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ABSTRACT. Let $G$ be a compact Lie group. In this paper, we introduce a new equivalent

relation between real $G$-representation spaces, that is, we say that $G$-representation
spaces $V$ and $W$ are G-bi-isovariantly equivalent and write as $V=cW$ if there exist
$G$-isovariant maps $Varrow W$ and $Warrow V$ . We show that G-bi-isovariant equivalence
between real $G$-representations $V,$ $W$ with $V^{G}=W^{G}=\{O\}$ implies $DimV=DimW$ if
$G$ is finite, or $V\cong W$ if $G$ has positive dimension.

1. INTRODUCTION AND MAIN THEOREM

Throughout this paper, all maps are thought to be continuous. Let $G$ be a compact

Lie group. Suppose $X$ and $Y$ are $G$-spaces. Clearly, every $G$-equivariant map $\varphi$ : $Xarrow Y$

satisfies $G_{x}\subset G_{\varphi(x)}$ , where $G_{x}$ denotes the isotropy subgroup of $G$ at $x.$ A $G$-equivariant

map $\varphi$ : $Xarrow Y$ is called a $G$ -isovariant map if $G_{x}=G_{\varphi(x)}$ holds for all $x\in X$ . In

other words, $\varphi$ is a $G$-isovariant map if $\varphi|_{G(x)}$ is injective, where $G(x)$ denotes the $G$-orbit

through $x.$

In this article, we will consider $G$-isovariant maps between real $G$-representation spaces.

Let $V$ and $W$ be real $G$-representations with the G-fixed point sets $V^{G}$ and $W^{G}$ respec-

tively. By using Wassermann’s results proved in [6], we can easily show the following

result.

Proposition 1.1 (Isovariant Borsuk-Ulam theorem). Let $G$ be a compact solvable Lie

group. If there is a $G$-isovariant map $\varphi$ : $Varrow W$ , then the Borsuk- Ulam inequality

$\dim V/V^{G}\leqq\dim W/W^{G},$

that is,

$\dim V-\dim V^{G}\leqq\dim W-\dim W^{G}$

holds.

Incidently, the reason why Propositon 1.1 is called Isovariant Borsuk-Ulam theorem is

what it is originated from the Borsuk-Ulam theorem ([1]):
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Proposition 1.2 (The Borsuk-Ulam theorem). Let $C_{2}$ be a cyclic group of order 2.
Assume that $C_{2}$ acts on both $S^{m}$ and $S^{n}$ antipodally. If there exists a continuous $C_{2}$ -map
$f$ : $S^{m}arrow S^{n}$ , then $m\leqq n$ holds.

It is unknown whether similar statements as Propositon 1.1 hold for any compact Lie

group. The group $G$ is called a Borsuk-Ulam group (BUG) if whenever there is a G-

isovariant map $\varphi$ : $Varrow W$ , then the Borsuk-Ulam inequality

$\dim V/V^{G}\leqq\dim W/W^{G},$

that is,

$\dim V-\dim V^{G}\leqq\dim W-\dim W^{G}$

holds. Wasserman conjectured that all compact Lie groups are BUGs. He gave a sufficient

condition called the prime condition for being a BUG. In our previous work [2], we proved

that it is not necessary, that is, we showed there are infinitely many finite groups which

does not satisfy it. For the proof, we introduced a new sufficient condition called the

M\"obius condition.

In the present work, we introduce a new aspect. Namely, we give insight to the rela-

tionship between $V$ and $W$ when there exists an isovariant map from not only $V$ to $W$

but also $W$ to $V$ without the assumption that $G$ is a BUG.

Definition 1.3. Let $G$ be a compact Lie group. Let $V$ and $W$ be $G$-representations. We

say that $V$ and $W$ are G-bi-isovariantly equivalent and write as $V_{\vec{-}G}W$ if there exist
$G$-isovariant maps $Varrow W$ and $Warrow V.$

Clearly G-bi-isovariant equivalence is an equivalent relation, and $V\vec{-}GW$ implies

$V\vec{-}HW$ for any subgroup $H.$

Let $S(G)$ be the set of all subgroup of $G,$ $V$ a real $G$-representation space. We define

the dimension function

$DimV:S(G)arrow \mathbb{Z}$ by $H\mapsto\dim V^{H}.$

Then, we have the following theorem:

Theorem 1.4. Let $G$ be a compact Lie group, and $V,$ $W$ real $G$ -representations such that

$V^{G}=W^{G}=\{O\}$ . Assume $V\vec{-}c$ W. Then, $DimV=DimW$, that is, $\dim V^{H}=$

$\dim W^{H}$ holds for any $H\in S(G)$ . Moreover, if $\dim G>0$ and $G$ is connected, then $V$ is

isomorphic to $W$ as $G$ -representations.

This article is constructed as follows. In section 2, we give a proof of our theorem when
$G$ is finite. In the last section, we explain that isovariant condition is essential in our
result, and generalize our main theorem.
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2. PROOF OF OUR THEOREM

In this section we prove our theorem when $G$ is finite. The non finite case is shown by

usin$g^{}$ baczyk’s result ([4]), which will be shown in our upcoming paper.

Let $G$ be a finite group. For any $H\in \mathcal{S}(G)$ , it holds that

$\dim V=\frac{1}{|H|}\sum_{g\in H}\chi_{V}(1) , \dim V^{H}=\frac{1}{|H|}\sum_{g\in H}\chi_{V}(g)$ .

Hence,

$\dim W-\dim W^{H}-(\dim V-\dim V^{H})=\frac{1}{|H|}\sum_{9\in H}(\chi_{W}(1)-\chi_{W}(g)-\chi_{V}(1)+\chi_{V}(g))$ .

Put

$h(H)= \sum_{g\in H}(\chi_{W}(1)-\chi_{W}(g)-\chi_{V}(1)+\chi_{V}(g))$
.

Then, by [2] we see that

$h(H)= \sum_{D\in Cyc1(H)}(\sum_{D\leqq C:cyclic\leqq H}\mu(D, C))h(D)$
,

where Cyc1(H) denotes the set of all cyclic subgroups of $H$ , and $\mu()$ is the M\"obius

function. Since $D\in Cyc1(H)$ is a BUG and $V\vec{-}cW$ , we have

$\dim V-\dim V^{D}=\dim W-\dim W^{D},$

that is, $h(D)=0$ by Proposition 1.1. Thus, we have

$\dim V-\dim V^{H}=\dim W-\dim W^{H}$

for any subgroup $H$ of $G$ . Since $V^{G}=W^{G}=\{O\}$ , by choosing $G$ as $H$ , we see that

$\dim V$ must be equal to $\dim W$ , and consequently $DimV=DimW.$

3. REMARKS

Our theorem does not hold without the assumption that the maps are isovariant. Waner

gave a necessary and sufficient condition for the exixtence of a $G$-map from $S(V)arrow S(W)$

with $V\supset W$ , where $S(V)$ and $S(W)$ denote the unit spheres ([5]). By using Waner’s

criterion, we see the following:

Example 3.1. Let $G=C_{pq}$ a cyclic group of order $pq$ where $p$ and $q$ are distinct prime

numbers. For $i=1,$ $p,$ $q$ , let $(T_{i}, \rho_{i})$ be the complex 1-dimensional representation of $G$

such that $\rho_{i}(g)(z)=\zeta^{i}z$ , where $z\in \mathbb{C}$ and $\zeta=\exp\frac{2\pi\sqrt{-1}}{pq}$ . Put

$V=T_{1}\oplus T_{p}\oplus T_{q}$ and $W=T_{p}\oplus T_{q}.$

Then, they satisfy Waner’s criterion, thereby, there exist a $G$-map from $S(V)$ to $S(W)$ .
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As is stated in Theorem 1.4, if $G$ is finite, $DimV=DimW$ holds. Do there exist finite

groups such that $V_{\vec{-}G}W$ imply $V\cong W$ ? At the last of this article, we give insight to

the problem.

Decompose $V$ and $W$ into the direct sums of irreducible representations as

$V=V_{1}\oplus V_{2}\oplus\cdots\oplus V_{r}$ and $W=W_{1}\oplus W_{2}\oplus\cdots\oplus W_{s}.$

Then, according to tom Dieck’s book [3], $DimV=DimW$ if and only if $r=s$ and for each
$i,$ $V_{i}$ is Galois conjugate to some $W_{\sigma(i)}$ , where $\sigma$ is a permutation of $\{$ 1, 2, . . . , $r\}$ , that is,

there exists $\psi\in Gal(\mathbb{Q}(\zeta_{n})/\mathbb{Q})$ such that $\psi(\chi_{V_{i}})=\chi_{W_{\sigma(i)}}$ , where $n=LCM\{|9||g\in G\}.$

Thus, we obtain the following:

Proposition 3.2. Let $G$ be a finite group, and $V,$ $W$ real $G$ -representations such that

$V^{G}=W^{G}=\{O\}$ . Under the above conditions, if the action of $Gal(\mathbb{Q}(\zeta_{n})/\mathbb{Q})$ is trivial
$V_{\vec{-}G}W$ implies $V\cong W.$

As a corollary, we have :

Corollary 3.3. Let $G$ be a finite group. Let $V$ and $W$ be real $G$ -representation spaces

such that $V^{G}=W^{G}=\{O\}$ . Assume $V\vec{-}G$ W. Then, if $\chi_{V}\in \mathbb{Q}$ , then $V\cong W.$

We can illustrate some examples.

Example 3.4. Let $G$ be one ofthe following groups. Let $V$ and $W$ be real $G$-representation

spaces such that $V^{G}=W^{G}=\{O\}$ . Then, the characters of all real $G$-representations

take the value in $\mathbb{Q}$ . Therefore, $V_{\vec{-}G}W$ implies $V\cong W.$

$\bullet$ $\mathfrak{S}_{n}$ : the symmetric group of degree $n$ with $n\in \mathbb{N}.$

$\bullet$ $C_{n}$ : the cyclic group of order $n$ with $n=2$ , 3, 4, 6.
$\bullet$ $C_{2}^{k}\cross C_{3}^{p}$ : the direct product of $C_{2}$ ’s and $C_{3}’ s$ , where $k,$ $\ell\geqq 0.$

$\bullet$ $C_{4}^{k}$ : the direct product of $C_{4}’ s$ , where $k\geqq 1.$

$\bullet$ $Q_{8}^{k}$ : the direct product of the quaternion group $Q_{8}’ s$ , where $k\geqq 1.$

$\bullet$ $D_{4}^{k}$ : the direct product of the diheadral group $D_{4}’ s$ , where $k\geqq 1.$
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