
ON EVALUATION FIBER SEQUENCES

MITSUNOBU TSUTAYA

ABSTRACT. We denote the n-th projective space of a topological monoid $G$ by $B_{n}G$ and the classifying
space by $BG$ . Our main result states that, if $G$ is a topological group, then the evaluation fiber sequence
$Map_{0}(B_{n}G, BG)arrow Map(B_{n}G, BG)arrow BG$ extends to the right. This theorem is proved by the technique
of $A_{n}$-maps.

1. INTRODUCTION

The aim of this note is to present the result of the author’s paper [Tsu].
First of all, let us review the history of $A_{n}$ -theory. $H$-space was introduced by J.-P. Serre, which is

named after H. Hopf. A pointed space $G$ is said to be an $H$-space if a continuous binary operation
$m$ : $G\cross Garrow G$ of which the identity element is the basepoint is given. Every topological monoid is
of courese an $H$-space. But the converse does not hold.

J. F. Adams [Ada60] proved that an $n$-dimensional sphere $S^{n}$ admits a structure of an $H$-space if and
only if $n=0$, 1, 3 or 7. But I. M. James [Jam57] proved that $S^{7}$ never admit a homotopy associative
$H$-structure. An $H$-space $(G, m)$ is said to be homotopy associative if the maps $m\circ(id_{G}\cross m)$ and
$m\circ(m\cross id_{G})$ are homotopic. So, there is some difference between $H$-spaces and topological monoids.
Then, how about the difference between homotopy associative $H$-spaces and topological monoids?

J. D. Stasheff $[Sta63a]$ introduced the notion of $A_{n}$ -spaces. $H$-space and homotopy associative
$H$-space are nothing but $A_{2}$-spaces and $A_{3}$ -spaces, respectively. Every topological monoid is an $A_{\infty}-$

space. For general $n,$ $A_{n}$ -space is an $H$-space with some higher homotopy associativity of order $n$

in some sense. This homotopy associativity data is called $A_{n}$ -form. His work revealed that being a
topological monoid is much far from being an $H$-space.

The same thing can be said for maps between topological monoids. A map $f$ : $Garrow G’$ is said to be
an $H$-map if the maps $(g_{1},g_{2})\mapsto f(g_{1}g_{2})$ and $(g_{1},g_{2})\mapsto f(g_{1})f(g_{2})$ are homotopic. Every continuous
homomorphism between topological monoids is an $H$-map but the converse is false.

M. Sugawara [Sug60] given a condition for that a map between topological monoid induces a
map between their classifying spaces. As is well-known, a homomorphism $Garrow G’$ induces a map
$Bf$ : $BGarrow BG’$ between the classifying spaces. He introduced the notion strongly multiplicative
map and proved that a strongly multiplicative map induces a map between the classifying spaces.
After that, Stasheff $[Sta63b]$ proved the converse for path-connected topological monoids. Being a
strongly multiplicative map requires a map to preserve the infinitely higher homotopy associativity
of topological monoids. Stasheff weakened the condition and defined $A_{n}$ -map between topological
monoids. $A_{n}$-map is also defined by the data of preservation of higher homotopy associativity, called
$A_{n}$ -form.

By definition of $A_{n}$-map, one may expect that $A_{n}$ -map is generalized for morphism between $A_{n^{-}}$

maps. Stasheff [Sta70] described the condition only for $n\leq 4$ because it needs combinatorially
complicated cell complex, called multiplihedra. Abstractly, this was done by Boardman-Vogt [BV73]
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using their”’ $W$-constmction”’. Independently, N. Iwase also constructed those complexes in his master

thesis [Iwa83]. He described their combinatorial structure as well.

2. SPACE 0F $A_{n}$ -MAps

Now, to state our result, we get back to the work of Stasheff about $A_{n}$-maps between topological
monoids. Consider a path-connected topological monoid $G$ . Let us denote the n-th projective space
and the classifying space by $B_{n}G$ and $BG=B_{\infty}G$ , respectively. We remark that there is the canonical
inclusion $B_{n_{1}}G\subset B_{n_{2}}G$ for $n_{1}<n_{2}$ and the homeomorphism $B_{1}G\cong\Sigma G$ with the reduced suspension.
There is a universal principal G-fibration $EGarrow BG$ with $EG$ contractible. The restriction $E_{n}Garrow$

$B_{n}G$ over $B_{n}G$ is also a principal G-fibration. Using the canonical homotopy cofiber sequence

$E_{n}Garrow B_{n}Garrow B_{n+1}G$

and the homotopy fiber sequence

$E_{n}Garrow B_{n}Garrow BG,$

Stasheff’s result [$Sta63b$, Theorem 4.5] is rephrased as follows.

Theorem 2.1 (Stasheff, 1963). Let $G$ and $G’$ be connected topological monoids which are $CW$

complex. Then, a pointed map $f$ : $Garrow G’$ is an $A_{n}$ -map if and only if the reduced suspension
$\Sigma f$ : $\Sigma Garrow\Sigma G’\subset BG’$ can be extended to a map $B_{n}Garrow BG’.$

Theorem 2.1 states nothing about the correspondence of $A_{n}$-forms. Our result refines this point.
Let us denote the space of continuous maps between $X$ and $Y$ by Map $(X, Y)$ and that of pointed

ones by $Map_{0}(X, Y)$ . To guarantee the exponential law, we always work in the category of compactly
generated spaces and the mapping spaces are considered in the manner of compactly generated spaces.
The space of $A_{n}$ -maps with $A_{n}$ -forms between $G$ and $G$

’ is denoted by $ffl_{n}(G, G’)$ .

Theorem 2.2 (T). Let $G$ be a well-pointed topological monoid ofhomotopy type ofa $CW$ complex and
$G’$ a well-pointed grouplike topological monoid. Then thefollowing composite is a weak equivalence.

$\ovalbox{\tt\small REJECT}_{n}(G,G’)arrow Map_{0}(B_{n}G, B_{n}G’)B_{n}arrow Map_{0}(B_{n}G, BG(\iota_{n})_{\#}$

A pointed space $X$ is said to be well-pointed if the basepoint of $X$ has the homotopy extension
property. A topological monoid $G$ is said to be grouplike if $\pi_{0}(G)$ is a group with respect to the

multiplication induced from that of $G$ . The map $B_{n}$ is given by Sugawara’s construction [Sug60] and

the map $(\iota_{n})_{\#}$ is the composition with the inclusion $\iota_{n}$ : $B_{n}Garrow BG$ . In [Tsu], the author constructs
a topological category $\ovalbox{\tt\small REJECT} l_{n}$ of topological monoids and $A_{n}$ -maps between them and realizes $B_{n}$ as a
continuous functor from $ffl_{n}$ to the category of (compactly generated) pointed spaces.

3. EVALUATION FIBER SEQUENCE

Next, we explain the main result on evaluation fiber sequences. If $X$ is well-pointed, then the

evaluation

Map $(X, Y)arrow Y$

at the basepoint is a Hurewicz fibration of which the fiber over the basepoint is $Map_{0}(X, Y)$ . This
fiber sequence is called the evaluation fiber sequence. Roughly, our second result states that this
fiber sequence extends to the right if $X=B_{n}G$ and $Y=BG$. One may think that this is strange.

Because it implies not only that the mapping space $Map_{0}(B_{n}G, BG)$ is equivalent to a topological
monoid, but also the connecting map $Garrow Map_{0}(B_{n}G, BG)$ is equivalent to a homomorphism between
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topological monoids. But Theorem 2.2 claims that $Map_{0}(B_{n}G, BG)$ is equivalent to the topological
monoid $fl_{n}(G,G)$ .

There is a well-known adjunction

$Map_{0}(\Sigma X, Y)\cong Map_{0}(X, \Omega Y)$

for pointed spaces $X$ and $Y$, where $\Omega Y$ is the space of based loops in $Y.$

For a topological monoid $G$ , define the subspace $\overline{Map}_{0}(B_{n}G, BG)\subset Map_{0}(B_{n}G, BG)$ consisting
of maps $B_{n}Garrow BG$ which restricts to a map $\Sigma Garrow BG$ with the adjoint $Garrow\Omega BG\simeq G$ is a
homotopy equivalence. We also define the subspace $\overline{Map}(B_{n}G, BG)\subset Map(B_{n}G, BG)$ as the union
of the path-components that intersect with $\overline{Map}_{0}(B_{n}G, BG)$ .

For a topological group $G$ , the composition of the conjugation $Garrow G$ by an element of $G$ to an
$A_{n}$ -map from the left defines the left action of $G$ on $\ovalbox{\tt\small REJECT}_{n}(G, G)$ . In particular, the composition to the
identity map defines a map $\delta$ : $Garrow\ovalbox{\tt\small REJECT}_{n}(G, G)$ .

Note that there is a natural well-pointed replacement $tWGarrow G$ of a topological monoid $G$, which
is a homomorphism between topological monoids and is a weak equivalence.

Theorem 3.1 (T). Let $G$ be a well-pointed topological group of homotopy type of a $CW$ complex.
Consider a map $BGarrow B’W\ovalbox{\tt\small REJECT}_{n}(G, G; eq)$ defined by the composite

$BGarrow\simeq KWGarrow KW\ovalbox{\tt\small REJECT}_{n}(G, G;KW\delta eq)$ .

Then the sequence

$\overline{Map}_{0}(B_{n}G, BG)arrow$ Map $(B_{n}G, BG)arrow BGarrow KW\ovalbox{\tt\small REJECT}_{n}(G, G; eq)$ ,

is a homotopyfiber sequence.

When $n=\infty$ , the above sequence can be extended as

$\overline{Map}_{0}(BG, BG)arrow\overline{Map}(BG, BG)arrow eBGarrow B^{t}W\overline{Map}_{0}(BG, BG)arrow B^{t}W\overline{Map}(BG, BG)$ ,

where the subspaces $\overline{Map}_{0}(BG, BG)\subset Map_{0}(BG, BG)$ and Map $(BG, BG)\subset Map(BG, BG)$ are ex-
actly those of homotopy equivalences $BGarrow BG$ . For details, see Gottlieb’s paper [Got73].

4. $A_{n}-$lYPES OF GAUGE GROUPS

Theorem 2.2 and 3.1 may be applied in many situations. As an application of them, we obtain the
result for $A_{n}$ -types of gauge groups. For a principal $G$-bundle $Parrow B$, the topological group $\mathcal{G}(P)$

consisting of $G$-equivariant maps $Parrow P$ that induces the identity on $B$ is called the gauge group of $P.$

The associated bundle $adP=P\cross_{G}G$ with respect to the adjoint action of $G$ is called the adjoint bundle
and becomes a bundle of topological groups. The space of sections $\Gamma(adP)$ is naturally isomorphic to
the gauge group $\mathcal{G}(P)$ . For example, the classification of the $A_{n}$ -types of the gauge groups of principal
$SU(2)$-bundles over $S^{4}$ is investigated by Kono [Kon91], by Crabb-Sutherland [CS00], by Tsukuda
[TsuOl] and by the author [Tsu12]. For homotopy types, there are many related works.

Theorem 4.1 (Kishimoto-Kono, 2010 and T). Let $G$ be a well-pointed topological group and $B$ be
a pointed space, both ofwhich have the pointed homotopy types of $CW$ complexes. For a principal
$G$-bundle $P$ over $B$ classified by $\epsilon$ : $Barrow BG$, the following conditions are equivalent:

(i) ad $P$ is $A_{n}$ -trivial
(ii) the map $(\epsilon, \iota_{n})$ : $B\vee B_{n}Garrow BG$ extends over the product $B\cross B_{n}G,$

(iii) the composite $Barrow BG\epsilonarrow\theta W\ovalbox{\tt\small REJECT}_{n}(G, G; eq )$ is null-homotopic.
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A bundle of topological monoids $Earrow B$ is said to be $A_{n}$ -trivial if there exist a topological monoid
$G$ and a“fiberwise $A_{n}$-equivalence”’ $B\cross Garrow adP$ . The $A_{n}$ -triviality of ad $P$ implies the $A_{n}$-equivalence
of $\mathcal{G}(P)$ and Map $(B, G)$ . The equivalence of (i) and (ii) have already been known by Kishimoto-Kono
[KK10].

In [Tsu], the author applied Theorem 2.2 and 3.1 to higher homotopy commutativity and to cyclic
maps as well.

5. FUTURE W0RK

It seems that Theorem 3.1 has several applications to homotopy theory of gauge groups and higher
homotopy commutativity. Another direction is generalizations of Theorem 2.2. The author is trying
to generalize Theorem 2.2 for the $A_{\infty}$ -functors between small topological categories.
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