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General System of Split Monotonic Variational Inclusion
Problem with Applications

Zenn-Tsun Yu!, Lai-Jiu Lin?

Abstract

In this paper, we apply the convergence theorem of the multiply sets split
feasibility problem to study the convergence theorems of the following prob-
lems: The split feasibility problem; the general system of split monotonic
variational inclusion problem; the general system of split equilibrium prob-
lem; the system of split equilibrium problem; the split multiply equilibrium
problem; the split equilibrium problem; the general system of split varia-
tional inequality problem; the system of split variational inequality problem;
the split variational inequality problem. We establish iteration processes and

prove strong convergence theorems of these problems.

Keywords: the general system of split monotonic variational inclusion problem:;
the general system of split equilibrium problem; fixed point problem; the gen-
eral system of split variational inequality problem; mathematical programming;

quadratic function programming.

1 Introduction

The split feasibility problem (SFP) in finite dimensional Hilbert spaces was first in-
troduced by Censor and Elfving [1] for modeling inverse problems which arise from
phase retrievals and in medical image reconstruction. Since then, the split feasi-
bility problem (SFP) has received much attention due to its applications in signal

processing, image reconstruction, with particular progress in intensity-modulated
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radiation therapy, approximation theory, control theory, biomedical engineering,
communications, and geophysics. For example, one can see [2, 3, 4, 5, 6, 7).

Variational inequality theory has been studied quite extensively and has emerged
as an essential tool in the study of a wide class of obstacle, free moving, equilib-
rium problem. It also has many applications in the optimization theory. Recently,
Cai and Bu [8] considered the following systems of variational inequalities in the
smooth Banach space X, which involves finding

Find 7 € C, § € C such that

(rlef+§—1,J(z—§)) >0, (1.1)

A1 +2—-3,J(z—2)) >0
for all z € C, where u; and py are two positive constants, C' is a nonempty closed
convex subset of X, Tq, Ty : C — X are two nonlinear mappings, J is the normal-
ized duality mappings. For the recent trends and developments as problem (1.1)
and its special cases, one can see [9, 10, 11, 12].

Let C and @ be nonempty closed convex subsets of real Hilbert spaces H; and
H,, respectively. For each i = 1,2, let g; > 0, let T; be a g;—inverse-strongly
monotone mapping of C into Hy, let § > 0,8 > 0, let B be a §—inverse-strongly
monotone mapping of Q into Hs, let B’ be a §' —inverse-strongly monotone mapping
of Q into Hy. For each i = 1,2, let ®; be a maximal monotone mapping on H; such
that the domain of ®; is included in C. Let G, G be maximal monotone mapping
on H, such that the domain of G, G are included in Q. Throughout this paper, we
use these notations and assumptions unless specify otherwise.

We know that the equilibrium problem is to find z € C such that
(EP) g(z,y) > 0 for each y € C,

where g : C x C — R is a bifunction. This problem includes fixed point prob-
lems, optimization problems, variational inequality problems, Nash equilibrium
problems, minimax inequalities, and saddle point problems as special cases. (For
examples, one can see [13] and related literatures.)

To the best of our knowledge, there is no result on the systems of split variational

inequalities problem.
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Motive by the the above problems, in this paper, we apply the convergence
theorem of the multiply sets split feasibility problem to study the convergence
theorems of the following problems: The split feasibility problem; the general sys-
tem of split monotonic variational inclusion problem; the general system of split
equilibrium problem; the system of split equilibrium problem; the split multiply
equilibrium problem; the split equilibrium problem; the general system of split
variational inequality problem; the system of split variational inequality problem;
the split variational inequality problem. We establish iteration processes and prove

strong convergence theorems of these problems.

2 Preliminaries

Throughout this paper, let H be a (real) Hilbert space with inner product (-,-) and
norm || - ||, respectively and C be a nonempty closed convex subset of H.
For o > 0, a mapping A : H — H is called a—inverse-strongly monotone
(a-ism) if
(r —y, Az — Ay) > a||Az — Ay|]},Vz,y € H.

A mapping T : C' — H is said to be a firmly nonexpansive mapping if
1Tz — Tyl|* < [l = 9l — | = T)z — (I - T)ylI*

for every z,y € C. Let T : C — H be a mapping. Then p € C is called an
asymptotic fixed point of T" [14] if there exists {z,} C C such that z, — p, and
lim, oo ||Zn — Tz,|| = 0. We denote by F(T') the set of asymptotic fixed points of
T. A mapping T : C — H is said to be demiclosed if it satisfies F(T) = F(T).

A multi-valued mapping B is said to be a monotone operator on H if (z —y, u—
v) > 0 for all z,y € D(B),u € Bz, and v € By. A monotone operator B on H is
said to be maximal if its graph is not properly contained in the graph of any other
monotone operator on H. For a maximal monotone operator B on H and r > 0,
we may define a single-valued operator J, = (I + rB)~! : H — D(B), which is
called the resolvent of B for r, and let B-'0 = {z € H : 0 € Bx}.
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Lemma 2.1. [15] Let C be a nonempty closed convex subset of a Hilbert space H
and let g : C x C — R be a bifunction satisfying the conditions (A1)-(A4). Define

A, as follows:

{zeH:g(z,y) > (y—1,2),VyeC}Vz €C

L4.1) A,z =
(L41) A O,vz ¢ C.

Then, EP(g) = A;'0 and A, is a maximal monotone operator with the domain
of A, C C. Furthermore, for any z € H and r > 0, the resolvent T of g coincides
with the resolvent of A, i.e., T9z = (I +1A,) 'z.

3 Convergence Theorems of Hierarchical Problems

For each i = 1,2,3, let H; be a real Hilbert space, G; be a maximal monotone
mapping on H; such that the domain of G; is included in C. Let Jf*’ = (I+XG;)!
for each A > 0. Let {6,} C H; be a sequence. Let V be a 5— strongly monotone and
L— Lipschitzian continuous operator with 7 > 0 and L > 0. Let T : C — H; be
a quasi-nonexpansive mapping with Fiz(T) = sz(T) Let C and @ be nonempty
closed convex subsets of real Hilbert spaces H; and Hs, respectively. Let F; be
a firmly nonexpansive mappings of H» into H; and F, be a firmly nonexpansive
mappings of Hs into Hs. Let A, : Hi — Hy and A, : Hy — H3 be bounded linear
operators. Let A} be the adjoint of A; and A} be the adjoint of A;. Let I : H; — H;
be a identity mapping, and let I; : H;;; — H;y; be a identity mapping for ¢ = 1, 2.
Throughout this paper, we use these notations and assumptions unless specify
otherwise.

Now, we recall the following multiple sets split feasibility problem (MSSFP — firmily):
Find Z € H; such that A,Z € Fiz(F,) and A:% € Fiz(Fy).

Let Q is a solution of (MSSFP — firmily).
With the same proof as Theorem 3.3 in [16], we have the following theorem

which is slightly different from Theorem 3.3 in [16] is an important tool in this

paper.



Theorem 3.1. [16] Suppose that A =: Fiz(T) ﬂQﬂFz’x(J,\Gn‘) N Fiz(JC?) # 0.
Let {z,} C H be defined by

( z; € C chosen arbitrarily,

3.1) J Yn = S (I = MAj(I — F)A1)JG(I - 1, A5(Iy — Fy) Ag)zn,

Sp = Tym
L Tntl = QpTy + (1 - an)(ﬂnen + (1 - ﬁnv)sn)

for each n € N, {)\,} C (0,00), {an} € (0,1), {6} C (0,1), and {r,} C (0,00).

Assume that:

(i) 0 < liminf, o o, < limsup,,_,, o, < 1;
(ii) JLI{QIO Bn=0,and ) 7, B, = o0;
(i) 0<a <A <b< qzdmg,and 0<a<r, <b< AT

(iv) lim,_,c 6, = 6 for some 8 € H.

Then lim z, = Z, where Z = P5(Z—VZ+6). This point Z is also a unique solution
n—oo

of the following hierarchical problem: Find T € A such that
(VZ—6,g—%) >0 forall g€ A.

Remark 3.1. Theorem 3.3 [16] assumes that F} is an firmly nonexpansive on H
and A, : H; — H, ia a bounded linear operator, but Theorem 3.1 assumes that F

is an firmly nonexpansive on H; and A, : H; — Hj ia a bounded linear operator.

Now, we recall the following split fixed point problem (SFP — nonexpansive):
Find Z € H; such that Z € Fiz(¥) and A% € Fiz(¥,).

where ¥, is a nonexpansive mapping of H, into H, and ¥ is a nonexpansive

mapping of H into H;. Let ; be a set of (SFP — nonexpansive).
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Theorem 3.2. Let ¥; be a nonexpansive mapping of Hs into Hs, let ¥ be a

nonexpansive mapping of H; into H;. Suppose that
Ay =: Fig(T) [\ [ Fiz(J3) [ Fiz(J52) # 0.

Let {z,} C H be defined by

.
z1 € C chosen arbitrarily,

(32) J Un = JoH (I = MAL (I — 1) A1) IS (I = ro(I = U))z,
Sp = Tyn:

xn«}-l = QnThp + (1 - an)(/@ngn + (1 - ﬁnv)sn)

for each n € N, {A,} € (0,00), {an} C (0,1), {6} C (0,1), and {r,} C (0,00).

Assume that:

(i) 0 <liminf, o a, < limsup,_,, a, < 1;
(ii) nhj{.lo Brn=0,and 77, B, = oo;

(ili) 0<a< A\ <b< and 0 < a <71, <b<3;

1
A1l?+2°

(iv) lim, o 0, = 6 for some 6 € H.

Then lim z, = Z, where £ = Pa,(Z — VZ + ). This point Z is also a unique

n—oo

solution of the following hierarchical problem: Find Z € A; such that

(VZ—0,q—Z) >0, for all g € A;.

4 Applications to General System of Split Monotonic Vari-

ational Inclusion Problems

Let C' and @) be nonempty closed convex subsets of real Hilbert spaces H; and H,,
respectively. For each i = 1,2, let ¢; > 0, let T; be a ;—inverse-strongly monotone
mapping of C into Hy, let § > 0,6 > 0, let B be a d—inverse-strongly monotone
mapping of @ into Hy, let B’ be a ¢ —inverse-strongly monotone mapping of Q

into H,. For each ¢ = 1, 2, let ®; be a maximal monotone mapping on H; such that
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the domain of ®; is included in C. Let G,G’ be maximal monotone mapping on
H, such that the domain of G,G’ are included in Q. Throughout this paper, we
use these notations and assumptions unless specify otherwise. In this paper, we
consider the following common solution problem.

(i) We consider the general system of split monotonic variational inclusion prob-

lem (GSSMVIP):

Find Z € Hy such that € Fiz(Jy (I — AT1)J22(I — rYy)),
and
@ = A& € H, such that @ € Fiz(JE (I, — 0B)JS (I, — pB')).

Let GSSMV I(®,,®,,G,G’) be the solution set of general system of split mono-
tonic variational inclusion problem (GSSMVIP).

Theorem 4.1. Let C and @ be two nonempty closed convex subsets of real Hilbert

spaces H; and H,, respectively. Suppose that
Il =: Fiz(T)[ |GSSMVI(®,%,,G,G ) [ Fiz(J5) [ Fiz(JS2) # 0.
Let {z,} C H be defined by

(
z1 € C chosen arbitrarily,

(41) | Yn = IS (I — MAL(I — U1) A1) IC (I = (I = U))zy,
Sp = Tyn,

. Tp41 = QpZy + (1 - an)(,@nan + (1 - /an)sn)

where ¥; = JE(I, — 0B)JS (I, — pB'), U = J3'(I — AT1)J22(I — rYy) for each
n € N, {X\} € (0,00), {an} C (0,1), {8} C (0,1), and {r,} C (0,00). Assume
that:

(i) 0 < liminf, ., a, < limsup,_, . an < 1;
(i) nlg{)lo Brn=0,and ) .2, B, = o0;

(iii) O<a§)\n§b<m,and0<a§rn§b<§;
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(iv) 0< A< 2, 0<7 <25, 0<0<26,and0<p<25;
(v) lim,— o0 6, = 6 for some 0 € H.

Then lim z, = Z, where Z = Py(Z—VZ+6). This point Z is also a unique solution

n—o0

of the following hierarchical problem: Find z € II such that
(VZ—6,q—2)>0forall ¢ €Il

(ii) For 2 = 1,2, let f; : C x C — R be a bifunction satisfying the conditions
(A1)-(A4) and let g; : @ x @ — R be a bifunction satisfying the conditions (Al)-
(A4). We study the general system of split equilibrium problem (GSSEP):

Find Z € H,, § € H; such that

f(5,2) + 1§ — 2, —§) — (§ — 2,T27) 20,

fE2)+3E—2,§-Z) - (Z—2,T15) >0
for all x € C, and

u = A1Z € Hy, U € Hy such that

forall u € Q
Let GSSEP(fi, fa, T1, T2, g1, g2, B, B') be the solution set of general system of
split equilibrium problem (GSSEP).

Theorem 4.2. Let C and @ be two nonempty closed convex subsets of real Hilbert
spaces H; and Hs, respectively. For each i = 1,2, let Ay, Ay, defined as (L4.1) in
Lemma 2.1. Suppose that

I, =: Fiz(T)( \GSSEP(f1, f2, T1, Y2, 91,62, B, B) [ | Fiz(J*) (| Fiz(J$?) # 0.

Let {z,} C H be defined by

4
z1 € C chosen arbitrarily,

(4 2) ) Yn = J)‘Gnl (I - )‘nAI(Il - \Ill)Al)‘]rCiz(I - rﬂ(I - \If))ill'n,
Sn = T'Yn,

Tnt1 = QpTyp + (1 - an)(/@nen + (1 - ﬂnv)sn)
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where Uy = J;'% (I, —0 B)J; (I — pB'), ¥ = J{1 (I = XT1)J7%2 (I = 1Y) for each
n €N, {A\} € (0,00), {an} C (0,1), {B.} C (0,1), and {r,} C (0,00). Assume
that:

(i) 0 <liminf,_ o oy < limsup,_,, o, < 1;

(ii) lim 8, =0, and Y o2, By = o0;

(i) 0<a <A <b< s, and 0<a <, <b<

(iv) 0 <A <2, 0<7<25, 0<0<25,and 0< p <28
(v) lim,_ o 6, = 0 for some 6 € H.

Then lim z, = Z, where Z = P, (Z — VZ + 6). This point Z is also a unique

n—oo

solution of the following hierarchical problem: Find Z € II, such that
(VZ—0,9—z) >0 for all q € Il,.
(iii) In the following theorem, we study the split multiple equilibrium problem
(SMEP):
Find z € H; such that
fl(j’x) 2 Oa fg(j,.flf) 2 0
for all z € C, and

u= Ali' € H2 such that
gl(aa U,) > 0,_92('11, U) > 0

for all u € Q.
Let SMEP(fi, fa, 31, g2) be the solution set of split multiple equilibrium problem
(SMEP).

Theorem 4.3. Let C and @ be two nonempty closed convex subsets of real Hilbert
spaces Hy and H;, respectively. For each i = 1,2, let Ay,, A, defined as (L4.1) in
Lemma 2.1. Suppose that

s =: Fiz(T)[ | SMEP(f1, f2,91,00) [ | Fiz(JZ) [ Fiz(JS?) # 0.

Let {z,} C H be defined by
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x1 € C chosen arbitrarily,

(45) J o = IS I = M AL (L = 1) AN IS (I — (I — 0))

Sp = Tyna
Tnt+1 = OpTyp + (1 - an)(/@ngn + (1 - /BnV)Sn)

\

where Uy = J2 3% W = JM1 22 for each n € N, {\,} € (0,00), {an} C (0,1),

{B.} € (0,1), and {r,} C (0,00). Assume that:
(i) 0 <liminf, ., a, <limsup,_, ., o, < 1;
(i1) JLIEO Bn=0,and Y 2 B, = oo;

[li) 0<a< A\ <b< HTlﬁ-zﬁ,and0<a§rn§b<%;
(v) limp o0 0, = 6 for some 0 € H.

Then lim z, = Z, where T = P, (Z — VZ + 6). This point Z is also a unique

n-—0oo

solution of the following hierarchical problem: Find Z € II5 such that
(VZ—0,qg—z) >0 for all q € IIs.

(iv) In the following theorem, we study the general system of split variational

inequality problem (GSSVIP) :

Find T € H;, § € H; such that
(’I‘TQE-{-@*—IZ',I—?]) 205
Mg +Z—-g,2-%)>0

for all z € C, and

@ = A1Z € Hy, ¥ € H, such that
(pB'a+ 7 — 4,u— 1) >0,

(¢Bo+4—0,u—a) >0

for all w € Q. Let GSSVI(Y1,T2, B, B') be the solution set of system of split
variational inequality problem (GSSVIP).



Theorem 4.4. Let C and @ be two nonempty closed convex subsets of real Hilbert

spaces H; and H,, respectively. Suppose that
Iy =: Fiz(T)(|GSSVI(Y1, Y2, B, B) (| Fiz(J5:) (| Fiz(JS?) # 0.

Let {z,} C H be defined by

,
z1 € C chosen arbitrarily,

Yo = T = M AL (L — 1) A1) TG (I — 7o (I — V)2,
(4.7 " "
8n = Tyn,

Tn+1 = Qnlp + (1 - an)(ﬂnon + (1 - ﬁnv)sn)

where Uy = Py(I; — 0B)Pg(l, — pB'), ¥ = Po(I — A\Y1)Pc(I — rY5) for each
n €N, {A\} C (0,00), {an} C (0,1), {B.} € (0,1), and {r,} C (0,00). Assume
that:

(i) 0 < liminf, . 0, < limsup,,_, . an < 1;

(ii) nlLIIOlO Bn=0,and Y 2, B, = o0;

(iii) 0<a< A <b< m,and0<a§rn§b<%—;
(iv) 0 <A <2, 0<r <29, 0<0<26and0< p<26;

(v) lim,_, 6, = 0 for some 6 € H.

Then lim z, = Z, where Z = Pp,(Z — VZ + ). This point Z is also a unique

n—oo

solution of the following hierarchical problem: Find Z € II; such that
(Vi—6,q— %) >0 for all g €II,.

(v) In the following theorem, we study the split multiple variational inequality

problem (SMVIP) :

Find Z € H; such that
<T2i‘,$ - .’f) > 0, <T11_,',(L' - II_:) > 0

for all z € C, and
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4 = A1Z € H, such that
(B'a,u—a)>0,(Bi,u—1a) >0
for all u € Q.

Let SMVI(Y1, YT, B, B') be the solution set of split multiple variational inequality
problem (SMVIP).

Theorem 4.5. Let C and @) be two nonempty closed convex subsets of real Hilbert

spaces H; and Hs, respectively. Suppose that
My =: Fiz(T)(\SMVI(Y1, Yo, B, B) [\ Fiz(J5) [ | Fiz(JS?) # 0.
Let {z,} C H be defined by

z1 € C chosen arbitrarily,
Yn = St (1 = M A (L — 1) A1) JE (I — (I — 0))z,,
$n = Tyn,

| Znt1 = 0nZn + (1 = 0)(Babr + (1 = BaV)s5)

where \Ill = PQ(II - (TB)PQ(Il - pB’), U = Pc(.[ - )\Tl)Pc(I - ’I"Tz) for each
n €N, {\} C(0,00), {an} C (0,1), {B.} C (0,1), and {r,} C (0,00). Assume
that:

(i) 0 <liminf, . a, < limsup,_,., a, < 1;
(ii) nanolo Bn=0,and Y o B, = oo;
(iii) 0<a§)\n§b<m§1§, and0<a§rn§b<%;
(iv) 0< A <2, 0<r <2, 0<0<26and0< p<2§;

(v) lim,— o 6, = 6 for some 6 € H.

Then lim z, = Z, where Z = P,(Z — VZ + ). This point Z is also a unique

n—oo

solution of the following hierarchical problem: Find Z € Il such that

(Vi—6,g—1z) >0 for all q € II,.
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