Semi-classical Asymptotics for the Partition Function of an Abstract Bose Field Model

Yuta Aihara

Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan

Semi-classical asymptotics for the partition function of an abstract Bose field model is considered.

Keywords: semi-classical asymptotics, Bose field, partition function, second quantization, Fock space.

I. INTRODUCTION

In quantum mechanics, in which a physical constant $\hbar := h/2\pi$ (h: the Planck constant) plays an important role, the limit $\hbar \to 0$ for various quantities (if it exists) is called the classical limit. Trace formulas in the abstract boson Fock space and the classical limit for the trace $Z(\beta\hbar)$ (the partition function) of the heat semigroup of a perturbed second quantization operator were derived by Arai [2], where $\beta > 0$ denotes the inverse temperature. Generally speaking, the classical limit is regarded as the zero-th order approximation in \hbar . From this point of view, it is interesting to derive higher order asymptotics of various quantities in \hbar . Such asymptotics are called semi-classical asymptotics. In this paper the asymptotic formula for $Z(\beta\hbar)$ is stated, which is derived in [1].

II. A CLASSICAL LIMIT IN THE ABSTRACT BOSON FOCK SPACE

In this section we review a classical limit for the trace of a perturbed second quantization operator and some fundamental facts related to it.

Let \mathcal{H} be a real separable Hilbert space, and A be a strictly positive self-adjoint operator acting in \mathcal{H} . We denote by $\{\mathcal{H}_s(A)\}_{s\in\mathbb{R}}$ the Hilbert scale associated with A [3]. For all $s\in\mathbb{R}$, the dual space of $\mathcal{H}_s(A)$ can be naturally identified with $\mathcal{H}_{-s}(A)$.

We denote by $\mathscr{I}_1(\mathscr{H})$ the ideal of the trace class operators on \mathscr{H} . Let $\gamma > 0$ be fixed. Throughout this paper, we assume the following.

Assumption I. $A^{9-\gamma} \in \mathscr{I}_1(\mathscr{H})$.

Under Assumption I, the embedding mapping of \mathcal{H} into

$$E := \mathscr{H}_{-\gamma}(A)$$

is Hilbert-Schmidt. Hence, by Minlos' theorem, there exists a unique probability measure μ on (E, \mathcal{B}) such that the Borel field \mathcal{B} is generated by $\{\phi(f)|f\in \mathcal{H}_{\gamma}(A)\}$ and

$$\int_{E} e^{i\phi(f)} d\mu(\phi) = e^{-\|f\|_{\mathscr{H}}^{2}/2}, \quad f \in \mathscr{H}_{\gamma}(A),$$

where $\|\cdot\|_{\mathscr{H}}$ denotes the norm of \mathscr{H} .

The complex Hilbert space $L^2(E, d\mu)$ is canonically isomorphic to the boson Fock space over \mathcal{H} , which is called the Q-space representation of it [3]. We denote by $d\Gamma(A)$ the second quantization of A and set

$$H_0 = d\Gamma(A)$$
.

Then for all $\beta > 0$, $e^{-\beta H_0} \in \mathscr{I}_1(L^2(E, d\mu))$.

DEFINITION 2.1. A mapping V of a Banach space X into a Banach space Y is said to be polynomially continuous if there exists a polynomial P of two real variables with positive coefficients such that

$$||V(\phi) - V(\psi)|| \le P(||\phi||, ||\psi||) ||\phi - \psi||, \quad \phi, \psi \in X.$$

Let V be a real valued function on E. Throughout this paper, we assume the following.

Assumption II. The function V is bounded from below, 3-times Fréchet differentiable, and V, V', V'', V''' are polynomially continuous.

For $\hbar > 0$, we define V_{\hbar} by

$$V_{\hbar}(\phi) := V(\sqrt{\hbar} \ \phi), \quad \phi \in E.$$

and set

$$H_{\hbar}:=H_{0}\dotplusrac{1}{\hbar}V_{\hbar},$$

where $\dot{+}$ denotes the quadratic form sum.

Under Assumption I, II, for all $\beta > 0$, $e^{-\beta H_{\hbar}} \in \mathscr{I}_1(L^2(E, d\mu))$ [2].

Theorem 2.2. [2]. Let $\beta > 0$. Then

$$\lim_{\hbar \to 0} \frac{{\rm Tr} \ e^{-\beta \hbar H_\hbar}}{{\rm Tr} \ e^{-\beta \hbar H_0}} = \int_E \exp\left(-\beta V\left(\sqrt{\frac{2}{\beta}}A^{-1/2}\phi\right)\right) d\mu(\phi).$$

III. A CLASS OF LOCALLY CONVEX SPACES

In this section we introduce a class of locally convex spaces, which gives a general framework for the asymptotic analysis discussed in this paper.

We denote by \mathbb{R}_+ the set of the nonnegative real numbers.

DEFINITION 3.1. A mapping f from \mathbb{R}_+ to a locally convex space X is said to be locally bounded if for all $\delta > 0$ and every continuous seminorm p on X,

$$p_{\delta}(f) := \sup_{0 \le \varepsilon \le \delta} p(f(\varepsilon)) < \infty.$$

We denote by $(X^{\mathbb{R}_+})_{\text{l.b.}}$ the linear space of the locally bounded mappings from \mathbb{R}_+ to X. The topology defined by the seminorms $\{p_{\delta}\}_{p,\delta}$ turns $(X^{\mathbb{R}_+})_{\text{l.b.}}$ into a locally convex space. If X is a Fréchet space, $(X^{\mathbb{R}_+})_{\text{l.b.}}$ is a Fréchet space.

Let $\{E_n\}_{n\in\mathbb{N}}$ be a family of Banach spaces with the property that

$$E_{n+1} \subset E_n, \|\phi\|_n \le \|\phi\|_{n+1}, \quad \phi \in E_{n+1},$$

for all $n \in \mathbb{N}$, where $\|\cdot\|_n$ denotes the norm of E_n . Then, the topology defined by the norms $\{\|\cdot\|_n\}_{n\in\mathbb{N}}$ turns $\bigcap_{n\in\mathbb{N}} E_n$ into a Fréchet space.

Let (X, P) be a probability space and Y be a Banach space. We denote by $L^p(X, dP; Y)$ the Banach space of the Y-valued L^p -functions on (X, P). Then $\bigcap_{p \in \mathbb{N}} L^p(X, dP; Y)$ can be provided with the structure of Fréchet space.

DEFINITION 3.2. Let f be a mapping from \mathbb{R}_+ to $\bigcap_{p\in\mathbb{N}} L^p(X,dP;Y)$. We say that f is in $(\bigcap_{p\in\mathbb{N}} L^p(X,dP;Y))^{\mathbb{R}_+}_{\mathrm{u.i.}}$ if and only if for each $\delta>0$, there exists a nonnegative function $g\in\bigcap_{p\in\mathbb{N}} L^p(X,dP)$ such that

$$\sup_{0 \le \varepsilon \le \delta} \|f(\varepsilon)(x)\|_Y \le g(x),$$

P-a.e.x.

The set $(\bigcap_{p\in\mathbb{N}} L^p(X,dP;Y))_{\mathrm{u.i.}}^{\mathbb{R}_+}$ is a linear subspace of $(\bigcap_{p\in\mathbb{N}} L^p(X,dP;Y))_{\mathrm{l.b.}}^{\mathbb{R}_+}$. In what follows, we omit x in $f(\varepsilon)(x)$.

Let X_1, \dots, X_n and Z be non-empty sets and G be a real-valued function on $X_1 \times \dots \times X_n$ and F_j be a mapping from Z to X_j , $j = 1, \dots, n$. We define $G(F_1, \dots, F_n)$, the real-valued function on Z, by

$$G(F_1, \dots, F_n)(z) = G(F_1(z), \dots, F_n(z)), \quad z \in \mathbb{Z}.$$

Then we can prove the following propositions.

PROPOSITION 3.3. Let Q be a polynomial of n real valuables. Then the mapping $(F_1, \dots, F_n) \longmapsto Q(\|F_1\|, \dots, \|F_n\|)$ from $\left(\left(\bigcap_{p \in \mathbb{N}} L^p(X, dP; Y)\right)_{\mathbf{u.i.}}^{\mathbb{R}_+}\right)^n$ to $\left(\bigcap_{p \in \mathbb{N}} L^p(X, dP)\right)_{\mathbf{u.i.}}^{\mathbb{R}_+}$ is continuous.

PROPOSITION 3.4. Let Z_j be a Banach space $(j = 1, \dots, n)$, L be a continuous multilinear form on $Z_1 \times \dots \times Z_n$, and V_j be a polynomially continuous mapping from Y to $Z_j (j = 1, \dots, n)$. Then the mapping $(F_1, \dots, F_n) \mapsto L(V_1 \circ F_1, \dots, V_n \circ F_n)$ from $\left(\left(\bigcap_{p \in \mathbb{N}} L^p(X, dP; Y)\right)_{\mathrm{u.i.}}^{\mathbb{R}_+}\right)^n$ to $\left(\bigcap_{p \in \mathbb{N}} L^p(X, dP)\right)_{\mathrm{u.i.}}^{\mathbb{R}_+}$ is continuous.

IV. AN ASYMPTOTIC FORMULA

Let $\{\lambda_n\}_{n=1}^{\infty}$ be the eigenvalues of A, and $\{e_n\}_{n=1}^{\infty}$ be the complete orthonormal system (CONS) of \mathcal{H} with $Ae_n = \lambda_n e_n$, and

$$\sum_{n=1}^{\infty} \frac{1}{\lambda_n^{\gamma-9}} < \infty \tag{4.1}$$

Let φ be a bijection from $\mathbb{N} \times \mathbb{N}$ to \mathbb{N} . For all $n, m \in \mathbb{N}$, we set $f_{n,m} = e_{\varphi(n,m)}$. Then $\{f_{n,m}\}_{n,m=1}^{\infty}$ is a CONS of \mathcal{H} . For all $\varphi \in E$, we define

$$\phi_n := \phi(e_n), \quad \phi_{n,m} := \phi(f_{n,m}).$$

Then $\{\phi_n\}_n$ and $\{\phi_{n,m}\}_{n,m}$ are families of independent Gaussian random variables such that for all $n, m, n', m' \in \mathbb{N}$,

$$\int_{E} \phi_n d\mu(\phi) = 0, \quad \int_{E} \phi_n \phi_m d\mu(\phi) = \delta_{nm}$$
(4.2)

$$\int_{E} \phi_{n,m} \phi_{n',m'} d\mu(\phi) = \delta_{nn'} \delta_{mm'}. \tag{4.3}$$

For all $m_1, \dots, m_p \in \mathbb{N}$, we have

$$\sup_{n_1, \dots, n_p \in \mathbb{N}} \int_E |\phi_{n_1}|^{m_1} \cdots |\phi_{n_p}|^{m_p} d\mu(\phi) < \infty.$$
 (4.4)

For all $N, M \in \mathbb{N}$, we set

$$F_{N,M}(\varepsilon,\omega,s) = \sqrt{\frac{2}{\beta}} \sum_{n=1}^{N} \frac{\phi_n}{\sqrt{\lambda_n}} e_n + \sum_{n=1}^{N} \sum_{m=1}^{M} \sqrt{\frac{4\varepsilon^2 \lambda_n}{\beta(\varepsilon^2 \lambda_n^2 + (2\pi m)^2)}} (\psi_{n,m} \cos(2\pi m s) + \theta_{n,m} \sin(2\pi m s)) e_n, \quad \varepsilon \ge 0, \ \omega = (\phi,\psi,\theta) \in \Omega, \ 0 \le s \le 1.$$
 (4.5)

Then we have

$$\frac{\mathrm{Tr}e^{-\beta\hbar H_{\hbar}}}{\mathrm{Tr}e^{-\beta\hbar H_{0}}} = \lim_{N,M\to\infty} \int_{\Omega} \exp\left(-\beta \int_{0}^{1} V\left(F_{N,M}(\varepsilon,\omega,s)\right) ds\right) d\nu(\omega), \tag{4.6}$$

where $\varepsilon = \beta \hbar$ (See [2], Lemma 5.2, Lemma 5.3.).

We set

$$Z(\varepsilon) = \lim_{N,M\to\infty} \int_{\Omega} \exp\left(-\beta \int_{0}^{1} F_{N,M}(\varepsilon,\omega,s) ds\right) d\nu(\omega), \quad \varepsilon \ge 0, \tag{4.7}$$

For all $n, m \in \mathbb{N}$, we set

$$\alpha_{n,m}(\varepsilon) = \sqrt{\frac{4\varepsilon^2 \lambda_n}{\beta(\varepsilon^2 \lambda_n^2 + (2\pi m)^2)}}, \quad \varepsilon \ge 0.$$

Then, for all $\delta > 0$, there exists a constant C > 0 such that

$$|\alpha_{n,m}(\varepsilon)| \le \frac{C\sqrt{\lambda_n}}{m}, \quad n, m \in \mathbb{N}, \ 0 \le \varepsilon \le \delta.$$
 (4.8)

$$|\alpha'_{n,m}(\varepsilon)| \le \frac{C\sqrt{\lambda_n}}{m}, \quad n, m \in \mathbb{N}, \ 0 \le \varepsilon \le \delta.$$
 (4.9)

$$|\alpha_{n,m}''(\varepsilon)| \le \frac{C\lambda_n^{5/2}}{m}, \quad n, m \in \mathbb{N}, \ 0 \le \varepsilon \le \delta.$$
 (4.10)

$$|\alpha_{n,m}^{"'}(\varepsilon)| \le \frac{C(\lambda_n^{5/2} + \lambda_n^{9/2})}{m}, \quad n, m \in \mathbb{N}, \ 0 \le \varepsilon \le \delta.$$
 (4.11)

We denote by $\mu_{[0,1]}^{(L)}$ the Lebesgue measure on [0,1]. Then by (4.8),(4.9),(4.10) and (4.11), we can prove the following lemma.

LEMMA 4.1. $\{F_{N,M}\}_{N,M\in\mathbb{N}}$, $\{F'_{N,M}\}_{N,M\in\mathbb{N}}$, $\{F''_{N,M}\}_{N,M\in\mathbb{N}}$, $\{F'''_{N,M}\}_{N,M\in\mathbb{N}}$ are Cauchy nets in $(\bigcap_{p\in\mathbb{N}} L^p(\Omega\times[0,1],d(\nu\otimes\mu^{(L)}_{[0,1]});E))^{\mathbb{R}_+}_{\mathrm{u.i.}}$.

For all $N, M \in \mathbb{N}$, we set

$$G_{N,M}(\varepsilon,\omega) = \exp\left(-\beta \int_0^1 V\left(F_{N,M}(\varepsilon,\omega,s)\right) ds\right) \quad \varepsilon \ge 0, \ \omega \in \Omega.$$

Then by Proposition 3.4 and Lemma 4.1, we can prove the following lemma.

LEMMA 4.2. $\{G_{N,M}\}_{N,M\in\mathbb{N}}, \{G_{N,M}'\}_{N,M\in\mathbb{N}}, \{G_{N,M}''\}_{N,M\in\mathbb{N}}, \{G_{N,M}'''\}_{N,M\in\mathbb{N}} \text{ are Cauchy nets in } (\bigcap_{p\in\mathbb{N}} L^p(\Omega,d\nu))_{\mathrm{u.i.}}^{\mathbb{R}_+}.$

By Lemma 4.2 and the fact that $\alpha_{n,m}$ is infinitely differentiable for all $n,m \in \mathbb{N}$, $\int_{\Omega} H_{N,M}\left(\varepsilon,\omega\right) d\nu(\omega)$ with $H_{N,M}=G_{N,M},G_{N,M}',G_{N,M}'',G_{N,M}'''$ uniformly converges in ε . Hence one can interchange the limit $\lim_{N,M\to\infty}$ with differentiations in ε and see that Z is 3-times continuously differentiable in \mathbb{R}_+ .

We can prove the following theorem.

Theorem 4.3. For all $\beta > 0$,

$$\begin{split} &\frac{\mathrm{Tr}e^{-\beta\hbar H_{\hbar}}}{\mathrm{Tr}e^{-\beta\hbar H_{0}}} \\ &= \int_{E} \exp\left(-\beta V\left(\sqrt{\frac{2}{\beta}}A^{-1/2}\phi\right)\right) d\mu(\phi) \\ &-\frac{\beta^{3}\hbar^{2}}{2} \sum_{m=1}^{\infty} \int_{E^{2}} d\mu(\phi) d\mu(\psi) \exp\left(-\beta V\left(\sqrt{\frac{2}{\beta}}A^{-1/2}\phi\right)\right) \\ &\times V''\left(\sqrt{\frac{2}{\beta}}A^{-1/2}\phi\right) \left(A^{1/2}\left(\frac{1}{\sqrt{\beta}\pi m} \sum_{n=1}^{\infty} \psi_{n,m}e_{n}\right), A^{1/2}\left(\frac{1}{\sqrt{\beta}\pi m} \sum_{n=1}^{\infty} \psi_{n,m}e_{n}\right)\right) \\ &+o(\hbar^{2}) \end{split}$$

as $\hbar \to 0$.

REFERENCES

- [1] Y. Aihara, Semi-classical asymptotics in an abstract Bose field model, *IJPAM* **85** (2013), 265-284.
- [2] A. Arai, Trace formulas, a Golden-Thompson inequality and classical limit in Boson Fock space, *J. Funct. Anal.* **136** (1996), 510-546.
- [3] A. Arai, Functional Integral Methods in Quantum Mathematical Physics, Kyoritsu-shuppan (2010) (in Japanease).