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Definable slices in o-minimal structures
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Abstract

Let G be a definably compact definable group and X a definable
G set. We prove that there exists a definable slice at every point of X
and X is covered by finitely many definable G tubes.

1 Introduction

In this paper we consider definable slices in an o-minimal expansion N =
(R,+,",<,...) of areal closed field R. It is known that there exist uncount-
ably many o-minimal expansions of the field R of real numbers([11]).
Definable set and definable maps are studied in [2], [3], and see also
[12]. Everything is considered in N = (R, +, -, <, ...) and definable maps are
assumed to be continuous unless otherwise stated.
In this paper we prove the existence of a slice in the definable category.

Theorem 1.1. Let G be a definably compact definable group and X a defin-

able G set.
(1) For every point z € X, there exists a definable slice S at .

(2) X is covered by finitely many definable G tubes.

Theorem 1.1 is a generalization of [5].
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2 Preliminaries

Let G be a topological group, X a G space and € X. A slice at x is a subset
S of X containing z such that G, S = S and the map ¢ : GXg,S — X defined
by #([g,s]) = gs is a G imbedding onto a G invariant open neighborhood
GS of G(z) in X, and GS is called a G tube. It is known that there exists a
slice when G is a compact Lie group and X is a completely regular G space

(14], (8], [9])-

A subset X of R" is definable (in N) if it is defined by a formula
(with parameters). Namely, there exist a formula ¢(z1,...,%n, %1, ., Ym)
and elements b;,...,b, € R such that X = {(a1,...,an) €

RMé(ay,...,an,b1,...,by) is true in N}

For any —oo < a < b < oo, an open interval (a,b)r means {z € Rla <
z < b}, for any a,b € R with a < b, a closed interval [a, b]gr means {z € R|a <
z < b}. We call N o-minimal (order-minimal) if every definable subset of R
is a finite union of points and open intervals.

A real closed field (R, +, -, <) is an o-minimal structure and every defin-
able set is a semialgebraic set [13], and a definable map is a semialgebraic
map [13]. In particular, the semialgebraic category is a special case of a
definable one.

The topology of R is the interval topology and the topology of R" is the
product topology. Note that R" is a Hausdorff space.

The field R of real nubmers, Ry, = {z € R|z is algeraic over Q} are
Archimedean real closed fields. .

The Puiseux series R[X]", namely > -, a; X7,k €Z,geN,a cRisa
non-Archimedean real closed field.

Fact 2.1. (1) The characteristic of a real closed field is 0.

(2) For any cardinality k 2 Ry, there exist 2" many non-isomorphic real
closed fields whose cardinality are k.

(8) In a general real closed field, even for a C* function, the interme-
diate value theorem, existence theorem of mazimum and minimum, Rolle’s
theorem, the mean value theorem do not hold. Even for a C* function f in
one varianble, the result that f' > 0 implies f is increasing does not hold.

Definition 2.2. Let X C R™, Y C R™ be definable sets.
(1) A continuous map f : X = Y is a definable map if the graph of f
(C R™ x R™) is definable.



(2) A definable map f: X — Y is a definable homeomorphism if there
exists a definable map f':Y — X such that fo f' =idy, f' o f =idx.

Definition 2.3. A group G is a definable group if G is definable and the
group operations G X G — G,G — G are definable.

Let G be a definable group. A pair (X, ¢) consisting a definable set X
and a G action ¢ : G x X — X is a definable G set if ¢ is definable. We
simply write X instead of (X, ¢).

Definition 2.4. Let X,Y be definable G sets.

(1) A definable map f : X — Y is a definable G map if for any z €
X,9 €G, f(gz) = gf(2).

(2) A definable G map f: X — Y is a definable G homeomorphism if
there exists a definable G map A : Y — X such that foh = idy, ho f = idx.

Definition 2.5. (1) A definable set X C R" is definably compact
if for any definable map f : (a,b)g — X, there exist the limits
limw——)a—!-o f(x)a limw—)b—O f(:]:) in X.

(2) A definable set X C R" is definably connected if there exist no
definable open subsets U,V of X such that X = UuUV,UNV = 0, U #
0,V #£0.

A compact (resp. A connected) definable set is definably compact (resp.
definably connected). But a definably compact (resp. a definably connected)
definable set is not always compact (resp. connected). For example, if R =
Rag, then [0,1]r,, = {z € Ryl0 = z = 1} is definably compact and
definably connected, but it is neither compact nor connected.

Theorem 2.6 ([10]). For a definable set X C R", X is definably compact if
and only if X is closed and bounded.

The following is a definable version of the fact that the image of a compact
(resp. a connected) set by a continuous map is compact (resp. connected).

Proposition 2.7. Let X C R*, Y C R™ be definable set, f : X - Y a
definable map. If X is definably compact (resp. definably connected), then
f(X) is definably compact (resp. definably connected).



Theorem 2.8. (1) (The intermediate value theorem) For a definable function
f on a definably connected set X, if a,b € X, f(a) # f(b) then f takes all
values between f(a) and f(b).

(2) (Ezistence theorem of mazimum and minimum) Every definable func-
tion on a definably compact definable set attains mazimum and minimum.

(3) (Rolle’s theorem) Let f : [a,blr — R be a definable function such that
f is differentiable on (a,b)g and f(a) = f(b). Then there exists c between a
and ¢ with f'(c) =0

(4) (The mean value theorem) Let f : [a,blr = R be a definable function
which is differentiable on (a,b)r. Then there exists c between a and c with
f(e) = 1=t

(5) Let f : (a,b)r = R be a differentiable definable function. If f' >0
on (a,b)r, then f is increasing.

Example 2.9. (1) Let N be (Rug, +,,<). Then f: Ryy — Ry, f(z) =27
is not defined([14])

(2) Let N be (R,+,-,<). Then f: R = R, f(z) = 2° is defined but not
definable in N, and h : R — R, h(z) = sinz is defined but not definable in
N.

3 1Idea of proof of Theorem 1.1

We say that two homogeneous definable G sets are equivalent if they are
definably G homeomorphic. Let (G/H) be the equivalence class of G/H.
The set of equivalence classes of homogeneous definable G sets has an defined
(X) = (Y) if there exists a definable G map X — Y. Then the reflexivity
and the transitivity hold and the anti-symmetry is true.

Theorem 3.1 ([6]). Let G be a definably compact definable group. Then
every definable G set has only finitely many orbit types.

Theorem 3.2 ([6]). Let G be a definably compact definable group, X a de-
finable G set with transitive action and z € X. Then the map f : G/Gy — X
defined by f(gG) = gz is a definable G homeomorphism.

The following is a fundamental facts of o-minimal structures.

Theorem 3.3. (1) (Monotonicity theorem (e.g. 8.1.2, 8.1.6. [2])). Let
f : (a,b)r = R be a function with the definable graph. Then there exist



finitely many points a = ag < a1 < - -+ < ax = b such that on each subinterval
(aj,a;+1)r, the function is either constant, or strictly monotone and contin-
uous. Moreover for any ¢ € (a,b)g, the limits limy_ ..o f(x), limg_yc—o f(2)
exist in R U {oo} U {—o0}.

(2) (Cell decomposition theorem (e.g. 8.2.11. [2])). For any definable
subsets Ay, ..., Ax of R", there ezists a cell decomposition of R™ partitioning
each Al, .. Ak

Let A be a definable subset of R® and f : A — R a function with the
definable graph. Then there exists a cell decomposition D of R™ partitioning
A such that each B C A,B € D, f|B: B — R is continuous.

(8) (Triangulation theorem (e.g. 8.2.9. [2])). Let S C R" be a definable
set and let S1, S5, . .., Sk be definable subsets of S. Then S has a triangulation
in R™ compatible with Si, ..., Sk.

(4) (Piecewise trivialization theorem (e.g. 8.2.9. [2])). Let f : S — A bea
definable map between definable sets S and A. Then there is a finite partition
Ay, ..., Ax of A into definable sets such that each f|f~1(A4:) : f71(A) — A
is definably trivial.

(5) (Ezistence of definable quotients (e.g. 10.2.18 [2])). Let G be a defin-
ably compact definable group and X o definable G set. Then the orbit space
X/G ezists as a definable set and the orbit map m: X — X/G is surjective,
definable and definably proper.

Let G be a definably compact definable group, X a definable G set and
x € X. A definable slice at x is a definable subset S of X containing z such
that G,S = S and the map ¢ : G xg, S — X defined by ¢([g,s]) = gs is a
definable G imbedding onto a G invariant definable open neighborhood GS
of G(z) in X, and GS is called a definable G tube. Remark that G xg, S
exists a definable set because GG, is definably compact and Theorem 3.3, and
the natural G action G x G xg, S = G X¢g, S,(9,1¢, z]) — [99, x] induced
by Gx G xS —GxS,(g,(d,z)) — (g99,x) is definable.

Proposition 3.4 (e.g. II. 4.2 [1}). Let G be a compact Lie group, X a G
set, S a subset of X and x € S. Then the following three conditions are
equivalent.

(1) There exists a G imbedding ¢ : G Xg, A — X onto a G invariant
open neighborhood of G(z) with ¢(le, A]) = S, where A is a G5 space.

(2) S is a slice at x.

(3) GS is a G invariant open neighborhood of G(x) and there exists a G
retraction f : GS — G(x) such that f~Y(z) = S.



By a way similar to the proof of Proposition 3.1, we have the following
proposition.

Proposition 3.5 ([6]). Let G be a definably compact definable group, X a
definable G set, S a definable subset of X and x € S. Then the following
three conditions are equivalent.

(1) There exists a definable G imbedding ¢ : G xg, A — X onto a G
invariant definable open neighborhood of G(x) with ¢([e, A]) = S, where A is
a definable G, set.

(2) S is a definable slice at .

(8) GS is a G invariant definable open neighborhood of G(x) and there
exists a definable G retraction f: GS — G(z) such that f~1(z) = S.

By a way similar to the proof of 2.5 [7], we have the following theorem.

Theorem 3.6 ([6]). Let G be a definably compact definable group, X a de-
finable G set, Y a definable set and f : X — Y a G invariant surjective
definable map. Then there exists a finite partition {C;}; of Y into definable
sets such that each f|f~HC;) : f~1(C;) — C; is definably G trivial.

Proposition 3.7 ([6]). Let X be a definable set and A a definable closed
subset of X. Suppose that A is a definable strong deformation retract of X.
Then for any definable open neighborhood U of A in X, there exist a definable
closed neighborhood N of A in U and a definable map p : X — U such that
p|N =id and p(X — N)CcU - N.

Idea of Proof of Theorem 1.1.

We prove the condition (3) in Proposition 3.5.

To do so, we use finiteness of orbit types, piecewise trivialization of re-
strictions of orbit map, triangulation, Proposition 3.7. 1
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