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1 Introduction

Let X be a metric space and let T' be a mapping from X into itself. T is
contractive if there exists k € [0,1) such that for any z,y € X,

d(Tz,Ty) < kd(z,y).
Moreover T' is Kannan if there exists a € [0, %) such that for any z,y € X,
d(Tz,Ty) < ad(z,Tz) + ad(y, Ty).

For these mappings, we can consider the existence and uniqueness of fixed
points; see, for example, [3].

On the other hand, in [2], Nieto and Lépez consider fixed point theorems
for contractive mappings in partially ordered sets. They introduce a mapping
T such that there exists k£ € [0, 1) such that for any z,y € X,

x >y implies d(Tz, Ty) < kd(z,y).

For this mapping, they show the existence and uniqueness of fixed points.
In this paper, motivated by [2], we consider fixed point theorems for
Kannan mappings [1] in partially ordered sets.
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2 Fixed point theorem for contractive map-
pings

The following theorem is proved in [2]. For the sake of completeness, we
show the proof.

Let X be a partially ordered set with a metric d and let T be a mapping
from X into itself. We say that T is monotone nondecreasing if for any
z,y € X, r <y implies Tx < Ty.

Theorem 1 ([2]). Let X be a partially ordered set with a metric d such that
(X, d) is a complete metric space. If a nondecreasing sequence {x,} converges
to x, then we have z, < x for any n. Let T be a monotone nonincreasing
mapping from X into itself such that there exists k € [0,1) such that for any
T,y € X,

z >y implies d(Tz,Ty) < kd(z,y)

Assume that there exists xg in X with g < Txo. Then there exists a fized
point of T. Moreover, if for any z,y € X, there exists z € X which is
comparable to x and y, then the fixed point of T is unique.

Proof. Since g < T'zg and T is monotone nondecreasing, we obtain that
2o < Twg <TPmg <+ S Thag ST g < - -
Since zq < T'xy, we have
d(T?xg, Txo) < kd(Txo, o).
Moreover, since Tzy < T2z, we have
d(T3xg, T?x4) < kd(T?z0, Tzo) < k2d(Txzo, x0).
Hence we have
d(T™xy, T z4) < k™d(T'z, 7o)
for any n. For n < m, we have
d(T™xo, T"x0)
< d(T™xo, T™ 'xo) + d(T™ o, T %20)) + - - - + d(T™ 20, T )
< K™ HE™M2 4+ K)d(Txo, 7o)
< (K™ + k™ 4 .. )d(T'zo, 7o)
kn

= 1— kd(TCBo,iL'o).




Then {T™zy} is a Cauchy sequence in X. Since X is complete, there exists
p € X such that lim,_,. Tz = p. Since zg < Txg < T?x9 < -+- < Tz <
T gy < ... and T"xy — p, we have T"zy < p for all n. Then we have

d(Tp7p) S d(Tpa Tn+1x0) + d(TTH-le,p)
S kd(pa TnxO) + d(Tn+1$07p)'
As n — oo, we have d(T'p,p) = 0. Hence we have Tp = p.
Finally, we show the uniqueness of fixed points of 7. Let ¢ is another

fixed point of T. If ¢ is comparable to p, then T"q = ¢ is comparable to
T"p = p for any n. Then we have

d(p,q) = d(T"p, T"q)) < k"d(p, q),

which implies d(p, q¢) = 0.
If ¢ is not comparable to p, then there exists z € X comparable to p and
g. Then T™z is comparable to T"p = p and T"q = q for all n. Then we have

d(p,q) <d(T"p, T"z) + d(T"z,T"q))
< k"d(p, z) + k"d(z,q).

As n — oo, we have d(p, q) = 0. O

3 Fixed point theorem for Kannan mappings

In this section, we consider Kannan mappings in partially ordered sets.

Let X be a partially ordered set with a metric d and let T be a map-
ping from X into itself. To prove the uniqueness of fixed point of Kannan
mappings in partially ordered sets, we assume that X satisfies the following;

for any z,y there exists z with 2 < Tz, which is comparable to z,y. (1)

Theorem 2. Let X be a partially ordered set with a metric d such that (X, d)
is a complete metric space. If a nondecreasing sequence {z,} converges to z,
then we have x, < x for anyn. Let T' be a monotone nonincreasing mapping
from X into itself such that there ezists o € [0, 1) such that for any z,y € X,

x >y implies d(Tz,Ty) < ad(z,Tx) + ad(y, Ty).

Assume that there exists xo in X with zo < Txo. Then there erists a fixred
point of T. Moreover, if X satisfies (1), the fized point of T is unique.
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Proof. Since o < T'zg and T is monotone nondecreasing, we obtain that
2o <Txg < TPxg < - < Tl < T Hzg < -
Then we have
d(T"zo, T 'z0) < ad(T" 'z0, T o) + ad(T™ 2xo, T" ).

Thus (1 — a)d(T" 'zo,T"zo) < ad(T™ 2zy, T" ') holds. Therefore we
have N
d(’Im_liEo,Tnxo) < T_—ad(Tn_ziL'o, T"_lazo)

for any n. Then we have

d(T"zo, T"110) < i-f‘—ad(:r"—lgn, T )

2
(0%
< (1 — a) d(T"’zxo, Tn_ll'o)

< ...

o n
< (1_'_ a) d(.’L‘o,Tl’o).

Therefore we obtain that for any n,

d(Tnflio,Tm+1.’130) S (%) d(.’L'(),T.’Eo).

Then {T"zy} is a Cauchy sequence in X. In fact, for n < m, we have

d(meo, T":co)
< d(T™zo, T™ 'zg) + -+ - + (T zg, T z0)

< (L>m_l d(z0, Tzo) + - + (—E—)n d(zo, Tzo)

l—-«o l—-a
l1—a a \"
< 1= %0 (1—0[) d(xo,Txo).

Therefore we have d(T™xq, T"x) — 0. Since X is complete, there exists p €
X such that lim,,_, T"z¢ = p. Since T"zy — p and {T™z,} is nondecreasing,
we obtain that T"xzy < p for any n. Then we have

d(Tp, T 'z0) < ad(p, Tp) + ad(T™zo, T o).



As n — 0o, we have

d(Tp,p) < ad(p, Tp).
So we have (1 — a)d(p,Tp) < 0. Thus d(p,Tp) < 0 holds. Hence we have
Tp =p.
Next we show the uniqueness of fixed points of 7. We assume that X
satisfies (1) and ¢ € X is another fixed point of T
If p is comparable to ¢, then p > ¢ implies T"p > T™q. Thus T"p =p is
comparable to T"q = q for any n. Then we have

d(p,q) = d(T"p,T™q)
< ad(T"'p, T"p) + ad(T" ¢, T"q)

Q n—1 r n—1
< —_ d(p, T — d(q,T
_a<1_a> (p, p)+a<1_r) (¢, Tq)
for any n. As n — oo, we have p = q.

If p is not comparable to ¢. By (1), for p and g, there exists z € X such
that 2 < Tz and z is comparable to p, q. Since Tz < z and T is monotone
nondecreasing, we obtain that

2<Tz<T? < - . <Trz<Tly<....

Then we have
o

d(T" 'z, T"z) < T

d(T" 22, T" 12)

for any n. Then we have

d(p,q) = d(T"p,T"q)

<d(T"p,T"z)+ d(T"2,T"q)

< a(d(T" 'p, T"p) + d(T" 2, T"z2))
+a(d(T" 12, T"2) + d(T" tq, T™q))

= 2ad(T" 2, T"2)
S 200 %d(Tn—2Z, Tn_IZ)

(VAN

gzo;< - )n—ld(z,Tz).

11—«

As n — oo, we have d(p, q) = 0. Hence we have p = q. O
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The following mappings satisfy conditions of Theorem 2.

Example 3. Let X = {0,1,2} and the distance function p is the ordinary
Euclidean distance on the line. Let T be a mapping of X into itself defined by
Tz =1 forz € X. Then T is a monotone nondecreasing mapping satisfying
(1). Moreover if we take oo = 3, then z >y implies d(Tz, Ty) < ad(z,Tz) +
ad(y, Ty).

Example 4. Let X = [0,1] and the distance function p is the ordinary
FEuclidean distance on the line. Let T be a mapping of X into itself defined

by

13: 0< <1
-— x f—
5 - 2’
Tx =

1 1

— - < zr<l.

433 2_x_1

Here T' is a monotone nondecreasing mapping satisfying (1). Moreover if we
take a = 3, then z > y implies d(Tz, Ty) < ad(z, Tz) + ad(y, Ty).

Remark. In [4], we apply Theorem 1 to boundary value problems for fourth
order differential equations. We want to apply Theorem 2 to some problems
for differential equations. This is a further topic.
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