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Abstract. The purpose of this paper is to find a common element of the set of solutions for a
generalized mixed equilibrium problem, the set of solutions for a variational inequality problem and
the set of common fixed points for an infinite family of quasi-¢-nonexpansive mappings in a uni-
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1. Introduction

Let C' is a nonempty closed convex subset of real Banach space E, E* be the dual
space of E, and (-,-) be the pairing between E and E*. we denote by N and R the
sets of positive integers and real numbers, respectively.

Let G : C x C = R be a bifunction, ¥ : C — R be a real-valued function and
A:C — E* be a nonlinear mapping. The generalized mized equilibrium problem is
to find u € C such that

G(u,y) + (Au, y —u) +¥(y) —9(u) 20, VyeC. (1.1)
The set of solutions of the problem (1.1) is denoted by (, i.e.,
Q={ueC:Gu,y)+ (Au, y —u) + ¢¥(y) — ¥(u) >0, Vy € C}.

Special cases of the problem (1.1) are as follows:
(I) If A =0, then the problem (1.1) is equivalent to find u € C such that

Gu,y) +¥(y) —¢(u) 20, VyeC, (1.2)
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which is called the mized equilibrium problem [4]. The set of solutions of the problem
(1.2) is denoted by M EP(G).
(IT) If G = 0, then the problem (1.1) is equivalent to find u € C such that

(Au, y —u) +9(y) —¢(u) 20, VyeC, (1.3)

which is called the mized variational inequality of Browder type [3]. The set of
solution of the problem (1.3) is denoted by VI(C, A, ¥).
- (III) If A =0 and ¢ = 0, then the problem (1.1) is equivalent to find u € C such
that

G(u,y) >0, VyeC, (1.4)
which is called the equilibrium problem for G [2]. The set of solutions of the problem
(1.4) is denoted by EP(G)

(IV) If ¢ = 0, then the problem (1.1) is equivalent to find u € C such that

G(u,y) + (Au, y—u) >0, VyeC, (1.5)

which is called the generalized equilibrium problem [16]. The set of solutions of the
problem (1.5) is denoted by GEP(G).
(V) If G =0 and ¢ = 0, then the problem (1.1) is equivalent to find u € C such
that
(Au, y—u) >0, VYyeC, (1.6)
which is called the Hartmann-Stampacchia variational inequality [7). The set of
solutions of the problem (1.6) is denoted by VI(C, A).

Recently, many authors studied the problems of finding a common element of the
set of fixed points for a nonexpansive mapping and the set of solutions for an equi-
librium problem in the setting of Hilbert spaces, uniformly smooth and uniformly
convex Banach spaces, respectively (see, for instance, [9, 10, 14, 15, 17] and the
references therein).

The purpose of this paper is to find a common element of the set of solutions
for the generalized mixed equilibrium problem, the set of solutions for the varia-
tional inequality problem and the set of common fixed points for an infinite family
of quasi-¢-nonexpansive mappings in a uniformly smooth and uniformly convex Ba-
nach space, by using a hybrid algorithm. As applications, we utilize our results to
study the optimization problems. Our results improve and extend the corresponding
results given in [4, 14, 15, 17].

2. Preliminaries
The mapping J : E — 2F defined by '
J(z) ={z* € B*: (z, z*) = ||z|]* = ||z"|]*}, z € E.
is called the normalized duality mapping. By the Hahn-Banach theorem, J(z) # 0
for each z € E.
In the sequel, we denote the strong convergence and weak convergence of a se-
quence {z,} by z, = z and z, — z, respectively.

A Banach space F is said to be strictly convez if ”x—’;y“ <lforallz,yeU={z¢€
E :||z|| = 1} with z # y. E is said to be uniformly convez if, for each € € (0, 2],
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there exists § > 0 such that '—'””;’—y“ <1l1-éforall z,y € U with ||z —y|| > ¢ Eis
said to be smooth if the limit

eyl el
t—0 t

(2.1)

exists for all 7,y € U. E is said to be uniformly smooth if the limit (2.1) exists
uniformly in z,y € U.

Remark 2.1. It is well-known that, if F is a smooth, strictly convex and reflexive
Banach space, then the normalized duality mapping J : E — 2F" is single-valued,
one-to-one and onto (see [5]).

Let E be a smooth, strictly convex and reflexive Banach space and C be a
nonempty closed convex subset of E. The Lyapunov functional ¢ : E x E — R* is
defined by

¢(z,y) = ||zIl> - 2(z, Jy) + |lyl|*>, Vz,y € E.
It is obvious from the definition of ¢ that

(=l = 1lylD? < ¢(z,9) < (|l + Ilyl))?, Vz,y € E. (2.2)
Following Alber [1], the generalized projection Il : E — C is defined by

He(z) = ;gg #(y,xz), Vz€E. (2.3)

Lemma 2.1. ([1,8]) Let E be a smooth, strictly convex and reflexive Banach space
and C be a nonempty closed convex subset of E. Then the following conclusions
hold:

(1) ¢(z, ley) + ¢(Ilcy,y) < ¢(z,y) forallz € C and y € E.

(2) If z € E and z € C, then

2=z & (z—y, Jx—Jz) >0, VyeC.

Remark 2.2. (1) If E is a real Hilbert space H, then ¢(z,y) = ||z — y||? and II¢
is the metric projection P¢ of H onto C.

(2) If E is a smooth, strictly convex and reflexive Banach space, then, for all
z,y € E, ¢(z,y) =0 if and only if z = y (see [5]).

Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E, T : C — C be a mapping and F(T) be the set of fixed
points of T'. A point p € C is said to be an asymptotic fized point of T if there exists
a sequence {r,} C C such that z, — p and ||z, — T'z,|| — 0. We denoted the set
of all asymptotic fixed points of T by F(T).

A mapping T' : C — C is said to be relatively nonezpansive [12] if F(T) # 0,
F(T) = F(T) and

¢(p,Tz) < ¢p(p,z), Vz €C,pe€ F(T).

A mapping T : C — C is said to be closed if, for any sequence {z,} C C with
T, =z and Tz, — y, then Tx = y.
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Definition 2.1. ([13]) A mapping T : C — C is said to be quasi-¢-nonezpansive if
F(T) # 0 and
o(p,Tz) < p(p,x), Vz e Cpe F(T).

Next, we give some examples which are closed and quasi-¢-nonexpansive map-
pings.
Example 2.1. ([11]) Let FE be a uniformly smooth and strictly convex Banach
space and A C E x E* be a maximal monotone mapping such that A=10 (: the set

of zero points of A) is nonempty. Then the mapping J, = (J + rA)~1J is a closed
and quasi-¢-nonexpansive from E onto D(A) and F(J,) = A~10.

Example 2.2. Let I be the generalized projection from a smooth, strictly convex
and reflexive Banach space E onto a nonempty closed convex subset C C E. Then
Il is a closed and quasi-¢-nonexpansive mappings.

Lemma 2.2. ([8]) Let F be a smooth and uniformly convex Banach space. Let
{z,} and {y,} be sequences in E such that either {z,} or {y,} is bounded. If
limy—y00 @(Zn, Yrn) = 0, then lim, o ||2n — yu|| = 0.

Lemma 2.3. ([13]) Let E be a reflexive, strictly convex and smooth Banach space,
C a closed convex subset of E and T : C — C be a quasi-¢-nonexpansive mapping.
Then F(T) is a closed convex subset of C.

For solving the generalized mixed equilibrium problem, let us assume that the
function ¢ : C' — R is convex and lower semi-continuous, the nonlinear mapping
A: C — E* is continuous monotone and the bifunction G : C x C — R satisfies the
following conditions:

(A1) G(z,z) =0, Vz € C,

(A2) G is monotone, i.e., G(z,y) + G(y,z) <0, Vz,y € C,

(A3) limsup,, G(z + t(z — z),y) < G(z,y) for all z,y,z € C,

(A4) The function y — G(z,y) is convex and lower semi-continuous.

Lemma 2.4. (]2, 6, 17]) Let E be a smooth, strictly convex and reflexive Banach
space and C' be a nonempty closed convex subset of E. Let G: C x C — R be a
bifunction satisfying the conditions (A;)-(A4). Let r > 0 and = € E. Then we have
the following:

(1) There exists z € C such that

G(z,y) + 1(y -z, Jz—Jz) >0, VyeC. (2.4)
T
(2) If we define a mapping T, : E — C by
T.(z)={z€C: G(z,y)+%(y—z, Jz—Jz) >0, VyeC}, Vz € E,

then the following conclusions hold:

(a) T, is single-valued;
(b) T, is a firmly nonexpansive-type mapping, i.e., V z,y € E

(Trz —Tyy, JT,z — JTy) < (Trz — Try, Jz — Jy);
(¢) F(Ty) = EP(G) = F(Ty);
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(d) EP(G) is closed and convex;
(e) ¢(q, Trz) + ¢(Trz, ) < ¢(q,2), Vq € F(T;)

Lemma 2.5. Let F be a smooth, strictly convex and reflexive Banach space and
C be a nonempty closed convex subset of E. Let A : C — E* be a continuous
monotone mapping, ¥ : C — R a lower semi-continuous and convex function and
G : C x C — R be a bifunction satisfying the conditions (A;)-(A4). Let r > 0 be
any given number and z € F be any given point. Then we have the following:

(I) There exists u € C such that

G(u,y) + (Au, y —u) + ¥(y) — ¥(u) + %(y —u, Ju—Jz) >0, VyeC. (2.5)

(IT) If we define a mapping K, : C — C by

K (z) ={ue C:G(u,y) +{(Au, y —uw) + 9(y) — ¥(u)

] (2.6)
+-(y—u, Ju—Jz) 20, VyeC}, Vz€C,

then the mapping K, has the following properties:
(1) K, is single-valued,;
(2) K, is a firmly nonexpansive type mapping, i.e.,

(K,z — Ky, JK,z — JKy) < (K,z — K,y,Jz— Jy), Vz,y € E;

(3) F(Kr) =0 = F(Kr);
(4) Q is a closed convex set of C;
(5) &(p, Kr2)+d(K,2,2) < ¢(p,z), Vpe€ F(K,), 2€ E. (2.7)

Proof. Define a bifunction H : C x C — R as follows:
H(z,y) = G(z,y) + (Az, y — z) + ¢¥(y) — ¥(z), Vz,yeC.

It is easy to prove that H satisfies the conditions (A;)-(A4). Hence the conclusions
(I) and (IT) of Lemma 2.5 can be obtained from Lemma 2.4, immediately.

Remark 2.3. It follows from Lemma 2.4 that the mapping K, : C — C defined by
(12) is a relatively nonexpansive mapping and so it is quasi-¢-nonexpansive.

Lemma 2.6. ([18]) Let E be a uniformly convex Banach space, = > 0 be a
positive number and B,(0) be a closed ball of E. Then, for any given subset
{z1,29,-+ ,zn} C B,(0) and any positive numbers A, Ay, - - - , Ay with 22’:1 An =
1, there exists a continuous, strictly increasing and convex function g : [0,2r) —
[0, 00) with ¢(0) = 0 such that for any ¢,5 € {1,2,--- , N} with i < j,

N
“ E AnTn
n=1

Lemma 2.7. Let E be a uniformly convex Banach space, » > 0 be a positive number
and B, (0) be a closed ball of E. Then, for any given sequence {z;}2, C B,(0) and
any given sequence {\;}2; of positive numbers with ) > A, = 1, there exists a
continuous, strictly increasing and convex function g : [0, 2r) — [0, 00) with g(0) = 0

N
2
< 3 MalloallP = Al - ). (28)
n=1
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such that for any positive integers 7, j with 7 < j,

i 2
| = 2| <
n=1

> Aallzall® = Xsg (e — 1), (2.9)

Proof. Since {z;}2, C B,(0) and ; > 0 for all ¢ > 1 with } >, A, = 1, we have

i=1

Hence, for any given € > 0 and any given positive integers ¢, j with i < j, it follows
from (2.10) that there exists a positive integer N > j such that || D2 v, 1 Aizi]| <e.

Letting oy = Zfil Ai, by Lemma 2.6, we have
[ 9] 2 A ;
[Sonf = fow 352 4 35
i=1 i=N+1
<o Z Al

< NZ—HW Mgl x;|!>+e(e+zoNHZ

<> Mdlaili < (2.10)

AiT;
+e +260’N“Z i

AiZ;

)

< ZAiniIF = Mg ([lzi — z5]]) + ele + 2| Z Aizil])

i=1 i=1

< Z,\ a2 = Mgz — 2;1]) +e(e—|—2”2)\xz

=1
Therefore, since € > 0 is arbitrary, the conclusion of Lemma 2.7 hold.

3. Main Results

In this section, we shall use the hybrid method to prove a strong convergence
theorem for finding a common element of the set of solutions for the generalized
mixed equilibrium problem (1.1) and the set of common fixed points for an infinite
family of quasi-¢-nonexpansive mappings in Banach spaces.

Theorem 3.1. Let C' be a nonempty closed convex subset of a uniformly smooth
and uniformly convex Banach space F. Let A : C — E* be a continuous and
monotone mapping, ¥ : C' — R be a lower semi-continuous and convex function and
G : C x C = R be a bifunction satisfying the conditions (A;)-(A4). Let {S;}2; be
an infinite family of closed quasi-¢-nonexpansive mappings from C into itself with

.9}

I:=[)F(S:)[)2#0,

n=1



34

GENERALIZED MIXED EQUILIBRIUM PROBLEM

where () is the set of solutions of the problem (1.1). Let {z,} be the sequence
generated by

(20 € C, Cy=C,

Yn = J—l(anOJ-Tn + Z Olm‘JS,'l'n),

i=1

J u, € C such that
1
G(unyy) + <Auna Yy — un> + ¢(y) - ¢(un) + ;—<y - Up, J'U'n - Jyn) Z 01 vy € Ca

Cn+1 = {v €Cy: ¢(Ua un) < ¢(va$n)}a
\ xn+1 = HCn+1I07 vn 2 07

(3.1)
where J : E — E* is the normalized duality mapping and, for each i > 0, {ay;} is
a sequence in [0, 1] satisfying the following conditions:

(a) D oi2p ami = 1 for all n > 0;

(b) liminf,_,o ang - o > 0 for all ¢ > 1.
Then {z,} converges strongly to IIrzy, where Il is the generalized projection of E
onto I'.

Proof. First, we define two functions H: C x C — R and K, : C — C by
H(z,y) = G(z,y) + (Az, y — z) + Y(y) — ¥(z), Vz,y€C, (3.2)
and
1
K (z)={ueC: H(u,y) + ;(y —u, Ju—Jzr) >0, YyeC}, VreC. (3.3)

By Lemma 2.5, we know that the function H satisfies the conditions (4;)-(A4) and
K, has the properties (1)-(5) as given in Lemma 2.5. Therefore, (3.1) is equivalent
to the following;:

r.’IZQEC, Co=20C,

o =IO amiJSizy),
i=0
J u, € C such that (3.4)

1
H(un,y) + r—(y — Uy, Ju, — Jy,) >0, Vy € C,

Cn+1 = {U € Cn : ¢(U)un) S ¢(v5$n)}a
\ Tp+1 = HCn+1z0a Vn Z O)

where Sy = I (: the identity mapping).

Step (I): We prove that C,, is a closed and convex subset of C for all n > 0.

In fact, it is obvious that Cy = C is closed and convex. Suppose that C, is closed
and convex for some k > 1. For v € Ciyq, we have ¢(v,ur) < ¢(v, xy), which is
equivalent to

2(v, Jzi — Jur) < ||zl [ = [Jux]]?.
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Therefore, it follows that
Cra1 =A{v € Cr : 2(v, Jzp — Ju) < |[ae])* — [Jue][*}.

This implies that Ci41 is closed and convex. The desired conclusion is proved.

Step (II): We prove that {z,}, {Siz,}2, for all i > 1 and {y,} are bounded
sequences in C.
By the definition of C,,, we have z, = I,z for all n > 0. It follows from Lemma
2.1 (1) that
¢(xm IO) = ¢(ch.’170, iE()) S d)(ua 1‘0) - ¢(ua chx())
< ¢(u,z0), Yn>0, ued.

This implies that {¢(z,, zo)} is bounded. By virtue of (2.2), {z,} is bounded. Since
P(u, Sizn) < P(u,z,) for all u € G and i > 1, {S;z,} is bounded for all ; > 1 and
so {yn} is bounded in C. Denote M by

M = sup {llz.l], [[Sizall, |[yall} < co.
0,i>1

nz2

(3.5)

Step (III): Next, we prove that I' := (2, F(S;) (2 C Cy, for all n > 0.

Indeed, it is obvious that I' € Cy, = C. Suppose that I' C Cj for some k € N.
Since u, = K, yk, by Lemma 2.5 and Remark 2.3, K,, is quasi-¢- nonexpansive.
Hence, for any given u € I' C Cy and any positive integers m,j with m < j, it
follows from Lemma 2.7 that

¢(U, u’c) = ¢(U” K”'kyk)

< 6(uw) = 6(w, (Y auISa))
=0

= iakﬂ(u, JSize) + H iakijsix’“uz
1=0

=0
<ull® =Y aw2(u, JSimi) + > ol JSizil |

=0 1=0

- O_’kmOlkjg(HJSmek - JSJ$k||) (3 6)

< ful* - Zakﬂ(% JSizk) + Z i || Sz |
i=0 i=0
= em (|| J Sy — JSjzi|)

= _au{llull® = 2(u, JSizg) + [|Sizkl} = kmar; g (|17 Sk — JS;el)

i=0

= Z i (U, SiTx) — Okmk; 9(|1J Smai — JS;xi|)
=0
< @(u, x) — okman;g(||J Smak — JSjzil])-
This implies that u € Cy,, and so I' C C,, for all n > 0.
Step (IV): Now, we prove {z,} is a Cauchy sequence and

||zn — Sizn|| =0, Vi>1.
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Since Tp41 = ll¢,,, %o € Cp, and z, = Il¢, 7o, from the definition of Il¢,, we have

¢(Tn, 7o) < ¢(Tnt1,%0), Yn > 0.
Therefore, {¢(z,,20)} is nondecreasing and bounded and so lim, o ¢(Tn, zo) €x-
ists. From Lemma 2.1(1), for any given m > 1, we have
A (Znim, Tn) = A(Tnsm, e, To) < ¢(Tnim, 2o) — ¢(Ilc,To, To)
= ¢ Znim, To) — (T, To), Vn >0.
This implies that
lim ¢(ZTpym,zn) =0, VYm > 1.

n—oo

By Lemma 2.2, it follows that
lim ||Zp4m — Zul| =0, Vm >1, (3.7
n—o0

which implies that {z,} is a Cauchy sequence in C. Without loss of generality, we
can assume that

li_)m z,=pe€C. (3.8)
Since zn11 =g, 20 € Cp, it follows from the definition of Cpyq that
A (Tnt1,Un) < H(Tnt1,Tn), Yn > 0. (3.9)

Since E is uniformly smooth and uniformly convex, it follows from (3.7)-(3.9) and
Lemma 2.2 that

im ||Zp41 — Zo|| = Um ||Zps1 — un|| = lim ||z, — u,|| =0, (3.10)
n—00 n—00 n—00
Taking m =0and j =1,2,--- in (3.6), for any u € I, we have
¢(Ua un) < ¢(u; -'L'n) - O5noanjg(||‘]xn - JijnH)’ Vn > 0,
ie.,
o0 9(||J 2 — JSjznl|) < d(u, ) — d(u, uy). (3.11)
Since we have
B(u, Tn) — $(u, un) = ||2all* = unll* - 2(u, Jzn ~ Juy)
< llzall® = flal P + 2[Jull - |27 = Juy| (3.12)
< 1zn = unll(l|Zall + lunl]) + 2l|ul] - |[TZn — Jua]l,
it follows from (3.10) that ¢(u,z,) — ¢é(u,u,) — 0 as n — oo. Hence, from (3.11)
and the condition (b), it follows that g(||Jz, — JS;z,||) = 0 as n — oo. Since g is

continuous and strictly increasing with ¢g(0) = 0 and J is uniformly continuous on
any bounded subset of F, we have

l|zn — Sjzn|| = 0 (n — 00), Vj > 1. (3.13)

Thus the conclusion (IV) is proved.

Step (V): Now, we prove that p € I' := (2, F(S;) .

First, we prove that p € (o, F(S;). In fact, by the assumption that, for each
j=12,.--,5; is closed, it follows from (3.13) and (3.8) that p = S;p for all j > 1,
ie,pe€ ey F(Si)
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Next, we prove that p € Q. In fact, since z,, — p, it follows from (3.10) that
un — p. Again, since u,, = K, yn, it follows from (2.7), (3.5) and (3.12) that

¢(unayn) = ( rnyn,yn) < ¢(u yn) - ¢(Ua Krnyn)
S ¢(u) In) - ¢(U’7 Kf‘ny'n) (314)
= ¢(u, zn) — ¢(u,un) = 0 (n — 00).
This implies that ||u, —y,|| = 0 and so lim,_,s || Jun,—Jy,|| = 0. By the assumption
that r,, > a for all n > 0, we have
o I = Ty

n—00 Tn

=0. (3.15)
Again, since we have

H(utn, ) + (g~ tn, i~ Ju) 20, Wy €C,

n

by the condition A;, it follows that

1
_<y — Up, Jun - Jyn) > _H(Umy) > H(y:un)v Vy eC. (316)

Tn
By the assumption that y — H(z,y) is convex and lower semi-continuous, letting
n — 0o in (3.16), it follows from (3.15) and (3.16) that

H(y,p) <0, VyeC.

For any t € (0,1] and y € C, letting y; = ty+ (1 —¢t)p, then y; € C and H(y;,p) < 0.
By the condition (A;) and (A4), we have

0= H(y, ) <tH(ys,y) + (1 —t)H(ys, p) < tH(ys, ).

Dividing by ¢, we have H(y;,y) > 0 for all y € C. Letting t | 0, it follows from the
condition (As) that H(p,y) >0 forally € C, i.e., p €  and so

perzﬁp(s,-)ﬂﬂ.

Step (VI): Now, we prove that x,, — IIrzo.
Let w = lrzo. From w € I' C Cpyq and 2,41 = I, ., 7o, we have

¢($n+1,1‘0) < d)(wa ‘TO); Vn > 0.
This implies that
¢(p; o) = lim ¢(zy, z0) < G(w, zo). (3.17)

By the definition of IIrzy and (3. 17) we have p = w. Therefore, it follows that
ZTn, = Hpxy. This completes the proof.

The following cCrollaries can be obtained from Theorem 3.1 immediately:

Crollary 3.2. Let E, C, v, G, {S;}, {ani} and {r,} be the same as in Theorem
3.1. If

NFs) [VMEP(G) #0,
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where M EP(G) is the set of solutions of the mixed equilibrium problem (1.2), and
{z,} is the sequence generated by

(1'0601 CO=Ca

Yn = J_l(anOan + Z am'JSi-Tn)a
i=1

un € C such that (3.18)

1
Glutn, ) +%(y) = $(n) + —( = tn, Jun = Jya) 0, Wy €C,

Cri1={v € Cy : ¢(v,u,) < ¢(v,2,)},
\ Tpny1 = HCn_Han Vn 2 0)

then {z,} converges strongly to IIne. r(s, N MEP(G)T0

Proof. Putting A = 0 in Theorem 3.1, then 2 = M EP(G). Hence the conclusion
of Corollary 3.2 is obtained from Theorem 3.1, immediately.

Corollary 3.3. Let E, C, ¢, A, {S;}, {ani} and {r,} be the same as in Theorem
3.1. If

[o <]

(F(S)[(VI(C, A, ) #0,

=0

where VI(C, A, ) is the set of solutions of the mixed variational inequality of Brow-
der type (1.3), and {z,} is the sequence generated by

r.’L‘oEC, Co=0C,

Yn = J_l(anOan + Z am'JSixn)a

i=1
Jun € C such that 1 (3.19)
(Atn, y = un) +9(y) = P(un) + =y = un, Jun = Jyn) 20, Wy €C,

Cn+1 = {U € Cn . ¢(’U,Un) < ¢(U,$n)},

( ZTnt1 = I, o, Vn >0,

then {z,} converges strongly to O, F(syNVIC,Ay)To-

Proof. Putting G = 0 in Theorem 3.1, then Q = VI(C, A, v). Hence the conclusion
of Corollary 3.3 is obtained from Theorem 3.1.

Corollary 3.4. Let E, C, G, ¥, A, {an:} and {r,} be the same as in Theorem
3.1. If  # 0, where Q is the set of solutions of the generalized mixed equilibrium
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problem (1.1), and {z,} is the sequence generated by

((xo € C, Co = C,
u, € C such that
1
{ G(uTLJ y) + <Au'na y— un> + ¢(y) - ¢(un) + T_<y — Up, Jun - an) Z Oa vy € Ca
Cri1={v € Cp: d(v,uy) < ¢(v,z,)},

\ Tnt+1 = ch+15230, Vn 2 0,

(3.20)
then {z,} converges strongly to Ilgzo.

Proof. Taking S; = I for all i > 1 in Theorem 3.1, we have Yn = Z,. Hence the
conclusion is obtained.

Corollary 3.5. Let E, C, {S;} and {ay;} be the same as in Theorem 3.1. If
[F(S:) #0
i=1

and {z,} is the sequence generated by
( T € C: CO = C;

Yn = J_l (anOan + Z aniJSi$n>a

3 =1 (3.21)
Up = HC’yn

Cn+1 = {’U € Cn : QZS(U, un) < ¢(U: xn)}a

( Tnt1 = Uc, 70, VN 20,

then {z,} converges strongly to IIn=_ r(s,)Zo

Proof. Taking G = A =4 =0and r, = 1 for all n > 0 in Theorem 3.1, then
u, = Iloy,. Therefore, the conclusion of Corollary 3.5 is obtained from Theorem
3.1.

4. Applications to Optimization Problems

In this section, we will utilize the results presented in Section 3 to study the
following Optimization problem (OP):

min(h(z) + (z), (4.1)

where C' is a nonempty closed convex subset of a Hilbert space H and A, v : C = R
are two convex and lower semi-continuous functionals. Denote by Sol(OP) C C the
set of solutions of the problem (4.1). It is easy to see that Sol(OP) is a closed convex
subset in C. Let G : C x C — R be a bifunction defined by G(z,y) = h(y) — h(z).

Then we can consider the following mixed equilibrium problem:
Find z* € C such that

G(z",y) +(y) —v(z*) >0, VyeCl. (4.2)

39
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It is easy to see that G satisfies the conditions (A;)-(A4) in Section 1 and MEP(G) =
Sol(OP), where MEP(G) is the set of solutions of the mixed equilibrium problem
(4.2). Let {z,} be the iterative sequence generated by
(19 € C , Co=0C,
u, € C such that

1
q Glun, y) +9¥(y) — ¥(ua) + r_-<y — Un, Un — Tp) 20, Vy €C, (4.3)

n

Co1 ={v € Cn:t[lv— | < [|v —zall},
\ Tnt+1 = PCn+1"L‘07 vn‘ 2 07

where Pc is the projection operator from H onto C and {r,} is a sequence in [a, 00)
for some a > 0. Then {z,} converges strongly to Pxx,.

In fact, Taking A=0and S; = for alli=1,2,--- , N in Corollary 3.2, then we
have z, = y,. Since H is a Hilbert space, it follows that J = I, ¢(z,y) = ||z — y||?
and Ill¢,,, = Pg,,,, where P, is the projection of H onto C;. Thus the desired
conclusion can be obtained from Corollary 3.2, immediately.
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