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1 Introduction

Let $X$ be a metric space and let $T$ be a mapping from $X$ into itself. $T$ is
contractive if there exists $k\in[0$ , 1) such that for any $x,$ $y\in X,$

$d(Tx, Ty)\leq kd(x, y)$ .

Moreover $T$ is Kannan if there exists $\alpha\in[0, \frac{1}{2}$ ) such that for any $x,$ $y\in X,$

$d(Tx, Ty)\leq\alpha d(x, Tx)+\alpha d(y, Ty)$ .

For these mappings, we can consider the existence and uniqueness of fixed
points; see, for example, [3].

On the other hand, in [2], Nieto and L\’opez consider fixed point theorems
for contractive mappings in partially ordered sets. They introduce a mapping
$T$ such that there exists $k\in[0$ , 1) such that for any $x,$ $y\in X,$

$x\geq y$ implies $d(Tx, Ty)\leq kd(x, y)$ .

For this mapping, they show the existence and uniqueness of fixed points.
In this paper, motivated by [2], we consider fixed point theorems for

Kannan mappings [1] in partially ordered sets.
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2 Fixed point theorem for contractive map-
pings

The following theorem is proved in [2]. For the sake of completeness, we
show the proof.

Let $X$ be a partially ordered set with a metric $d$ and let $T$ be a mapping
from $X$ into itself. We say that $T$ is monotone nondecreasing if for any
$x,$ $y\in X,$ $x\leq y$ implies $Tx\leq Ty.$

Theorem 1 ([2]). Let $X$ be a partially ordered set with a metric $d$ such that
(X, d) is a complete metric space. If a nondecreasing sequence $\{x_{n}\}$ converges
to $x$ , then we have $x_{n}\leq x$ for any $n$ . Let $T$ be a monotone nonincreasing
mapping from $X$ into $it_{\mathcal{S}}elf$ such that there exists $k\in[0$ , 1) such that for any
$x,$ $y\in X,$

$x\geq yilid(T_{X}, Ty)\leq kd(x, y)$

$A_{\mathcal{S}}sume$ that there exists $x_{0}$ in $X$ with $x_{0}\leq Tx_{0}$ . Then there exists a fixed
point of T. Moreover, if for any $x,$ $y\in X$ , there exists $z\in X$ which $i\mathcal{S}$

comparable to $x$ and $y$ , then the fixed point of $T$ is unique.

Proof. Since $x_{0}\leq Tx_{0}$ and $T$ is monotone nondecreasing, we obtain that

$x_{0}\leq Tx_{0}\leq T^{2}x_{0}\leq\cdots\leq T^{n}x_{0}\leq T^{n+1}x_{0}\leq\cdots$

Since $x_{0}\leq Tx_{0}$ , we have

$d(T^{2}x_{0}, Tx_{0})\leq kd(Tx_{0}, x_{0})$ .

Moreover, since $Tx_{0}\leq T^{2}x_{0}$ , we have

$d(T^{3}x_{0}, T^{2}x_{0})\leq kd(T^{2}x_{0}, Tx_{0})\leq k^{2}d(Tx_{0}, x_{0})$ .

Hence we have
$d(T^{n+1}x_{0}, T^{n}x_{0})\leq k^{n}d(Tx_{0}, x_{0})$

for any $n$ . For $n<m$ , we have

$d(T^{m}x_{0}, T^{n}x_{0})$

$\leq d(T^{m}x_{0}, T^{m-1}x_{0})+d(T^{m-1}x_{0}, T^{m-2}x_{0}))+\cdots+d(T^{n+1}x_{0}, T^{n}x_{0})$

$\leq(k^{m-1}+k^{m-2}+\cdots+k^{n})d(Tx_{0}, x_{0})$

$<(k^{n}+k^{n+1}+\cdots)d(Tx_{0}, x_{0})$

$= \frac{k^{n}}{1-k}d(Tx_{0}, x_{0})$ .
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Then $\{T^{n}x_{0}\}$ is a Cauchy sequence in $X$ . Since $X$ is complete, there exists
$p\in X$ such that $\lim_{narrow\infty}T^{n}x_{0}=p$ . Since $x_{0}\leq Tx_{0}\leq T^{2}x_{0}\leq\cdots\leq T^{n}x_{0}\leq$

$T^{n+1}x_{0}\leq\cdots$ and $T^{n}x_{0}arrow p$ , we have $T^{n}x_{0}\leq p$ for all $n$ . Then we have

$d(Tp,p)\leq d(Tp, T^{n+1}x_{0})+d(T^{n+1}x_{0},p)$

$\leq kd(p, T^{n}x_{0})+d(T^{n+1}x_{0},p)$ .

As $narrow\infty$ , we have $d(Tp,p)=0$ . Hence we have $Tp=p.$

Finally, we show the uniqueness of fixed points of $T$ . Let $q$ is another
fixed point of $T$ . If $q$ is comparable to $p$ , then $T^{n}q=q$ is comparable to
$T^{n}p=p$ for any $n$ . Then we have

$d(p, q)=d(T^{n}p, T^{n}q))\leq k^{n}d(p, q)$ ,

which implies $d(p, q)=0.$

If $q$ is not comparable to $p$ , then there exists $z\in X$ comparable to $p$ and
$q$ . Then $T^{n}z$ is comparable to $T^{n}p=p$ and $T^{n}q=q$ for all $n$ . Then we have

$d(p, q)\leq d(T^{n}p, T^{n}z)+d(T^{n}z, T^{n}q))$

$\leq k^{n}d(p, z)+k^{n}d(z, q)$ .

As $narrow\infty$ , we have $d(p, q)=0.$ $\square$

3 Fixed point theorem for Kannan mappings

In this section, we consider Kannan mappings in partially ordered sets.
Let $X$ be a partially ordered set with a metric $d$ and let $T$ be a map-

ping from $X$ into itself. To prove the uniqueness of fixed point of Kannan
mappings in partially ordered sets, we assume that $X$ satisfies the following;

for any $x,$ $y$ there exists $z$ with $z\leq Tz$ , which is comparable to $x,$ $y$ . (1)

Theorem 2. Let $X$ be a partially ordered set with a metric $d$ such that (X, d)
is a complete metric $\mathcal{S}pace$ . If a $nondecrea\mathcal{S}ing$ sequence $\{x_{n}\}conver9es$ to $x,$

then we have $x_{n}\leq x$ for any $n$ . Let $T$ be a monotone nonincreasing mapping

from $X$ into itself such that there exists $\alpha\in[0, \frac{1}{2}$ ) such that for any $x,$ $y\in X,$

$x\geq y$ implies $d(Tx, Ty)\leq\alpha d(x, Tx)+\alpha d(y, Ty)$ .

Assume that there exists $x_{0}$ in $X$ with $x_{0}\leq Tx_{0}$ . Then there exists a fixed
point of T. Moreover, if $X$ satisfies (1), the fixed point of $T$ is unique.
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Proof. Since $x_{0}\leq Tx_{0}$ and $T$ is monotone nondecreasing, we obtain that

$x_{0}\leq Tx_{0}\leq T^{2}x_{0}\leq\cdots\leq T^{n}x_{0}\leq T^{n+1}x_{0}\leq\cdots$

Then we have

$d(T^{n}x_{0}, \mathcal{I}^{m-1}x_{0})\leq\alpha d(T^{n-1}x_{0}, T^{n}x_{0})+\alpha d(T^{n-2}x_{0}, T^{n-1}x_{0})$ .

Thus $(1-\alpha)d(T^{n-1}x_{0}, T^{n}x_{0})\leq\alpha d(T^{n-2}x_{0}, T^{n-1}x_{0})$ holds. Therefore we
have

$d(T^{n-1}x_{0}, T^{n}x_{0}) \leq\frac{\alpha}{1-\alpha}d(T^{n-2}x_{0}, T^{n-1}x_{0})$

for any $n$ . Then we have

$d(T^{n}x_{0}, T^{n+1}x_{0}) \leq\frac{\alpha}{1-\alpha}d(T^{n-1}x, T^{n}x)$

$\leq(\frac{\alpha}{1-\alpha})^{2}d(T^{n-2}x_{0}, T^{n-1}x_{0})$

$\leq\cdots$

$\leq(\frac{\alpha}{1-\alpha})^{n}d(x_{0}, Tx_{0})$ .

Therefore we obtain that for any $n,$

$d(T^{n}x_{0}, T^{n+1}x_{0}) \leq(\frac{\alpha}{1-\alpha})^{n}d(x_{0}, Tx_{0})$ .

Then $\{T^{n}x_{0}\}$ is a Cauchy sequence in $X$ . In fact, for $n\leq m$ , we have

$d(T^{m}x_{0}, T^{n}x_{0})$

$\leq d(T^{m}x_{0}, T^{m-1}x_{0})+\cdots+d(T^{n+1}x_{0}, T^{n}x_{0})$

$\leq(\frac{\alpha}{1-\alpha})^{m-1}d(x_{0}, Tx_{0})+\cdots+(\frac{\alpha}{1-\alpha})^{n}d(x_{0}, Tx_{0})$

$< \frac{1-\alpha}{1-2\alpha}(\frac{\alpha}{1-\alpha})^{n}d(x_{0}, Tx_{0})$ .

Therefore we have $d(T^{m}x_{0}, T^{n}x_{0})arrow 0$ . Since $X$ is complete, there exists $p\in$

$X$ such that $\lim_{narrow\infty}T^{n}x_{0}=p$ . Since $T^{n}x_{0}arrow p$ and $\{T^{n}x_{0}\}$ is nondecreasing,
we obtain that $T^{n}x_{0}\leq p$ for any $n$ . Then we have

$d(Tp, T^{n+1}x_{0})\leq\alpha d(p, Tp)+\alpha d(T^{n}x_{0}, T^{n+1}x_{0})$ .
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As $narrow\infty$ , we have

$d(Tp,p)\leq\alpha d(p, Tp)$ .

So we have $(1-\alpha)d(p, Tp)\leq$ O. Thus $d(p, Tp)\leq 0$ holds. Hence we have
$Tp=p.$

Next we show the uniqueness of fixed points of $T$ . We assume that $X$

satisfies (1) and $q\in X$ is another fixed point of $T.$

If $p$ is comparable to $q$ , then $p\geq q$ implies $T^{n}p\geq T^{n}q$ . Thus $T^{n}p=p$ is
comparable to $T^{n}q=q$ for any $n$ . Then we have

$d(p, q)=d(T^{n}p, T^{n}q)$

$\leq\alpha d(T^{n-1}p, T^{n}p)+\alpha d(T^{n-1}q, T^{n}q)$

$\leq\alpha(\frac{\alpha}{1-\alpha})^{n-1}d(p, Tp)+\alpha(\frac{r}{1-r})^{n-1}d(q, Tq)$

for any $n$ . As $narrow\infty$ , we have $p=q.$

If $p$ is not comparable to $q$ . By (1), for $p$ and $q$ , there exists $z\in X$ such
that $z\leq Tz$ and $z$ is comparable to $p,$ $q$ . Since $Tz\leq z$ and $T$ is monotone
nondecreasing, we obtain that

$z\leq Tz\leq T^{2}z\leq\cdots\leq T^{n}z\leq T^{n+1}z\leq\cdots$

Then we have

$d(T^{n-1} z, T^{n}z)\leq\frac{\alpha}{1-\alpha}d(T^{n-2}z, T^{n-1}z)$

for any $n$ . Then we have

$d(p, q)=d(T^{n}p, T^{n}q)$

$\leq d(T^{n}p, T^{n}z)+d(T^{n}z, T^{n}q)$

$\leq\alpha(d(T^{n-1}p, T^{n}p)+d(T^{n-1}z, T^{n}z))$

$+\alpha(d(T^{n-1}z, T^{n}z)+d(T^{n-1}q, T^{n}q))$

$=2\alpha d(T^{n-1}z, T^{n}z)$

$\leq 2\alpha\cdot\frac{\alpha}{1-\alpha}d(T^{n-2}z, T^{n-1}z)$

$\leq\cdots$

$\leq 2\alpha(\frac{\alpha}{1-\alpha})^{n-1}d(z, Tz)$ .

As $narrow\infty$ , we have $d(p, q)=0$ . Hence we have $p=q.$ $\square$
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The following mappings satisfy conditions of Theorem 2.

Example 3. Let $X=\{0$ , 1, 2 $\}$ and the distance function $p$ is the ordinary
Euclidean distance on the line. Let $T$ be a mapping of $X$ into itself defined by
$Tx=1$ for $x\in X$ . Then $Ti\mathcal{S}$ a monotone nondecreasing mapping satisfying
(1). Moreover if we take $\alpha=\frac{1}{2}$ , then $x\geq y$ implies $d(Tx, Ty)\leq\alpha d(x, Tx)+$

$\alpha d(y, Ty)$ .

Example 4. Let $X=[0$ , 1 $]$ and the distance function $p$ is the ordinary
Euclidean distance on the line. Let $T$ be a mapping of $X$ into itself defined
$by$

$Tx=\{\begin{array}{ll}\frac{1}{5}x 0\leq x<\frac{1}{2},\frac{1}{4}x \frac{1}{2}\leq x\leq 1.\end{array}$

Here $T$ is a monotone nondecreasing mapping satisfying (1). Moreover if we
take $\alpha=\frac{1}{3}$ , then $x\geq y$ implies $d(Tx, Ty)\leq\alpha d(x, Tx)+\alpha d(y, Ty)$ .

Remark. In [4], we apply Theorem 1 to boundary value problems for fourth
order differential equations. We want to apply Theorem 2 to some problems
for differential equations. This is a further topic.
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