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ABSTRACT. Toric origami manifolds, introduced in [2], are generalizations of
symplectic toric manifolds. In this note, we study the topology of orientable
toric origami manifolds with acyclic proper faces. This note is based on the
joint work with Anton Ayzenberg, Mikiya Masuda and Seonjeong Park, and
more details can be found in our paper [1].

1. TORIC ORIGAMI MANIFOLDS

In this section we recall the definitions and properties of toric origami manifolds
and origami templates. Details can be found in [2], [8] or [5].

A folded symplectic form on a $2n$-dimensional manifold $M$ is a closed 2-form $\omega$

whose top power $\omega^{n}$ vanishes transversally on a subset $W$ and whose restriction
to points in $W$ has maximal rank. Then $W$ is a codimension-one submanifold of
$M$ and is called the fold. If $W$ is empty, $\omega$ is a genuine symplectic form. The
pair $(M, \omega)$ is called a folded symplectic manifold. Since the restriction of $\omega$ to
$W$ has maximal rank, it has a one-dimensional kernel at each point of $W$ . This

determines a line field on $W$ called the null foliation. If the null foliation is the
vertical bundle of some principal $S^{1}$ -fibration $Warrow X$ over a compact base $X$ , then
the folded symplectic form $\omega$ is called an origami form and the pair $(M,\omega)$ is called
an origami manifold. The action of a torus $T$ on an origami manifold $(M, \omega)$ is
Hamiltonian if it admits a moment map $\mu:Marrow t^{*}$ to the dual Lie algebra of the
torus, which satisfies the conditions: (1) $\mu$ is equivariant with respect to the given
action of $T$ on $M$ and the coadjoint action of $T$ on the vector space $t^{*}$ (this action is
trivial for the torus); (2) $\mu$ collects Hamiltonian functions, that is, $d\langle\mu,$ $V\rangle=\iota_{V\#}\omega$

for any $V\in t$ , where $V\#$ is the vector field on $M$ generated by $V.$

Definition. A toric origami manifold $(M, \omega, T, \mu)$ , abbreviated as $M$ , is a compact
connected origami manifold $(M, \omega)$ equipped with an effective Hamiltonian action
of a torus $T$ with $\dim T=\frac{1}{2}\dim M$ and with a choice of a corresponding moment
map $\mu.$

When the fold $W$ is empty, a toric origami manifold is a symplectic toric man-
ifold. A theorem of Delzant [3] says that symplectic toric manifolds are classified
by their moment images called Delzant polytopes. Recall that a Delzant polytope
in $\mathbb{R}$“ is a simple convex polytope, whose normal fan is smooth (with respect to
some given lattice $\mathbb{Z}^{n}\subset \mathbb{R}^{n}$ ). In other words, all normal vectors to facets of $P$ have
rational coordinates, and, whenever facets $F_{1}$ , . . . , $F_{n}$ meet in a vertex of $P$ , the
primitive normal vectors $\nu(F_{1})$ , . . . , $\nu(F_{n})$ form a basis of the lattice $\mathbb{Z}^{n}$ . Let $\mathcal{D}_{n}$

denote the set of all Delzant polytopes in $\mathbb{R}^{n}$ (w.r.t. a given lattice) and $\mathcal{F}_{n}$ be the
set of all their facets.

The moment data of a toric origami manifold can be encoded into an origami
template $(G, \Psi_{V}, \Psi_{E})$ , where

$\bullet$ $G$ is a connected graph (loops and multiple edges are allowed) with the
vertex set $V$ and edge set $E$ ;
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$\bullet\Psi_{V}:Varrow \mathcal{D}_{n\rangle}$

$\bullet\Psi_{E}:Earrow \mathcal{F}_{n}$ ;

subject to the following conditions:
$\bullet$ If $e\in E$ is an edge of $G$ with endpoints $v_{1},$ $v_{2}\in V$ , then $\Psi_{E}(e)$ is a facet
of both polytopes $\Psi_{V}(v_{1})$ and $\Psi_{V}(v_{2})$ , and these polytopes coincide near
$\Psi_{E}(e)$ (this means there exists an open neighborhood $U$ of $\Psi_{E}(e)$ in $\mathbb{R}^{n}$

such that $U\cap\Psi_{V}(v_{1})=U\cap\Psi_{V}(v_{2})$ ).
$\bullet$ If $e_{1},$ $e_{2}\in E$ are two edges of $G$ adjacent to $v\in V$ , then $\Psi_{E}(e_{1})$ and $\Psi_{E}(e_{2})$

are disjoint facets of $\Psi(v)$ .
The facets of the form $\Psi_{E}(e)$ for $e\in E$ are called the fold facets of the origami

template.

Example. The following picture is an example of origami templates.

FIGURE 1. The origami template with two copies of isosceles right triangles

The following is a generalization of the theorem by Delzant to toric origami

manifolds.

Theorem 1.1 ([2]). Assigning the moment data of a toric origami manifold induces
$a$ one to one correspondence

{toric origami manifolds} $\langlerightarrow$ { origami templates}

up to equivariant origami symplectomorphism on the left-hand side, and affine
equivalence on the right-hand side.

Denote by $|(G, \Psi_{V}, \Psi_{E})|$ the topological space constructed from the disjoint
union $\sqcup_{v\in V}\Psi_{V}(v)$ by identifying facets $\Psi_{E}(e)\subset\Psi_{V}(v_{1})$ and $\Psi_{E}(e)\subset\Psi_{V}(v_{2})$

for any edge $e\in E$ with endpoints $v_{1},$ $v_{2}.$

An origami template $(G, \Psi_{V}, \Psi_{E})$ is called co\"orientable if the graph $G$ has no
loops (this means all edges have different endpoints). Then the corresponding

toric origami manifold is also called co\"orientable. If $M$ is orientable, then $M$ is
co\"orientable [5]. If $M$ is co\"orientable, then the action of $T^{n}$ on $M$ is locally standard
[5, lemma 5.1].

Let $(G, \Psi_{V}, \Psi_{E})$ be an origami template and $M$ the associated toric origami

manifold which is supposed to be orientable in the following. The topological space
$|(G, \Psi_{V}, \Psi_{E})|$ is a manifold with corners with the face structure induced from the

face structures on polytopes $\Psi_{V}(v)$ , and $|(G, \Psi_{V}, \Psi_{E})|$ is homeomorphic to $M/T$

as a manifold with corners. The space $|(G, \Psi_{V}, \Psi_{E})|$ has the same homotopy type

as the graph $G$ , thus $M/T\cong|(G, \Psi_{V}, \Psi_{E})|$ is either contractible or homotopy

equivalent to a wedge of circles.
Under the correspondence of Theorem 1.1 the fold facets of the origami template

correspond to the connected components of the fold $W$ of $M$ . If $F=\Psi_{E}(e)$ is a fold
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facet of the template $(G, \Psi_{V}, \Psi_{E})$ , then the corresponding component $Z=\mu^{-1}(F)$

of the fold $W\subset M$ is a principal $S^{1}$ -bundle over a compact space $B$ . The space $B$

is $a(2n-2)$-dimensional symplectic toric manifold corresponding to the Delzant
polytope $F.$

2. BETTI NUMBERS OF TORIC ORIGAMI MANIFOLDS

FYom the classifying Theorem 1.1, a natural question is how to describe the
cohomology ring and $T$-equivariant cohomology ring of a toric origami manifold $M$

in terms of its corresponding origami template. If $M$ is simply connected, i.e. the
associated graph $G$ is a tree, this question is answered by Masuda and Panov in [7]
and Holm and Pires in [5]. However, if $M$ is non-simply connected, this question is
still open in general, even for the betti numbers unless the case where $\dim M=4$

is solved by Holm and Pires in [6]. In this section, we will give an explicit formula
for the betti numbers of $M$ when $M$ is orientable and every proper face of $M/T$ is
acyclic. Our first main result is the following.

Theorem 2.1. Let $M$ be an orientable toric origami manifold of dimension $2n$

$(n\geq 2)$ such that every proper face of $M/T$ is acyclic. Then

$b_{2i+1}(M)=0$ for $1\leq i\leq n-2,$

$b_{1}(M)=b_{2n-1}(M)=b_{1}(M/T)$ .

Moreover, $H^{*}(M)$ is torsion free.
We can describe $b_{2i}(M)$ in terms of the face numbers of $M/T$ and $b_{1}(M)$ . Let

$\mathcal{P}$ be the simplicial poset dual to $\partial(M/T)$ . As usual, we define

$f_{i}=$ the number of $(n-1-i)$-faces of $M/T$

$=$ the number of $i$-simplices in $\mathcal{P}$ for $i=0$ , 1, . . . , $n-1$

and the $h$-vector $(h_{0}, h_{1}, \ldots, h_{n})$ by

(2.1) $\sum_{i=0}^{n}h_{i}t^{n-i}=(t-1)^{n}+\sum_{i=0}^{n-1}f_{i}(t-1)^{n-1-i}.$

Theorem 2.2. Let $M$ be an orientable toric origami manifold of dimension $2n$

such that every proper face of $M/T$ is acyclic. Let $b_{j}$ be the j-th Betti number of
$M$ and $(h_{0}, h_{1}, \ldots, h_{n})$ be the $h$ -vector of $M/T$ . Then

$\sum_{i=0}^{n}b_{2i}t^{i}=\sum_{i=0}^{n}h_{i}t^{i}+b_{1}(1+t^{n}-(1-t)^{n})$ ,

in other words, $b_{0}=h_{0}=1$ and

$b_{2i}=h_{i}-(-1)^{i}(\begin{array}{l}ni\end{array})b_{1}$ for $1\leq i\leq n-1,$

$b_{2n}=h_{n}+(1-(-1)^{n})b_{1}.$

Example. Let $M$ be the 4–dimensional toric origami manifold corresponding to
the origami template shown on fig.2 (Example 3.15 of [2]). It is easy to check that
$M$ satisfies the condition of our theorems from fig.2. The $f$-vector $(f_{0}, f_{1})=(8,8)$ ,
so the $h$-vector $(h_{0}, h_{1}, h_{2})=(1,6,1)$ . Then applying Theorem 2.1 and Theorem
2.2, we have $b_{0}=b_{4}=1,$ $b_{1}=b_{3}=1$ and $b_{2}=8.$
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FIGURE 2. The origami template with four polygons

3. TOWARDS THE RING STRUCTURE

A torus manifold $M$ of dimension $2n$ is an orientable connected closed smooth
manifold with an effective smooth action of an $n$-dimensional torus $T$ having a fixed

point ([4]). An orientable toric origami manifold with acyclic proper faces in the
orbit space has a fixed point, so it is a torus manifold. The action of $T$ on $M$ is

called locally standard if every point of $M$ has a $T$-invariant open neighborhood
equivariantly diffeomorphic to a $T$-invariant open set of a faithful representation
space of $T$ . Then the orbit space $M/T$ is a nice manifold with corners. The torus

action on an orientable toric origami manifold is locally standard. In this section,

we study the cohomology ring structure of an orientable toric origami manifold

with acyclic proper faces of the orbit space.

Let $\mathcal{P}$ be the poset dual to the face poset of $M/T$ as before.

Proposition 3.1. Let $M$ be a locally standard torus manifold such that every proper

face of $M/T$ is acyclic, and the free part of the action gives a trivial principal bundle
$M^{o}arrow M^{o}/T$ . Then $H_{T}^{*}(M)\cong \mathbb{Z}[\mathcal{P}]\oplus\tilde{H}^{*}(M/T)$ as graded rings.

Let $\pi:ET\cross\tau^{M}arrow BT$ be the projection. Since $\pi^{*}(H^{2}(BT))$ maps to zero
by the restriction homomorphism $\iota^{*}:H_{T}^{*}(M)arrow H^{*}(M)$ , $\iota^{*}$ induces a graded ring

homomorphism

(3.1) $arrow\iota$ : $H_{T}^{*}(M)/(\pi^{*}(H^{2}(BT)))arrow H^{*}(M)$ .

Proposition 3.2. Let $M$ be an orientable toric origami manifold of dimension $2n$

such that every proper face of $M/T$ is acyclic, then $\iota^{arrow}in$ (3.1) is an isomorphism

except in degrees 2, 4 and $2n-1$ . Moreover, the rank of the cokernel of $\iota^{arrow}in$ degree

2 is $nb_{1}(M)$ and the rank of the kernel $ofarrow\iota$ in degree 4 is $(\begin{array}{l}n2\end{array})b_{1}(M)$ .

Example. Let $M$ be the toric origami manifold corresponding to the origami tem-
plate shown on fig.2. Topologically $M/T$ is homeomorphic to $S^{1}\cross[0$ , 1$]$ and the

boundary of $M/T$ as a manifold with corners consists of two boundaries of -gons.
The multi-fan of $M$ is the union of two copies of the fan of $\mathbb{C}P^{1}\cross \mathbb{C}P^{1}$ with

the product torus action. Indeed, if $v_{1},$ $v_{2}$ are primitive edge vectors in the fan of
$\mathbb{C}P^{1}\cross \mathbb{C}P^{1}$ which spans a 2-dimensional cone, then the other primitive edge vectors
$v_{3}$ , . . . , $v_{8}$ in the multi-fan of $M$ are

$v_{3}=-v_{1},$ $v_{4}=-v_{2}$ , and $v_{i}=v_{i-4}$ for $i=5$ , . . . , 8

and the 2-dimensional cones in the multi-fan are
$\angle v_{1}v_{2}, \angle v_{2}v_{3}, \angle v_{3}v_{4}, \angle v_{4}v_{1},$

$\angle v_{5}v_{6}, \angle v_{6}v_{7}, \angle v_{7}v_{8}, \angle v_{8}v_{5},$
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where $\angle vv’$ denotes the 2-dimensional cone spanned by vectors $v,$
$v’$ . Note that

(3.2) $\tau_{i}\tau_{j}=0$ if $v_{i},$ $v_{j}$ do not span a 2-dimensional cone.

We have

(3.3) $\pi^{*}(u)=\sum_{i=1}^{8}\langle u,$ $v_{i}\rangle\tau_{i}$ for any $u\in H^{2}(BT)$ .

Let $v_{1}^{*},$ $v_{2}^{*}$ be the dual basis of $v_{1},$ $v_{2}$ . Taking $u=v_{1}^{*}$ or $v_{2}^{*}$ , we see that

(3.4) $\tau_{1}+\tau_{5}=\tau_{3}+\tau_{7},$ $\tau_{2}+\tau_{6}=\tau_{4}+\tau_{8}$ in $H_{T}^{*}(M)/(\pi^{*}(H^{2}(BT)))$ .

Since we applied (3.3) for the basis $v_{1}^{*},$ $v_{2}^{*}$ of $H^{2}(BT)$ , there is no other essentially

new linear relation among $\tau_{i}’ s.$

Now, multiply the equations (3.4) by $\tau_{i}$ and use (3.2). Then we obtain

$\tau_{i}^{2}=0$ for any $i,$

$(\mu_{1}:=)\tau_{1}\tau_{2}=\tau_{2}\tau_{3}=\tau_{3}\tau_{4}=\tau_{4}\tau_{1},$

$(\mu_{2}:=)\tau_{5}\tau_{6}=\tau_{6}\tau_{7}=\tau_{7}\tau_{8}=\tau_{8}\tau_{5}$ in $H_{T}^{*}(M)/(\pi^{*}(H^{2}(BT)))$ .

Our argument shows that these together with (3.2) are the only degree two relations
among $\tau_{i}$ ’s in $H_{T}^{*}(M)/(\pi^{*}(H^{2}(BT)))$ . The kernel of

$\overline{\iota}^{*}:H_{T}^{even}(M;\mathbb{Q})/(\pi^{*}(H^{2}(BT;\mathbb{Q} arrow H^{even}(M;\mathbb{Q})$

in degree 4 is spanned by $\mu_{1}-\mu_{2}.$
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