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Abstract

The nonconvex optimization problem (P) considered in this proposal is to minimize globally a ratio

of indefinite quadratic functions over an inequality quadratic constraint. It contains many important

applications such as the generalized Rayleigh quotient problem, the total least-squares problem, the

trust region method, and many others. Because of the fractional structure, the problem inherits a

great degree of difficulty even if one restricts only to homogeneous convex quadratic forms. Recently,

we realize that the problem involves not only the traditional fractional programming, but also the

fundamental $S$-lemma, the QPQC problem (quadratically constrained quadratic programming) and

the SDP (semi-definite programming) relaxation. It would be important to link all different areas

together and come out with fundamental results of real impact. In this article, we characterize the

solution structure for the (P) problem by studying the hidden convexity and the SDP reformulation.

Keywords. Fractional programming; nonconvex quadratic optimization; semidefinite programming;

$S$-Lemma.

1 Introduction

In this article, we are interested in the problem of minimizing a ratio of quadratic

functions over an admissible set described as follows:

(P) $\inf\frac{x^{T}A_{1}x+2a_{1}x+c_{1}(=f_{1}(x))}{x^{T}A_{2}x+2a_{2}x+c_{2}(=f_{2}(x))}$

s.t. $x\in X:=\{x\in R^{n}:g(x)\leq 0\},$

where $g(x)=x^{T}Bx+2b^{T}x+d$ is a quadratic and the matrices $A_{1},$ $A_{2},$ $B$ are symmetric

matrices. We denote $x^{*}$ to be the optimal solution of (P) if it is attained, and $\lambda^{*}$ the

infimum of the problem, which could be $-\infty$ when it is unbounded below. The problem

(P) belongs to the category of fractional programming. Many optimization models re-
quire to consider efficiency measures such as profit-to-revenue in economics, cost-to-time

in transportation, signal-to-noise in electrical engineering, etc. The ratio form leads to

the study of fractional programming and the special ratio structure gives additional prop-

erties which general nonlinear programming does not have. There are a lot of papers,

books, review articles dedicated to the area. The readers can refer to [5, 16, 11, 13] for
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representative ones. The topics studied therein range from fractional duality, generalized

convexity, and computational algorithms.

Among all the developments, the most well-known approach for solving (P) was pro-

posed by Dinkelbach [9] in 1967. His algorithm considers a sequence of subproblems

parameterized by $\lambda$ :
$(P)_{\lambda}$ $f( \lambda)=\inf\{f_{1}(x)-\lambda f_{2}(x) : x\in X\}$

and an iterative scheme was developed to find a value $\lambda_{0}$ such that $f(\lambda_{0})=0$ . To ensure

the validity of the iteration, $X$ is assumed to be compact and $f_{2}(x)>0$ on $X$ . Then, it

was shown that $f(\lambda)$ is continuous, concave, strictly decreasing and $\lambda_{0}=\lambda^{*}$ . Moreover,

(P) and $(P)_{\lambda_{0}}$ share the same optimal solution set. See [9, 14, 22]. The idea was later

generalized to become the Dinkelbach-type algorithm [7, 8] which can find an optimal

solution that minimizes the largest of $n$ ratios:

$\min_{x\in X}\max_{1\leq i\leq n}(\frac{f_{1}(x)}{g_{1}(x)}, \frac{f_{2}(x)}{g_{2}(x)}, \ldots, \frac{f_{n}(x)}{g_{n}(x)})$ .

Different variants of Dinkelbach-type algorithm have been studied such as the interval-type

algorithm [4], the dual algorithm [1], the generic algorithm [6], the augmented Lagrange

primal-dual method [15] and many others.

Recently, due to the new development on non-convex quadratic optimization and semi-

definite programming (SDP), quadratic fractional programming has received much atten-

tion. Fang et. al. [10] used a dual approach to minimize the sum of a quadratic function

and the ratio of two quadratic functions. Zhang and Hayashi [22] studied a CDT-type

quadratic fractional problem subject to two quadratic constraints, one of which is a ball,

by an iterative generalized Newton method for finding $f(\lambda_{0})=0$ . Beck and Teboulle [3]

studied a special case of (P), called the (RQ) problem, over an ellipsoid $X$ :

(RQ) $\{\frac{f_{1}(x)}{f_{2}(x)}:||Lx||^{2}\leq\rho,$ $x\in \mathbb{R}^{n}\}$

where $L\in \mathbb{R}^{r\cross n}$ is a full row rank matrix and $\rho>0.$

The problem (RQ) arises from fitting data to an overdetermined linear system $Ax\approx b,$

where both $A\in R^{m\cross n}$ and $b\in R^{m}$ are contaminated by noise. Such a problem is called

the Total Least Squares (TLS) problem which was intensively studied and applied in

many areas such as signal processing, automatic control, statistics, physics, economics,

biology and medicine, etc. Please refer to [2, 3, 12, 19] and the references therein. One

of the most important approaches to the (TLS) problem is to find a perturbation matrix

$E\in R^{m\cross n}$ and a perturbation vector $r\in R^{m}$ such that the sum of squares $||E||^{2}+||r||^{2}$
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is minimized under the consistency constraint $(A+E)x=b+r$. This problem, after some
transformations (see [2]), can be recast as

(TLS) $\inf_{x\in R^{n}}\frac{||Ax-b||^{2}}{||x||^{2}+1}.$

However, the problem (TLS) is in general unstable due to a possible unbounded norm.
The issue can be resolved by considering instead a constrained version of (TLS):

(RTLS) $\inf_{x\in R^{n}}\frac{||Ax-b||^{2}}{||x||^{2}+1}$

s.t. $||Lx||^{2}\leq\rho.$

See [2] for more detail. The problem (RTLS) naturally leads to the following more general

(RQ) problem:

(RQ) $\inf_{x\in R^{n}}\frac{x^{T}A_{1}x+2a_{1}x+c_{1}}{x^{T}A_{2}x+2a_{2}x+c_{2}}$

s.t. $||Lx||^{2}\leq\rho$

which was recently studied in [3, 21].

The (RQ) problem is a very special type of (P) with a convex homogeneous quadratic

form. This problem could be unbounded below (although the admissible set is bounded).

Even if the infimum of the problem is finite, it may not be attainable. The research

in [2, 3, 21] was then devoted to find conditions under which the (RQ) problem has an
attainable infimum (which is called the “attainment problem”’ in literature) and to develop

a SDP reformulation (semi-definite programming) for solving it. Very surprisingly, with
the help of a powerful alternative theorem-the $S$-lemma, it was proved in [21] that the
(RQ) problem has an attainable infimum if and only if the following (SDP)

$\max\{\lambda:(\begin{array}{ll}A_{1} a_{1}a_{1}^{T} c_{1}\end{array})- \lambda(\begin{array}{ll}A_{2} a_{2}a_{2}^{T} c_{2}\end{array})+ \eta(\begin{array}{ll}L^{T}L 00 -\rho\end{array}) \succeq 0, \eta\geq 0\}$ (1)

has a unique solution and the SDP reformulation is tight. This is a very strong result

with an important implication. The (RQ) problem is certainly non-convex, but it can
be solved via a convex SDP reformulation. In other words, the (RQ) problem inherits a

so-called “hidden convexity” in its problem structure.

Unfortunately, we immediately found that the above result can not hold even when
the homogeneous constraint $||Lx||^{2}\leq\rho$ is slightly changed to have an extra linear term.

Here is the counter example we construct.

$\inf_{x\in R^{3}}\{\frac{x_{1}^{2}+1}{x_{2}^{2}+1}$ : $g_{1}(x)=x_{1}^{2}+2x_{3}-1\leq 0\}$ . (2)
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Notice that the constraint function $g_{1}(x)=x_{1}^{2}+2x_{3}-1$ is non-homogeneous with a linear

term $2x_{3}$ and the objective function in (2) is strictly positive. Letting $x_{1}$ be fixed to $0$

and $x_{2}$ go to infinity, we observe that the infimum of 2 is indeed $0$ , which certainly can

not be attained by a set of positive values.

On the other hand, the example (2) with the following data

$A_{1}=(\begin{array}{lll}1 0 00 0 00 0 0\end{array}), A_{2}=(\begin{array}{lll}0 0 00 1 00 0 0\end{array}), B_{1}=(\begin{array}{lll}1 0 00 0 00 0 0\end{array}),$

$a_{1}=a_{2}=0,$ $c_{1}=c_{2}=1,$ $d_{1}=-1$ gives the corresponding (SDP) reformulation:

$\max\{\lambda:(\begin{array}{lllll}1+\eta 0 0 00 -\lambda 0 00 0 0 \eta 0 0 \eta 1- \lambda-\eta\end{array}) \succeq 0, \eta\geq 0\}.$

It can be checked that this (SDP) reformulation has a unique solution at $(\lambda, \eta)=(0,0)$ ,

but the infimum of the example (2) is not attained.

This interesting example leads us to consider the attainment problem for the general

(P), to discuss the related SDP reformulation and to explore any possible hidden convexity.

2 Preliminaries

For most studies in fractional programming, it is often assumed that $f_{2}(x)>0,$ $\forall x\in X.$

Namely, (P) is well-defined. Moreover, the feasible set $X$ is assumed to be compact so that

problem (P) is bounded from below and the optimal value is attained. In general, a well-

defined problem (P) is not necessarily bounded from below and can not be always attained.

The following two lemmas, generalizing some basic results in fractional programming,

characterize completely the boundedness and the attainment properties of Problem (P)

from observing the parametric function $f(\lambda)$ defined in $(P)_{\lambda}.$

Lemma 1 (The boundedness problem) Suppose that problem (P) is well defined. $It$

is bounded below if and only if there exists a $\overline{\lambda}\in \mathbb{R}$ such that $f(\overline{\lambda})\geq 0$ . Furthermore, if
$\lambda^{*}>-\infty$ , then

$\lambda^{*}=\max_{(f\lambda)\geq 0}\lambda.$
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Proof. Suppose $\lambda^{*}>-\infty$ . Then $\frac{f_{1}(x)}{f_{2}(x)}\geq\lambda^{*}$ for all $x\in X$ . Since problem (P) is

well-defined, $f_{2}(x)>0,$ $\forall x\in X$ and thus $f_{1}(x)-\lambda^{*}f_{2}(x)\geq 0,$ $\forall x\in X$ . In other words,

$f( \lambda^{*})=\inf_{x\in X}\{f_{1}(x)-\lambda^{*}f_{2}(x)\}\geq 0.$

Conversely, if there exists a $\overline{\lambda}\in \mathbb{R}$ such that

$f( \overline{\lambda})=\inf_{x\in X}\{f_{1}(x)-\overline{\lambda}f_{2}(x)\}\geq0,$

then $f_{1}(x)-\overline{\lambda}f_{2}(x)\geq 0,$ $\forall x\in X$ , which is equivalent to $\frac{f_{1}(x)}{f_{2}(x)}\geq\overline{\lambda},$ $\forall x\in X$ . It implies

that $\lambda^{*}\geq\overline{\lambda}$ , so problem (P) is bounded below. The result $\lambda^{*}=\max_{f(\lambda)\geq 0}\lambda$ also follows
immediately. $\square$

Example 1 below shows that it is possible for a bounded problem (P) to have $f(\lambda^{*})>0.$

Example 1 It is easy to check

$\lambda^{*}=\inf_{x\in R^{3}}\{\frac{x_{1}^{2}+1}{x_{2}^{2}+1}:g(x)=x_{1}^{2}+2x_{3}-1\leq 0\}=0$

by letting $x_{1}=0$ and $x_{2}$ going to infinity. Solving its parametric problem

$f(\lambda) =i$$nf_{x\in R^{3}}\{x_{1}^{2}+1-\lambda(x_{2}^{2}+1):g(x)=x_{1}^{2}+2x_{3}-1\leq 0\}$

$=\{\begin{array}{ll}1-\lambda, if\lambda\leq 0-\infty, if\lambda>0’\end{array}$

we observe that $f(\lambda^{*})=f(0)=1>0.$

Lemma 2 (The attainment problem) Suppose that problem (P) is well defined. Then,
$\lambda^{*}=v(P)$ is attained at $x^{*}\in X$ if and only if $\lambda^{*}$ is a root of $f(\lambda)=0$ and $x^{*}$ is an optimal

solution to $(P)_{\lambda^{s}}.$

Proof. Suppose first that $\lambda^{*}\in \mathbb{R}$ such that $f(\lambda^{*})=0$ and $x^{*}\in$ argmin $\{f_{1}(x)-\lambda^{*}f_{2}(x)$ :
$x\in X\}$ . Then,

$f( \lambda^{*})=\inf_{x\in X}\{f_{1}(x)-\lambda^{*}f_{2}(x)\}=f_{1}(x^{*})-\lambda^{*}f_{2}(x^{*})=0.$

Since $f_{2}(x^{*})>0$ , this is equivalent to

$\frac{f_{1}(x^{*})}{f_{2}(x^{*})}=\lambda^{*}.$
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Moreover, for all $x\in X,$

$f_{1}(x)-\lambda^{*}f_{2}(x)\geq f_{1}(x^{*})-\lambda^{*}f_{2}(x^{*})=0.$

It implies that

$\frac{f_{1}(x)}{f_{2}(x)}\geq\lambda^{*}=\frac{f_{1}(x^{*})}{f_{2}(x^{*})}, \forall x\in X.$

In other words, $\lambda^{*}=v(P)$ and $x^{*}$ attains $\lambda^{*}.$

Conversely, suppose $\lambda^{*}=v(P)$ is attained at $x^{*}\in X$ such that $\lambda^{*}=\frac{f_{1}(x^{*})}{f_{2}(x^{*})}$ . Then we

have

$\frac{f_{1}(x)}{f_{2}(x)}\geq\frac{f_{1}(x^{*})}{f_{2}(x^{*})}=\lambda^{*}, \forall x\in X.$

This implies that

$f_{1}(x)-\lambda^{*}f_{2}(x)\geq 0,$ $\forall x\in X$ and $f_{1}(x^{*})-\lambda^{*}f_{2}(x^{*})=0.$

Consequently, $x^{*}$ is a minimizer of $(P)_{\lambda^{*}}$ with $f(\lambda^{*})=0.$ $\square$

Remark 1 In our proofs above we do not use the assumption that (P) is a quadratic frac-
tional programming problem, so that Lemmas 1 and 2 hold for any well-defined fractional
programming problem.

3 Main results

Assume in this section that problem (P) satisfies the Slater condition, i.e., there exists
$\overline{x}\in \mathbb{R}^{n}$ such that $g(\overline{x})<0$ . Otherwise, the problem (P) is either infeasible or reduced to

an unconstrained fractional programming problem.

Lemma 3 If Problem (P) has no Slater point, it is either infeasible or equivalent to an

unconstrained quadratic fractional programming problem.

Proof. The Slater condition is violated only when $g(x)\geq 0,$ $\forall x\in \mathbb{R}^{n}$ . This implies that

$B\succeq 0$ , i.e, $g(x)$ is convex, and $d\in \mathcal{R}(B)$ , where $\mathcal{R}(B)$ is the range space of $B$ . That is,

the affine space

$\{x\in \mathbb{R}^{n}:Bx+d=0\}\neq\emptyset.$

Then $Bx+d=0\Leftrightarrow x=-B^{+}d+Wz$ , where $B^{+}$ is the Moore-Penrose generalized

inverse of $B$ and $W$ is a matrix whose columns form a basis for the null space of $B$ if $B$

is singular; and $W=0$ if $B$ is nonsingular. Since $g(x)$ is convex, $x=-B^{+}d+Wz$ is the

global minimizer of $g(x)$ with the minimum value $-d^{\Gamma}B^{+}d+\alpha$ . If $-d^{\Gamma}B^{+}d+\alpha>0,$ $g(x)\geq$
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$-d^{T}B^{+}d+\alpha>0$ implies that (P) is infeasible. If $-d^{\Gamma}B^{+}d+\alpha=0$ , then $g(x)\geq$ O. In
this case, the feasible domain $X=\{x|g(x)\leq 0\}$ is reduced to $X=\{x|g(x)=0\}$ . That is

$\{x\in \mathbb{R}^{n}:g(x)\leq 0\}=\{\begin{array}{ll}\{-B^{+}d+Wz, z\in \mathbb{R}^{m}\}, ifd^{\Gamma}B^{+}d=\alpha\emptyset, if d^{T}B^{+}d<\alpha\end{array}$

where $m$ is the dimension of the null space of $B$ . In the case that (QFIQC) is feasible, it

can be expressed in term of $z\in \mathbb{R}^{m}$ and becomes the following unconstrained fractional
programming problem:

$\lambda^{*}=\inf_{x\in \mathbb{R}^{n}}\{\frac{f_{1}(x)}{f_{2}(x)}:g(x)\leq 0\}=\inf_{z\in R^{m}}\frac{\overline{f}_{1}(z)}{\overline{f}_{2}(z)}$ , (3)

where $\overline{f_{i}}(z)=f_{i}(-B^{+}d+Wz)=z^{T}Q_{i}z-2q_{i}^{T}z+\gamma_{i},$ $Q_{i}=W^{T}A_{i}W,$ $q_{i}^{T}=(d^{T}B^{+}A_{i}-$

$b_{i}^{T})W,$ $\gamma_{i}=d^{T}B^{+}A_{i}B^{+}d-2b_{i}^{T}B^{+}d+c_{\eta},$ $i=1$ , 2. $\square$

Theorem 1 For any well-defined problem (P), its optimal value $\lambda^{*}$ can be determined by

solving the following semi-definite programming problem

$\lambda^{*}=\sup_{\lambda\in \mathbb{R},\mu\geq 0}\{\lambda:(\begin{array}{ll}A_{1}-\lambda A_{2}+\mu B b_{1}-\lambda b_{2}+\mu db_{1}^{T}-\lambda b_{2}^{T}+\mu d^{\Gamma} c_{1}-\lambda c_{2}+\mu\alpha\end{array}) \succeq 0\}$ . (4)

Proof. We have

$\lambda^{*}=\inf_{x\in R^{n}}\{\frac{f_{1}(x)}{f_{2}(x)}:g(x)\leq 0\}$

$= \sup\{\lambda:\{x\in \mathbb{R}^{n}|\lambda>\frac{f_{1}(x)}{f_{2}(x)}, g(x)\leq 0\}=\emptyset\}$

$= \sup\{\lambda:\{x\in \mathbb{R}^{n}|f_{1}(x)-\lambda f_{2}(x)<0, g(x)\leq 0\}=\emptyset\}$ (5a)

$= \sup\{\lambda:f_{1}(x)-\lambda f_{2}(x)+\mu g(x)\geq 0, \forall x\in \mathbb{R}^{n}, \mu\geq 0\}$ (5b)

$= \sup\{\lambda:(\begin{array}{ll}A_{1} b_{1}b_{1}^{T} c_{1}\end{array})- \lambda(\begin{array}{ll}A_{2} b_{2}b_{2}^{T} c_{2}\end{array})+ \mu(\begin{array}{ll}B dd^{T} \alpha\end{array}) \succeq 0, \mu\geq 0\}$

$= \sup_{\lambda\in\pi_{\mu\geq 0})}\{\lambda:(\begin{array}{ll}A_{1}-\lambda A_{2}+\mu B b_{1}-\lambda b_{2}+\mu db_{1}^{T}-\lambda b_{2}^{T}+\mu d^{\Gamma} c_{1}-\lambda c_{2}+\mu\alpha\end{array}) \succeq 0\},$

where the equivalence of (5a) and (5b) is due to a standard $S$-lemma [17]. $\square$

To know whether (P) is attained and to find $x^{*}$ that solves (P), we need to check whether
$\lambda^{*}$ found in (4) satisfies $f(\lambda^{*})=0$ and to solve $(P)_{\lambda}\cdot\cdot$ We have

$f( \lambda^{*})=\sup\{\nu\in \mathbb{R}:\{x\in \mathbb{R}^{n}|f_{1}(x)-\lambda^{*}f_{2}(x)<\nu, g(x)\leq 0\}=\emptyset\}$ . (6)
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Since the Slater condition is assumed, we can apply $S$-lemma to (6) and obtain

$f( \lambda^{*})=\sup\{\nu\in \mathbb{R}:f_{1}(x)-\lambda^{*}f_{2}(x)-\nu+\eta g(x)\geq 0, \forall x\in \mathbb{R}^{n}, \eta\geq 0\},$

which is equivalent to a convex SDP formulation:

$f( \lambda^{*})=\sup\{\nu\in \mathbb{R}:(\begin{array}{ll}A_{1}-\lambda^{*}A_{2}+\eta B b_{1}-\lambda^{*}b_{2}+\eta db_{1}^{T}-\lambda^{*}b_{2}^{T}+\eta d^{T} c_{1}-\lambda^{*}c_{2}+\eta\alpha-\nu\end{array}) \succeq 0,$ $\eta\geq 0\}$ . (7)

We notice that (7) is the Lagrange dual problem of $(P)_{\lambda^{*}}[20]$ . It means that, the strong

duality holds for $(P)_{\lambda^{*}}$ . Therefore, $(P)_{\lambda^{*}}$ has the following tight SDP relaxation:

$\inf M(f_{1}-\lambda^{*}f_{2})\bullet Z$

subject to $M(g)$ $\bullet$ $Z\leq 0$ (8)

$Z\succeq 0, I_{nn}\bullet Z=1.$

Then an optimal solution $x^{*}$ of $(P)_{\lambda^{*}}$ , if exists, can be obtained from an optimal solution

of (8) followed by the matrix rank-one decomposition procedure. See [18, 17].
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