* - c_i u_i^* \right) + \sigma_i u_i^* + \sum_{j=1}^n (1 - \delta_{ij}) \alpha_{ij} x_j^* = 0, \\ -e_i u_i^* + d_i x_i^* = 0, \quad i = 1, 2, \dots, n. \end{cases}$$
(1.6)

Since $u_i^* = \frac{d_i}{e_i} x_i^*$, i = 1, 2, ..., n, the positive equilibrium of (1.1) is the solution $\mathbf{x} = (x_1, x_2, ..., x_n)$ of the system $\mathbf{F}(\mathbf{x}) = \mathbf{0}$ in \mathbf{R}^n , where

$$\begin{cases}
\mathbf{F}(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_n(\mathbf{x}))^T, & \mathbf{x} = (x_1, x_2, \dots, x_n)^T, \\
f_i(x_1, x_2, \dots, x_n) \equiv -\left[x_i\left\{\left(b_i + \frac{\sigma_i d_i}{e_i} - \tilde{\alpha}_{ii}\right) - \left(\mu_i + a_{ii} + \frac{c_i d_i}{e_i}\right)x_i - \sum_{j=1}^n (1 - \delta_{ij})a_{ij}x_j\right\} \\
+ \sum_{j=1}^n (1 - \delta_{ij})\alpha_{ij}x_j\right] = 0, \quad i = 1, 2, \dots, n, \\
\frac{\partial f_i(x_1, x_2, \dots, x_n)}{\partial x_j} \\
= \begin{cases}
-\left(b_i + \frac{\sigma_i d_i}{e_i} - \tilde{\alpha}_{ii}\right) + 2\left(\mu_i + a_{ii} + \frac{c_i d_i}{e_i}\right)x_i, & \text{for } j = i, \quad i = 1, 2, \dots, n, \\
-(\alpha_{ij} - x_i a_{ij}), & \text{for } j \neq i, \quad i = 1, 2, \dots, n,
\end{cases} \tag{1.7}$$

where the Fréchet derivative of $\mathbf{F}(\mathbf{x})$ is $\mathbf{F}'(\mathbf{x}) = \left[\frac{\partial f_i(x_1, x_2, \dots, x_n)}{\partial x_j}\right]$. Hereafter, we use the ordering of vectors and matrices in \mathbf{R}^n as the usual component-wise one in \mathbf{R}^n .

Consider a solution $(\bar{\mathbf{x}}(t), \bar{\mathbf{u}}(t)) = (\bar{x}(t; \varphi), \bar{u}(t; \psi))$ of the auxiliary cooperative system with $\bar{\mathbf{x}}(t) = (\bar{x}_1(t), \bar{x}_2(t), \dots, \bar{x}_n(t))$ and $\bar{\mathbf{u}}(t) = (\bar{u}_1(t), \bar{u}_2(t), \dots, \bar{u}_n(t))$, given by

$$\begin{cases}
\bar{x}_{i}'(t) = \bar{x}_{i}(t) \left((b_{i} - \tilde{\alpha}_{ii} - \alpha_{ii}) - \mu_{i}\bar{x}_{i}(t) + \sum_{j=1}^{n} |a_{ij}^{-}| \int_{0}^{+\infty} K_{ij}(s)\bar{x}_{j}(t-s)ds \right) \\
+ \sigma_{i}\bar{u}_{i}(t) + \sum_{j=1}^{n} \alpha_{ij} \int_{0}^{+\infty} K_{ij}(s)\bar{x}_{j}(t-s)ds, \\
\bar{u}_{i}'(t) = -e_{i}\bar{u}_{i}(t) + d_{i}\bar{x}_{i}(t), \quad i = 1, 2, \dots, n.
\end{cases} (1.8)$$

with the same initial conditions

$$\begin{cases}
\bar{x}_i(\theta) = \varphi_i(\theta), \ \bar{u}_i(\theta) = \psi_i(\theta), \ \theta \in (-\infty, 0], \\
\varphi_i(0) > 0, \ \psi_i(0) > 0, \ i = 1, 2, \dots, n,
\end{cases}$$
(1.9)

where we use the notations $a_{ij}^+ \equiv \frac{|a_{ij}| + a_{ij}}{2} \geq 0$ and $|a_{ij}^-| = \frac{|a_{ij}| - a_{ij}}{2} \geq 0, i, j = 1, 2, \dots, n$.

For $n \times n$ matrices $\tilde{A}^0 = [\tilde{a}_{ij}^0]$, $A^0 = [a_{ij}^0]$ and $A = [a_{ij}]$ and a positive vector $\mathbf{x} = (x_1, x_2, \dots, x_n)$, put $n \times n$ matrices $\hat{M}^0(\mathbf{x}) = [\delta_{ij} x_i \mu_i - (x_i |\tilde{a}_{ij}^0| + x_j |\tilde{a}_{ji}^0|)/2]$, $\hat{M}^0(\mathbf{x}) = [\delta_{ij} x_i \mu_i - (x_i |a_{ij}^0| + x_j |a_{ji}^0|)/2]$ and $\hat{M}(\mathbf{x}) = [\delta_{ij} x_i \mu_i - (x_i |a_{ij}^0| + x_j |a_{ji}^0|)/2]$, respectively.

In this paper, we obtain the following result.

Theorem 1.1 Assume that $s(M(0)) \leq 0$. If there exists an $n \times n$ matrix $\tilde{A}^0 = [\tilde{a}_{ij}^0]$ such that

$$\tilde{a}_{ij}^0 \le a_{ij}, \ i, j = 1, 2, \dots, n,$$
 (1.10)

and for the positive left eigenvector $\tilde{\omega} = (\tilde{\omega}_1, \tilde{\omega}_2, \dots, \tilde{\omega}_n)$ of M(0), there exist positive constants $(\tilde{\theta}_{i1}, \tilde{\theta}_{i2}, \dots, \tilde{\theta}_{in})$ with $\tilde{\theta}_{ii} = 1, i = 1, 2, \dots, n$ such that

$$\tilde{\omega}_{i}(\mu_{i} - |\tilde{a}_{ii}^{0}|) \ge \sum_{j=1}^{n} (1 - \delta_{ij}) \frac{1}{2} \left(\tilde{\theta}_{ij} \tilde{\omega}_{i} |\tilde{a}_{ij}^{0}| + \frac{1}{\tilde{\theta}_{ji}} \tilde{\omega}_{j} |\tilde{a}_{ji}^{0}| \right), \ i = 1, 2, \dots, n,$$
(1.11)

then the trivial solution $E^0 = (\mathbf{0}, \mathbf{0})$ is globally asymptotically stable.

In particular, if $a_{ij} \geq 0$, i, j = 1, 2, ..., n, then for $s(M(0)) \leq 0$, the trivial solution $E^0 = (\mathbf{0}, \mathbf{0})$ is globally asymptotically stable.

Note that if $a_{ij} \geq 0$, i, j = 1, 2, ..., n, then for $s(M(0)) \leq 0$, the trivial solution $E^0 = (\mathbf{0}, \mathbf{0})$ is globally asymptotically stable (see Lemma 2). If an $n \times n$ matrix $\hat{M}^0(\tilde{\omega}) = [\delta_{ij}\tilde{\omega}_i\mu_i - (\tilde{\omega}_i|\tilde{a}_{ij}^0| + \tilde{\omega}_j|\tilde{a}_{ij}^0|)/2]$ is diagonally dominant, then for $(\tilde{\theta}_{i1}, \tilde{\theta}_{i2}, ..., \tilde{\theta}_{in}) = (1, 1, ..., 1)$,

 $i = 1, 2, \dots, n, (1.11)$ holds.

Theorem 1.2 Assume that s(M(0)) > 0 and suppose that

$$\omega_i \left(\mu_i \omega_i - \sum_{j=1}^n |a_{ij}^-| \omega_j \right) > 0, \ i = 1, 2, \dots, n.$$
 (1.12)

Then, there exists a positive equilibrium $\bar{E}^* = (\bar{\mathbf{x}}^*, \bar{\mathbf{u}}^*)$ of the auxiliary cooperative system (1.8) with $\bar{\mathbf{x}}^* = (\bar{x}_1^*, \bar{x}_2^*, \dots, \bar{x}_n^*)$ and $\bar{\mathbf{u}}^* = (\bar{u}_1^*, \bar{u}_2^*, \dots, \bar{u}_n^*)$ which is globally asymptotically stable and satisfy

$$\lim \sup_{t \to +\infty} x_i(t) \le \bar{x}_i^*, \quad and \quad \lim \sup_{t \to +\infty} u_i(t) \le \bar{u}_i^*, \quad i = 1, 2, \dots, n, \tag{1.13}$$

and

$$\mathbf{F}(\bar{\mathbf{x}}^*) = \left[\bar{x}_i^* \left\{ \left(a_{ii}^+ + \frac{c_i d_i}{e_i} \right) \bar{x}_i^* + \sum_{j=1}^n (1 - \delta_{ij}) a_{ij}^+ \bar{x}_j^* \right\} \right] \ge \mathbf{0}.$$
 (1.14)

(i) If

$$\begin{cases} \alpha_{ij} > 0, & \text{for any } i, j = 1, 2, \dots, n \text{ such that } a_{ij}^{+} > 0, \\ \sigma_{i} > 0, & \text{for any } i = 1, 2, \dots, n \text{ such that } c_{i} > 0, \text{ and} \\ (\mu_{i} + \frac{c_{i}d_{i}}{e_{i}})\omega_{i} + \sum_{j=1}^{n} a_{ij}\omega_{j} > 0, & \text{for any } i = 1, 2, \dots, n, \end{cases}$$

$$(1.15)$$

then the system (1.1) is permanent and

$$\min_{1 \leq i \leq n} \liminf_{t \to +\infty} (x_{i}(t)/\omega_{i})$$

$$\geq \hat{\underline{x}} \equiv \min \left\{ \left(\min_{\substack{a_{ij}^{+} > 0, \ i,j \in \{1,2,\dots,n\}}} \frac{\alpha_{ij}}{\omega_{i}a_{ij}^{+}} \right), \left(\min_{\substack{c_{i} > 0, \ i \in \{1,2,\dots,n\}}} \frac{\sigma_{i}}{\omega_{i}c_{i}} \right), \left(\min_{\substack{1 \leq i \leq n}} \frac{\sigma_{i}}{\omega_{i}c_{i}} - \tilde{\alpha}_{ii})\omega_{i} + \sum_{j=1}^{n} (1 - \delta_{ij})\alpha_{ij}\omega_{j}} \right) \right\}, \tag{1.16}$$

where $\omega = (\omega_1, \omega_2, \dots, \omega_n)$ is a positive eigenvector corresponding to the spectral radius $\rho(M(0)) = s(M(0)) > 0$ which satisfies

$$\left(b_i + \frac{\sigma_i d_i}{e_i} - \tilde{\alpha}_{ii}\right) \omega_i + \sum_{j=1}^n (1 - \delta_{ij}) \alpha_{ij} \omega_j > 0, \quad i = 1, 2, \dots, n.$$
 (1.17)

(ii) In addition to (i), if

$$\alpha_{ij} - \bar{x}_i^* a_{ij}^+ \ge 0, \ i, j = 1, 2, \dots, n,$$
 (1.18)

then there exists a positive equilibrium $E^* = (\mathbf{x}^*, \mathbf{u}^*)$ of (1.1) such that (1.6) holds. (iii) Moreover, if there exists an $n \times n$ matrix $A^0 = [a_{ij}^0]$ such that

$$a_{ij}^{0} \leq a_{ij}, \ \alpha_{ij} - x_{i}^{*}(a_{ij} - a_{ij}^{0}) \geq 0, \ i, j = 1, 2, \dots, n, \ and \ [\alpha_{ij} - x_{i}^{*}(a_{ij} - a_{ij}^{0})] \ is \ irreducible,$$

$$(1.19)$$

and for the positive vector $\mathbf{v} = (v_1, v_2, \dots, v_n)$ defined by

$$\sum_{j=1}^{n} v_{j} (1 - \delta_{ji}) \{ \alpha_{ji} - x_{j}^{*} (a_{ji} - a_{ji}^{0}) \} x_{i}^{*} = v_{i} \sum_{j=1}^{n} (1 - \delta_{ij}) \{ \alpha_{ij} - x_{i}^{*} (a_{ij} - a_{ij}^{0}) \} x_{j}^{*}, \ i = 1, 2, \dots, n,$$

$$(1.20)$$

there exist positive constants $(\theta_{i1}, \theta_{i2}, \dots, \theta_{in})$ with $\theta_{ii} = 1, i = 1, 2, \dots, n$ such that

$$v_i(\mu_i - |a_{ii}^0|) \ge \sum_{j=1}^n (1 - \delta_{ij}) \frac{1}{2} \left(\theta_i v_i |a_{ij}^0| + \frac{1}{\theta_j} v_j |a_{ji}^0| \right), \ i = 1, 2, \dots, n,$$
 (1.21)

then the positive equilibrium E^* of (1.1) is globally asymptotically stable.

Note that if an $n \times n$ matrix $\hat{M}^0(\mathbf{v}) = [\delta_{ij}v_i\mu_i - (v_i|a_{ij}^0| + v_j|a_{ji}^0|)/2]$ is diagonally dominant, then for $(\theta_{i1}, \theta_{i2}, \dots, \theta_{in}) = (1, 1, \dots, 1), i = 1, 2, \dots, n, (1.21)$ holds.

Theorem 1 implies that concerning the global stability of the positive equilibrium of (1.1), there is no influence of the feedback controls.

If we choose the $n \times n$ matrix $A^0 = [a_{ij}^0]$ in (iii) of Theorem 1, then we obtain the following corollaries.

(a) First, we choose $a_{ij}^0 = a_{ij}^-, i, j = 1, 2, ..., n$.

Corollary 1.1 Assume that s(M(0)) > 0 and the conditions of (i)-(ii) of Theorem 1 hold. If an $n \times n$ matrix $[\alpha_{ij} - x_i^* a_{ij}^+]$ is irreducible and for a positive vector $\mathbf{v} = (v_1, v_2, \ldots, v_n)$ such that

$$\sum_{j=1}^{n} v_j(\alpha_{ji} - x_j^* a_{ji}^+) = v_i \sum_{j=1}^{n} (\alpha_{ij} - x_i^* a_{ij}^+), \quad i = 1, 2, \dots, n,$$
(1.22)

there exist positive constants $(\theta_{i1}, \theta_{i2}, \dots, \theta_{in})$ with $\theta_{ii} = 1, i = 1, 2, \dots, n$ such that

$$v_i(\mu_i - |a_{ii}^-|) \ge \sum_{j=1}^n (1 - \delta_{ij}) \frac{1}{2} \left(\theta_{ij} v_i |a_{ij}^-| + \frac{1}{\theta_{ji}} v_j |a_{ji}^-| \right), \quad i = 1, 2, \dots, n,$$
 (1.23)

then the positive equilibrium E^* of (1.1) is globally asymptotically stable. In particular, if for an $n \times n$ matrix $A^- = [a_{ij}^-]$, $\hat{M}^-(\mathbf{v}) = [\delta_{ij}v_i\mu_i - (v_i|a_{ij}^-| + v_j|a_{ji}^-|)/2]$ is diagonally dominant, then for $(\theta_{i1}, \theta_{i2}, \dots, \theta_{in}) = (1, 1, \dots, 1), i = 1, 2, \dots, n, (1.23)$ holds. Corollary 1.2 If $c_i = \sigma_i = 0$, $\mu_i - |a_{ii}^-| \ge 0$, $a_{ij} = 0$, $j \ne i$, i = 1, 2, ..., n, then for s(M(0)) > 0, there exists a unique positive equilibrium of (1.1) which is globally asymptotically stable.

The models of Takeuchi et al. [8, Theorem 2.1] and Faria [2, Theorem 3.5] satisfies this condition.

(b) Second, we choose $a_{ij}^0 = 0, i, j = 1, 2, ..., n$.

Corollary 1.3 Assume that s(M(0)) > 0 and (1.15) hold. If $a_{ij} \geq 0$, $\alpha_{ij} - \bar{x}_i^* a_{ij} \geq 0$, i, j = 1, 2, ..., n and an $n \times n$ matrix $[\alpha_{ij} - \bar{x}_i^* a_{ij}]$ is irreducible, then there exists a positive equilibrium $E^* = (\mathbf{x}^*, \mathbf{u}^*)$ of (1.1) which is globally asymptotically stable.

(c) Third, we choose $a_{ij}^0 = a_{ij}, i, j = 1, 2, ..., n$.

Corollary 1.4 Assume that (1.12) and (1.15) hold. Then, if $s(M(0)) \leq 0$ and for the positive left eigenvector $\tilde{\omega}$ of M(0), an $n \times n$ matrix $\hat{M}(\tilde{\omega})$ is diagonally dominant, then the trivial solution $E^0 = (\mathbf{0}, \mathbf{0})$ of (1.1) is globally asymptotically stable, and if s(M(0)) > 0 and $n \times n$ matrices $\hat{M}(\omega)$ and $\hat{M}(\mathbf{v})$ for the positive eigenvector ω of M(0) and the positive vector $\mathbf{v} = (v_1, v_2, \ldots, v_n)$ defined by (1.20), are diagonally dominant, then there exists a positive equilibrium $E^* = (\mathbf{x}^*, \mathbf{u}^*)$ of (1.1) which is globally asymptotically stable.

Next, consider the case that $\mu_i = c_i = \sigma_i = 0$ and $a_{ij} \geq 0$, i, j = 1, 2, ..., n of (1.1).

Then, (1.1) becomes

$$\begin{cases}
x_i'(t) = x_i(t) \left(b_i - \sum_{j=1}^n a_{ij} \int_0^{+\infty} K_{ij}(s) x_j(t-s) ds \right) \\
\sum_{j=1}^n \left(\alpha_{ij} \int_0^{+\infty} K_{ij}(s) x_j(t-s) ds - \alpha_{ji} x_i(t) \right).
\end{cases} (1.24)$$

Corollary 1.5 For (1.24), assume that there exists a positive vector $\bar{\mathbf{x}}^0 = (\bar{x}_1^0, \bar{x}_2^0, \dots, \bar{x}_n^0)$

such that

$$M(0)(\bar{\mathbf{x}}^0)^T \le \mathbf{0}, \ \alpha_{ij} - \bar{x}_i^0 a_{ij} \ge 0, \ i, j = 1, 2, \dots, n,$$
 (1.25)

and

$$-b_i + \sum_{j=1}^n \bar{x}_j^0 a_{ji} > 0, \ i = 1, 2, \dots, n.$$
 (1.26)

If $s(M(0)) \leq 0$, then the trivial equilibrium $\tilde{\mathbf{E}}^0 = (0,0,\ldots,0)$ of (1.24) is globally asymptotically stable, and if s(M(0)) > 0, then there exists a positive equilibrium $\tilde{\mathbf{E}}^* = \mathbf{x}^* = (x_1^*, x_2^*, \ldots, x_n^*)$ of (1.24) which is globally asymptotically stable. Moreover, (1.24) is equivalent to a multi-group SI epidemic model (see Kuniya and Muroya [4]).

Note that $\tilde{R}_0 > 1$ is equivalent to s(M(0)) > 0 and $\tilde{R}_0 \le 1$ is equivalent to $s(M(0)) \le 0$.

2 Global stability for $s(M(0)) \leq 0$

We first give a basic result on the positiveness and the auxiliary cooperative system (1.8).

Lemma 2.1 For system (1.1) with initial conditions (1.2), there exists a unique solution $(\mathbf{x}(t), \mathbf{u}(t)) = (\mathbf{x}(t;\varphi), \mathbf{u}(t;\psi))$ with $\mathbf{x}(t) = (x_1(t), x_2(t), \dots, x_n(t))$ and $\mathbf{u}(t) = (u_1(t), u_2(t), \dots, u_n(t))$ which satisfies $x_i(t) > 0$, for any $i = 1, 2, \dots, n$, and t > 0. For the solution $(\bar{\mathbf{x}}(t), \bar{\mathbf{u}}(t)) = (\bar{x}(t;\varphi), \bar{u}(t;\psi))$ of the auxiliary cooperative system (1.8) with same initial conditions (1.2), $\bar{\mathbf{x}}(t) = (\bar{x}_1(t), \bar{x}_2(t), \dots, \bar{x}_n(t))$ and $\bar{\mathbf{u}}(t) = (\bar{u}_1(t), \bar{u}_2(t), \dots, \bar{u}_n(t))$, it holds $x_i(t) \leq \bar{x}_i(t)$, $u_i(t) \leq \bar{u}_i(t)$, for any $i = 1, 2, \dots, n$, $t \geq 0$. Lemma 2.2 For $s(M(0)) \leq 0$, if there exists an $n \times n$ matrix $\tilde{A}^0 = [\tilde{a}_{ij}^0]$ such that (1.10) and (1.11) hold, then the trivial solution $E^0 = (\mathbf{0}, \mathbf{0})$ is globally asymptotically stable. In particular, if $a_{ij} \geq 0$, $i, j = 1, 2, \dots, n$, then for $s(M(0)) \leq 0$, the trivial solution $E^0 = (\mathbf{0}, \mathbf{0})$ is globally asymptotically stable.

Proof of Theorem 1.2 By Lemma 2.2, we obtain Theorem 1.1.

3 Basic results on the global stability for s(M(0)) > 0

Lemma 3.1 If s(M(0)) > 0 and (1.12) holds, then there exists a unique positive equilibrium $\bar{E}^* = (\bar{\mathbf{x}}^*, \bar{\mathbf{u}}^*)$ of (1.8) with $\bar{\mathbf{x}}^* = (\bar{x}_1^*, \bar{x}_2^*, \dots, \bar{x}_n^*)$ and $\bar{\mathbf{u}}^* = (\bar{u}_1^*, \bar{u}_2^*, \dots, \bar{u}_n^*)$ which is globally asymptotically stable and (1.13) and (1.14) hold.

Lemma 3.2 If s(M(0)) > 0 and (1.15) are satisfied, then the system (1.1) is permanent and (1.16) holds.

Lemma 3.3 Assume that s(M(0)) > 0 and (1.12) hold, then there exists a positive equilibrium $\bar{E}^* = (\bar{\mathbf{x}}^*, \bar{\mathbf{u}}^*)$ of (1.8) with $\bar{\mathbf{x}}^* = (\bar{x}_1^*, \bar{x}_2^*, \dots, \bar{x}_n^*)$ and $\bar{\mathbf{u}}^* = (\bar{u}_1^*, \bar{u}_2^*, \dots, \bar{u}_n^*)$ which satisfy (1.13). Moreover, if (1.18) hold. Then, the system $\mathbf{F}(\mathbf{x}) = \mathbf{0}$ has a positive solution $\mathbf{x}^* = (x_1^*, x_2^*, \dots, x_n^*)$ in $0 < x_i \leq \bar{x}_i^*$, $i = 1, 2, \dots, n$ which is equivalent to that (1.1) has "at least" one positive equilibrium $E^* = (\mathbf{x}^*, \mathbf{u}^*)$.

Lemma 3.4 If an $n \times n$ matrix $[\alpha_{ij} - x_i^*(a_{ij} - a_{ij}^0)]$ is irreducible, then the system (1.20) has a positive solution (v_1, v_2, \dots, v_n) defined by $(v_1, v_2, \dots, v_n) = (C_{11}, C_{22}, \dots, C_{nn})$, where $\tilde{\beta}_{ij} = \{\alpha_{ij} - x_i^*(a_{ij} - a_{ij}^0)\}x_j^*$, $1 \le i, j \le n$, and

$$\tilde{\mathbf{B}} = \begin{bmatrix} \sum_{j \neq 1} \tilde{\beta}_{1j} & -\tilde{\beta}_{21} & \cdots & -\tilde{\beta}_{n1} \\ -\tilde{\beta}_{12} & \sum_{j \neq 2} \tilde{\beta}_{2j} & \cdots & -\tilde{\beta}_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ -\tilde{\beta}_{1n} & -\tilde{\beta}_{2n} & \cdots & \sum_{j \neq n} \tilde{\beta}_{nj} \end{bmatrix},$$

and C_{ii} denotes the cofactor of the i-th diagonal entry of $\tilde{\mathbf{B}}$, $1 \leq i \leq n$.

4 Global stability of the positive equilibrium for s(M(0)) > 0

Proof of Theorem 1.2 Assume that s(M(0)) > 0 and suppose that (1.12) holds. Then, by Lemmas 2.1 and 3.1, there exists a positive equilibrium $\bar{E}^* = (\bar{\mathbf{x}}^*, \bar{\mathbf{u}}^*)$ of the auxiliary cooperative system (1.8) with $\bar{\mathbf{x}}^* = (\bar{x}_1^*, \bar{x}_2^*, \dots, \bar{x}_n^*)$ and $\bar{\mathbf{u}}^* = (\bar{u}_1^*, \bar{u}_2^*, \dots, \bar{u}_n^*)$ which is globally asymptotically stable and satisfy (1.13) and (1.14).

- (i) Suppose that (1.15) holds. Then, by Lemma 3.2, system (1.1) is permanent and (1.16) holds.
- (ii) Suppose that in addition to (i) and (ii), (1.18) holds. Then, by Lemma 3.3 there exists a positive equilibrium $E^* = (\mathbf{x}^*, \mathbf{u}^*)$ of (1.1) with $\mathbf{x}^* = (x_1^*, x_2^*, \dots, x_n^*)$ and $\mathbf{u}^* = (u_1^*, u_2^*, \dots, u_n^*)$ such that (1.6) holds.
- (iii) Moreover assume that there exists an $n \times n$ matrix $A^0 = [a_{ij}^0]$ such that (1.19) holds and for the positive vector $\mathbf{v} = (v_1, v_2, \dots, v_n)$ defined by (1.20), there exist positive constants $(\theta_{i1}, \theta_{i2}, \dots, \theta_{in})$ with $\theta_{ii} = 1, i = 1, 2, \dots, n$ such that (1.21) holds. Then, we can prove Theorem 1.2 by applying Lemma 3.4. The detail proof will be shown in the fort coming paper Muroya [6] or Muroya [7].

参考文献

- [1] F. Chen, The permanence and global attractivity of Lotka-Volterra competition system with feedback controls. *Nonlinear Anal. RWA* 7 (2006) 133–143.
- [2] T. Faria, Asymptotic behabiour for a class of delayed cooperative models with patch structure, *Discrete and cont. Dynam. Sys. Series B* **18** (2013) 1567-1579.
- [3] T. Faria and Y. Muroya, Global attractivity and extinction for Lotka-Volterra systems with infinite delay and feedback controls, to appear in *Proceedings of the Royal Society of Edinburgh: Section A*.
- [4] T. Kuniya and Y. Muroya, Global stability of a multi-group SIS epidemic model for population migration, to appear in *Discrete Cont. Dynamic. Sys. Series B.*
- [5] Z. Li, M. Han and F. Chen, Influence of feedback controls on an autonomous Lotoka-Volterra competitive system with infinite delays, *Nonlinear Analysis* 14 (2013) 402-413.
- [6] Y. Muroya, Influence of feedback controls on the global stability of delayed Lotka-Volterra systems with patch structure, submitted in *Discrete Cont. Dynamic. Syst. Series-B*.
- [7] Y. Muroya, "Global stability of a delayed nonlinear Lotka-Volterra system with feedback controls and patch structure" submitted in *Appl. Math. Comput.*
- [8] Y. Takeuchi, W. Wang and Y.Saito, Global stability of population models with patch structure, *Nonlinear Analysis RWA* 7 (2006) 235-247.