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I. INTRODUCTION

In quantum mechanics, in which a physical constant & := h/2r (h : the Planck

constant) plays an important role, the limit A — O for various quantities (if it
exists) is called the classical limit. Trace formulas in the abstract boson Fock
space and the classical limit for the trace Z(Gh) (the partition function) of the
heat semigroup of a perturbed second quantization operator were derived by Arai
[2], where B8 > 0 denotes the inverse temperature. Generally speaking, the classical
limit is regarded as the zero-th order approximation in A. From this point of view,
it is interesting to derive higher order asymptotics of various quantities in A. Such
asymptotics are called semi-classical asymptotics. In this paper the asymptotic
formula for Z(Bh) is stated, which is derived in [1].

II. A CrassicaL LIMIT IN THE ABSTRACT B0OSON FOCK SPACE

In this section we review a classical limit for the trace of a perturbed second
quantization operator and some fundamental facts related to it.

Let S be a real separable Hilbert space, and A be a strictly positive self-adjoint
operator acting in S#. We denote by {#%(A)}scr the Hilbert scale associated
with A [3]. For all s € R, the dual space of J%(A) can be naturally identified with
Hs(A).



We denote by #(F#) the ideal of the trace class operators on J#. Let v > 0
be fixed. Throughout this paper, we assume the following.
Assumption 1. A% € S (H#).
Under Assumption I, the embedding mapping of 5 into
E:=s,(A)

is Hilbert-Schmidt. Hence, by Minlos’ theorem, there exists a unique probability
measure p on (E, &) such that the Borel field 4 is generated by {¢(f)|f € 4,(A4)}
and

/ei¢(f)dp(¢) = e—llfllif/{ f e H#(A),
E

where || - || denotes the norm of .

The complex Hilbert space L?(E, du) is canonically isomorphic to the boson Fock
space over J#, which is called the Q-space representation of it [3]. We denote by
dI'(A) the second quantization of A and set

Ho = dT(A).
Then for all 8 > 0, e #H € £ (L*(E,dy)).

DEFINITION 2.1. A mapping V of a Banach space X into a Banach space Y
is said to be polynomially continuous if there exists a polynomial P of two real

variables with positive coefficients such that

V(o) =Vl < P(igll ¥l —ll, 69 € X.

Let V be a real valued function on E. Throughout this paper, we assume the

following,.

Assumption 11.  The function V' is bounded from below, 3-times Fréchet differ-
entiable, and V, V', V" V" are polynomially continuous.

For i > 0, we define V; by
Va(9) =V(Vh¢), ¢€E.
and set

.1
Hy := Hy + ﬁVh:

where + denotes the quadratic form sum.
Under Assumption I, II, for all 8 > 0, e™#Hr € 7 (L*(E,dp)) [ 2]

THEOREM 2.2. [2]. Let 8 > 0. Then

. Tr e AR 2
- o o (f39)
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III. A Crass oF LocaLLy CONVEX SPACES

In this section we introduce a class of locally convex spaces, which gives a general
framework for the asymptotic analysis discussed in this paper.
We denote by R, the set of the nonnegative real numbers.

DEFINITION 3.1. A mapping f from R, to a locally convex space X is said to be
locally bounded if for all § > 0 and every continuous seminorm p on X,

ps(f) == sup p(f(e)) < oo.
0<e<s
We denote by (X®+),, the linear space of the locally bounded mappings from
R, to X. The topology defined by the seminorms {ps},s turns (X®+), into a
locally convex space. If X is a Fréchet space, (X®+),, is a Fréchet space.
Let {E,}nen be a family of Banach spaces with the property that

Eny1 C En, 18], < €llps1, @ € Enin,

for all n € N, where || - ||, denotes the norm of E,,. Then, the topology defined by
the norms {|| - || }nen turns (), nEr into a Fréchet space.

Let (X, P) be a probability space and Y be a Banach space. We denote by
LP(X,dP;Y) the Banach space of the Y-valued LP-functions on (X, P). Then
Mpen LP(X,dP;Y') can be provided with the structure of Fréchet space.

DEFINITION 3.2. Let f be a mapping from R, to ﬂpeN LP(X,dP;Y). We say
that f is in ((,en LP(X, dP; Y))?f if and only if for each 6 > 0, there exists a

nonnegative function g € (), .n LP(X,dP) such that

peEN

sup [f(e)(2)lly < g(z),
0<e<é

P-ae.z.

The set ((),en LP(X, dP; Y))&F is a linear subspace of ((,cy LF(X, dP; Y))Fg_.
In what follows, we omit z in f(¢)(x).

Let X;,---,X, and Z be non-empty sets and G be a real-valued function on
Xy X -+ x X, and F; be a mapping from Z to X;, j = 1,---,n. We define

G(Fi,- -, F,), the real-valued function on Z, by
G(Fy, -+, Fo)(2) = G(Fi(2),- -+ , Fu(2)), 2€Z

Then we can prove the following propositions.
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PROPOSITION 3.3. Let Q) be a polynomial of n real valuables. Then the mapping
Ry

(P F) = QUIB, - Il from ((Myew L2, AP YD) ) to (e L2(X, 4P))
is continuous. -

PROPOSITION 3.4. Let Z; be a Banach space (j = 1,---,n), L be a continuous
multilinear form on Zy X -+ x Zy,, and V; be a polynomially continuous map-
ping fromY to Z;(j = 1,--- ,n). Then the mapping (Fy,---,F,) — L(Vj o

R\" Ry
-, Voo Fy,) from <(ﬂP€N LP(X,dP; Y))J) to (ﬂpeN LP(X, dP)) ~is con-
u.l.
tinuous.

IV. AN AsympTOTIC FORMULA

Let {A\,}22, be the eigenvalues of A, and {e,}°; be the complete orthonormal
system (CONS) of s with Ae, = A,ep, and

1

n=1

Let ¢ be a bijection from N x N to N. For all n,m € N, we set f,m = €g(nm)-
Then {fn,m}om=1 is & CONS of . For all ¢ € E, we define

¢n = ¢(en):‘ ¢n,m = ¢(fn,m)

Then {¢n}n and {@n m }nm are families of independent Gaussian random variables

such that for all n,m,n’,m’ € N,

[ (&) =0, [ $umi() = bum (42)
E E
/E¢n,m¢n’,m’dﬂ(¢) = (Snn’ mm/! - (43)
For all my,--- ,m, € N, we have
sup [ [6ml™ 160, 7 du(@) < . (44)
ni1, - NpENJE

For all N, M € N, we set

4e?\,
Fyu(e,w,s) = \/> Z et ZZ T £ 2wm)2)(¢n’MCOS(27rmS)

n=1m=1

+ nmsm(?wms))en, >0, w=(4,9,00€ 0<s<1. (4.5)

Then we have

’_['\re—ﬂhHﬁ ' 1
timaim = i [ew (<8 [V (Btewas) ), @
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where ¢ = Bk (See [ 2 ], Lemma 5.2, Lemma 5.3. ).
We set

Z()= lim exp (—B/l Fyum(e,w, s)ds) dv(w), €20, (4.7)
Q 0

N,M—o00

For all n,m € N, we set

4e2),
— > 0.
onm(€) \/ﬁ(&:z}\% + (2mm)?)’ €20

Then, for all § > 0, there exists a constant C' > 0 such that

CVn

,an,m(5)| < m n,me N, 0 <e< 0. (48)
CV
o m(€)] < ;{l— , n,meN, 0<e<d. (4.9)
5/2
o m (€)] < 02: , n,meN,0<e<d (4.10)
5/2 9/2
o (€)] < OO+ An ), n,meN, 0<e<d (4.11)

m

We denote by “Eﬁ,)u the Lebesgue measure on [ 0,1 ]. Then by (4.8),(4.9),(4.10)
and (4.11), we can prove the following lemma.

LEMMA 4.1. {Fnum}nmen, {Fymtnmen; {FN aYvmen, {FN ) nmen are Cauchy
nets in ((pen LP(2 % [0,1],d(v ® ufﬁ?l s E))?T

For all N,M € N, we set

1
Gn,m(e,w) = exp (—ﬁ/ V(Fnu(e,w,s)) ds) >0, we.
0
Then by Proposition 3.4 and Lemma 4.1, we can prove the following lemma.

LEMMA 4.2. {GNm}nmen, {Gyar}vmen, {GRae} vmen, {GR v men are Cauchy
nets in (ﬂpeN Lr(Q, dz/))f_if.

By Lemma 4.2 and the fact that oy, », is infinitely differentiable for all n,m € N,
Jo Hnum (€,w) dv(w) with Hypr = Gnm, Gy ary Gy e Gy uniformly converges
in €. Hence one can interchange the limit limy a7, With differentiations in € and
see that Z is 3-times continuously differentiable in R.

We can prove the following theorem.



THEOREM 4.3. For all >0,

Tre=Fhth
Tre—phHo

- [ow <—ﬁv (\/gA‘l/%)) au(8)

il ? [ anteriutr o (~sv ([ Za42))

=1

" z -1/2 1/2 1 - 1/2 1 o
x V (\/;A ¢) <A (\/Bﬂ_m;wn,men> ;A (\/Bﬂ-mnz___lwn’men>>

+o(h?)

as i — 0.
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