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Global stability and influence of feedback controls of
delayed Lotka-Volterra systems with patch structure

ERHE (RREARY - BT M)
Yoshiaki Muroya (Department of Mathematics, Waseda University)

1 Introduction

Motivated by our attention to recent works of Chen [1], Li et al. [5] and Faria and
Muroya [3]) for Lotka-Voltera systems with feedback controls and Takeuchi et al. (8]
and Faria [2] for Lotka-Voltera systems with patch structure, we investigate the global
dynamics for the following n-species Lotka-Volterra system with infinite delays, feedback
controls and patch structure.
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‘ +az-ui(t) + Z Qi / K;; (s):cj (t — s)ds — aji:ci(t) , ‘
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( ui(t) = —eius(t) + dizi(t), i=1,2,...,n,
with initial conditions of system (1.1):
902(0)>07 1/)Z(O)>09 Z=1,2,,TL,

where p;, e; >0, ¢; d;, 0; > 0, a;; > 0 and b;, a;; € R, and ¢y, 9, 4,5 = 1,2,...,n are
‘non-negative and bounded continuous functions on (—oo0, 0].

Hear, z;(t) (i = 1,2,...,n) denotes the number of species z in the patch i, Yij > 0
denotes the per capita death rate for the species during dispersion from patch j to i, b;
is the intrinsic rate for the species in patch i, p; represents the regulation and a;; is the

~dispersal coefficient of the species from patch j to patch i, u;(t) denotes the feedback
control variable and the kernels Kj; : [0, +00) — [0, +00) are L! functions, normalized so
that f0+°° Kij(s)ds =1, fori,j=1,2,... n. For the species to disperse from patch j to
1in the model, for simplicity, we neglect the per capita death rate for the species during
dispersion from patch j to i (cf. Takeuchi et al. [8]).
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The unique solution of (1.1) with initial conditions (1.2) is expressed by (x(t),u(t)) =
(x(t; p), u(t; ¥)) with x(t) = (1(t), z2(t), . . ., zn(t)) and u(t) = (u1(t),u2(t), ..., un(t)).
Moreover, we suppose that for all 7, the linear operators defined by
Lii(p;) = 0+°° Kii(8)p;i(—8)ds, for ¢; : (—00,0] = R bounded, are non-atomic at zero,
which amounts to have K;;(0) = K;(0"), and

an n X n matrix [oy;] is irreducible. (1.3)
Put .
dij = { (1): Ii : ;3: Qi = J;l(l — &), 1 =1,2,...,n, (1.4)
and
b+ 2L -y Q12 Q1n
wo-| o EEEISE ey
a.;n a;1.2 bn+22%“—&nn

Let the stability modulus of an n X n matrix M, denoted by s(M), be defined by s(M) :=
max{Re) : X is an eigenvalue of M}. If M has nonnegative off-diagonal elements and
is irreducible, then s(M) is a simple eigenvalue of M with a {component-wise) positive
eigenvector. A positive equilibrium E* = (x*,u*) of (1.1) with x* = (z},z3,...,z},) and
u* = (uj,us,...,u}), satisfies the following equations:

n n
g (“’" — Ga) = g} = )y - cz) + o} + (1 - Gig)agz] =0,
7=1

=~ (1.6)

—eu; +dizy =0, i=1,2,...,n.
:  di . ol N . .
Since u; = S % 1= 1,2,...,n, the positive equilibrium of (1.1) is the solution x =
i
(x1,x2,...,2,) of the system F(x) = 0 in R", where

(

F(X) = (fl(X),fz(X), v ,f’n(x))T’ X = (xl, I2,... amn)Ta
fi(z1,22,...,25) = — [:z,{ (bi + %@; - dii) - (/Ji + ai + Czdi)’ﬂi - Z(l - 5ij)az'j£vj}

n
J +Z(1 —(57;_7')07;]'.’1:]'] =0,1=12,...,n,
j=1

Ofi(x1,2,...,2Zn)
3:17_7‘

d: d
{ —(bi-l—az : —dii) +2(p,-+a,-¢+c;’)x,-, forj=1i,1=12,...,n,

) ]
—(ai]- - a:ia,-j), for ] 75 ’i, 1= 1,2,...,71,

(1.7)
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where the Fréchet derivative of F(x) is F/(x) = sz(m,;; 2 @n)
j

the ordering of vectors and matrices in R™ as the usual component-wise one in R".
g

. Hereafter, we use

Consider a solution (X(t),W(t)) = (Z(t; ), a(t;v)) of the auxiliary cooperative system
with X(t) = (Z1(t), Za(t), ..., Za(t)) and G(t) = (@1 (2), Ga(t), ..., @n(t)), given by

( B . _ n B +oc0 _
T;(t) = Ti(t) ((bi ~ Gy — g) — iZi(t) + ; Iaij{/O Kij(s)Z;(t — s)ds)
oo (1.8)

n
+oiu;(t) + Z Qj Kij(8)Z;(t — s)ds,
Jj=1 0

{ uz(t) = —e;U;(t) + da:z( ), i=12...,n.
with the same initial conditions

;1—;1(9) = (P1(6)7 17,1(6) = 'lp‘l,(e)a 0 € (—O0,0], (1 9)
i(0) >0, ¥;(0)>0,i=1,2,...,n '

where we use the notations a;; = lf—’ll—é—tg—’l >0 and |aj;| = ﬂ”g;a*l >0,4,7=12,...,n
For n x n matrices A% = [a2;], A = [a%] and A = [a;] and a positive vector x =
(1,%2,...,2n), put » x n matrices M°(x) = [0;;ziu; — (zilad;| + zj|a%))/2), MO(x) =

[0sjzip; — (xi|a?jl + xj|a9i|)/2] and M(x) = [di5Tips — (ilaij| + x5]aj:)/2], respectively.

In this paper, we obtain the following result.
Theorem 1.1 Assume that s(M(0)) < 0. If there ezists an n X n matriz A° = [&?j]
such that

iy < ayj, 1,5 =1,2,...,7, (1.10)
and for the positive left eigenvector & = (wl,wg,...,dzn) of M(0), there ezist positive
constants (0,1, 622, m) with G; = =1,4=1,2,...,n such that

1 ,
@ (ps — |ag]) > 2(1 ~8ij)= ( i @alag;| + b—wjlaﬁo i=1,2,...,n, (1.11)
31

then the trivial solution E° = (0,0) is globally asymptotically stable.
In particular, if a;; > 0, i,j = 1,2,...,n, then for s(M(0)) < 0, the tmmal solution
E°% = (0,0) is globally asymptotically stable.

Note that if a;; > 0, 4,5 = 1,2,...,n, then for s(M(0)) < 0, the trivial solution
E9 = (0,0) is globally asymptotically stable (see Lemma 2). If an'n X n matrix M O((I)) =

57

(0455 hi— (wzlaz] [+©; |azJ )/2] is diagonally dominant, then for (6;1, 652, . . ., 0in) = ( oy 1),
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i=1,2,...,n, (1.11) holds.

Theorem 1.2 Assume that s(M(0)) > 0 and suppose that

n
wi (uiwi - Z |a;j|w,-> >0,i=12,...,n (1.12)
j=1

Then, there ezists a positive equilibrium E* = (X*,0*) of the auziliary cooperative system
(1.8) with X* = (z1,73,...,%;) and U* = (4,43, ..., q;,) which is globally asymptotically

stable and satisfy

limsup z;(t) < T}, and limsupu,(t) <@, :=1,2,...,nm, (1.13)
t—+4o0 t—+00 .
and
F(X*) = [z*{( )-* + Z(l af; J}] > 0. (1.14)
(1) If

a;; >0, foranyi,j=1,2,. ..,nsuchthata;;>0,
01>0 foranyz-12 .,n such that ¢c; > 0, and

(1.15)
(s + +ZawwJ >0, foranyi=1,2,.
j=1
then the system (1.1) is permanent and
112121” ltlln, inf(z;(t)/w;)
zemmnf( o) (o 2 i)
> £ = min min —= |, min ,
a;§>0 3,5€{1,2,.. ,n} wia;; €;>0, i€{1,2,. ,n} Wi Cq (116)
] (b + —'—l au)wz + Z 1(1 ,])aijwj
1r<nilgn ’
- wj ((Hi + Gy, + 30 a,-jw,-)
where w = (w1,w2,...,wn) s a positive eigenvector corresponding to the spectral radius
p(M(0)) = s(M(0)) > 0 which satisfies
o;d; <
(bi + % — &ii>wi + Z(l — éij)aijwj >0,i1=1,2,...,n. (1.17)
T .7=1
(i) In addition to (i), if
aij — I} “>0 ,7=12,. (1.18)



then there exists a positive equilibrium E* = (x*,u*) of (1.1) such that (1.6) holds.
(i) Moreover, if there ezists an n x n matriz A® = [a?j] such that

a?j < aij, oy — i (ai; — a?j) 20,%4,7=12,...,n, and [oy; — z}(a;; — a%)] is irreducible,
(1.19)

and for the positive vector v = (v1,vs,...,v,) defined by

n » n
> vi(1=85){eyi — 2} (ajs — a¥) ot =iy _(1-6ij){o; —a}(ai; —ad))}a, i = 1,2,.
=1 =1

(1.20)
there ezist positive constants (6;1,6;2, . ..,0im) with 0 =1, i =1,2,...,n such that
vi (i — |ay)) > Z 5 Oivilag;| + a0 v3|a]zi i=1,2,...,n, (1.21)
J .

Jj=1

then the positive equilibrium E* of (1.1) is globally asymptotically stable.

Note that if an n x n matrix MO(v) = [§iviu — (vl ag; l + v;]a3;])/2] is diagonally
dominant, then for (6;1,6;,...,60in) = (1,1,...,1), i =1,2,...,n, (1.21) holds.

Theorem 1 implies that concerning the global stability of the positive equilibrium of
(1.1), there is no influence of the feedback controls.

If we choose the n x n matrix A® = [a ] in (iii) of Theorem 1, then we obtain the
following corollaries.

(a) First, we choose aoj a;; h,J=12,.
Corollary 1.1 Assume that s(M(0)) > O and the conditions of (1)- (zz) of Theorem

1 hold. If an n x n matriz [oy; — a;;] s trreducible and for a positive vector v =
(v1,v2,...,v,) such that

n

Z’U‘?‘(aji ~ ﬂ = v; Z(O‘U xzam 1=1,2,...,n, (1.22)
there exist positive constants (0,—1, i2y -y Oim) with 6;; =1, i =1,2,...,n such that

_ 1 _ .
vi(pi — lag;|) > Z 1 — &) ,-jmla,.j| +§7vj|aji| ,1=1,2,...,n, (1.23)
Ugi

then the positive equilibrium E* of (1.1) is globally asymptotically stable.

In particular, if for an n x n matriz A~ = [a;], M~ (v v) = [bijvips — (vilag] + vjlaz;])/2]
is diagonally dominant, then for (0:1,6:0,...,0in) = (1,1,...,1), i = 1,2,...,n, (1.23)
holds. ‘
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Corollary 1.2 If ¢; =0; =0, p; — |a;;| >0, a;3 =0, j #14, i =1,2,...,n, then for
s(M(0)) > 0, there exists a unique positive equilibrium of (1.1) which is globally asymp-
totically stable.

The models of Takeuchi et al. [8, Theorem 2.1] and Faria |2, Theorem 3.5] satisfies this
condition.

(b) Second, we choose a 5 =0,4,7=12,.

Corollary 1.3 Assume that s(M(0)) >0 and (1 15) hold. If aij > 0, asj — ZTray; >
0, i,j =1,2,...,n and an n X n matriz [o;; — T}as;] is irreducible, then there exists a
positive equilibrium E* = (x*,u*) of (1.1) which is globally asymptotically stable.

(c) Third, we choose af; = aij, i, = 1,2,...,n

Corollary 1.4 Assume that (1.12) and (1.15) hold. Then, if s(M(0)) < 0 and for the
positive left eigenvector & of M(0), an nxn matric M(&) is diagonally dominant, then the
trivial solution E® = (0,0) of (1.1) is globally asymptotically stable, and if s(M(0)) > 0
and nxn matrices M (w) and M(v) for the positive eigenvector w of M(0) and the positive
vector v = (vy,v2,...,Un) defined by (1.20), are diagonally dominant, then there exists a
positive equilibrium E* = (x*,u*) of (1.1) which is globally asymptotically stable.
Next, consider the case that p; = ¢; = 0; = 0and a;; > 0, 4,5 = 1,2,...,n of (1.1).

Then, (1.1) becomes

n +00
2i(t) =20 (3= Sy [ Kilolas(t - o)ds)
j=1

n = (1.24)
Z (aij Kij(s):rj(t - s’)ds - Otjiici(t)).
i=1 0
Corollary 1.5 For (1.24), assume that there ezists a positive vector X° = (29, %9, ...,Z0)
such that ‘
M0)x)T <0, a; — Fa;; >0, 4,5 =1,2,...,n, (1.25)
and |
n
~bi+ Y _2%a; >0, i=1,2,...,n. (1.26)

j=1
If s(M(0)) < 0, then the trivial equilibrium E° = (0,0,...,0) of (1.24) is globally asymp-
totically stable, and if s(M(0)) > 0, then there exists a posz’tive equilibrium E* = x* =
(xf,25,...,2}) of (1 24) which is globally asymptotically stable. Moreover, (1.24) is equiv-
alent to a multi-group SI epidemic model (see Kuniya and Muroya [4]).
Note that Ry > 1 is equivalent to s(M(0)) > 0 and Ry < 1 is equivalent to s(M(0)) < 0.
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2 Global stability for s(M(0)) <0

We first give a basic result on the positiveness and the auxiliary cooperative system
(1.8).

Lemma 2.1 For system (1.1) with initial conditions (1.2), there ezists a unique so-
lution (x(t),u(t)) = (x(t;0),ult;®)) with x(t) = (21(¢),z2(t),...,zp(t)) and u(t) =
(u1(t), ua(t), ..., un(t)) which satisfies z;(t) > 0, for any i = 1,2...,n, and t > 0. For
the solution (X(t),0(t)) = (Z(t; ), a(t;¢)) of the auziliary cooperative system (1.8) with
same initial conditions (1.2), X(t) = (Z1(t), Z2(t), ..., Zn(t)) and G(t) =
(@1(t), aa(t), ..., un(t)), it holds z;(t) < Z;(t), ui(t) < @;(t), foranyi=1,2,...,n, t > 0.
Lemma 2.2 For s(M(0)) < 0, if there exists an n x n matriz A® = [EL%-] such that (1.10)

and (1.11) hold, then the trivial solution E° = (0,0) is globally asymptotically stable.

In particular, if a;; > 0, i,j = 1,2,...,n, then for s(M(0)) < 0, the trivial solution
E® = (0,0) is globally asymptotically stable.

Proof of Theorem 1.2 By Lemma 2.2, we obtain Theorem 1.1.

3 Basic results on the global stability for s(M(0)) > 0

Lemma 3.1 If s(M(0)) > 0 and (1.12) holds, then there exists a unique positive
equilibrium E* = (X*,0*) of (1.8) with X* = (%,%5,...,%) and @* = (@, a5,...,4")
which is globally asymptotically stable and (1.13) and (1.14) hold.

Lemma 3.2 If s(M(0)) > 0 and (1.15) are satisfied, then the system (1.1) is permanent
and (1.16) holds.

Lemma 3.3 Assume that s(M(0)) > 0 and (1.12) hold, then there exists a positive

equilibrium E* = (%*,0*) of (1.8) with X* = (&},%3,...,Z%) and §* = (@}, as,...,q})
which satisfy (1.13). Moreover, if (1.18) hold. Then, the system F(x) = 0 has a positive
solution x* = (z3,25,...,z)) im0 < z; < Z}, i = 1,2,...,n which is equivalent to that

(1.1) has ”at least” one positive equilibrium E* = (x*,u*).
Lemma 3.4 If an n x n matriz [oz; — x} (a:; — a?j | is irreducible, then the system (1.20)
has a positive solution (vi,va,...,v,) defined by (vi,va, -+ ,v,) = (Ci1,C22,...,Cnp),

where Beij = {aj; — 2} (ai; — a?j)}:c;f, 1<14,j<n, and

Zj;é} lélj 'B21~ T —,[?nl
Bo| P2 Ljphy o —he ,
“Bln _B2n e Zj;én an

and Cy; denotes the cofactor of the i-th diagonal entry of B,1<i<n.
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4 Global stability of the positive equilibrium for s(M(0)) > 0

Proof of Theorem 1.2 Assume that s(M(0)) > 0 and suppose that (1.12) holds.
Then, by Lemmas 2.1 and 3.1, there exists a positive equilibrium E* = (X*,@*) of the
auxiliary cooperative system (1.8) with X* = (#},7%,...,%)) and ©* = (},43,...,q})
which is globally asymptotically stable and satisfy (1.13) and (1.14).

(i) Suppose that (1.15) holds. Then, by Lemma 3.2, system (1.1) is permanent and (1.16)
holds. \

(ii) Suppose that in addition to (i) and (ii), (1.18) holds. Then, by Lemma 3.3 there
exists a positive equilibrium E* = (x*,u*) of (1.1) with x* = (z},23,...,2}) and u* =
(ui,ud,...,ur) such that (1.6) holds.

(iii) Moreover assume that there exists an n x n matrix 4° = [a?j] such that (1.19)
holds and for the positive vector v = (v1,vs, ..., v,) defined by (1.20), there exist positive
constants (0;1, 02, ..,0:x) with 6;; =1, i =1,2,...,n such that (1.21) holds. Then, we
can prove Theorem 1.2 by applying Lemma 3.4. The detail proof will be shown in the fort
coming paper Muroya [6] or Muroya (7).
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