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1 Introduction
Primal and dual interior-point methods (IPMs) have been well known as the most effective methods
for solving wide classes of optimization problems, for example, linear optimization (LO) problem,
quadratic optimization problem (QOP), semidefinite optimization (SDO) problem, second-order
cone optimization (SOCO) problem and convex optimization problem (CP).

The choice of parameter $\theta$ , so-called barrier update parameter, plays an important role in the
both of theory and practice of IPMs. Usually, if $\theta$ is a constant which is independent of the
dimension of the problem, then the algorithm is called a large-update method. If it depends on
the dimension, then the algorithm is said to be a small-update method. Large-update methods
are much more efficient than small-update methods in practice ([1]). The gap between theory and
practice has been referred to as the irony of IPM methods ([17]). Recently, many authors have tried
to reduce the gap of the worst-case iteration bound between large-update IPM and small-update
IPM. Using self-regular proximity functions instead of classical logarithmic barrier functions, Peng
et al. ([12, 13, 14, 15, 16]) improved the complexity of large-update IPMs for LO, SDO and SOCO.

Recently, Bai et al. ([2]) introduced a new class of kernel functions. The class was defined
by some simple conditions on the kernel function and its derivatives, and presented a simple and
unified computational scheme for the complexity analysis of kernel functions in the new class. The
best iteration bound, which was given by Bai et al. ([2]), is $\mathcal{O}(\sqrt{n}\log n\log\frac{n}{\epsilon})$ . Very recently,
following the approach of Bai et al. ([2]) for LO, Cho et al. ([4]), Cho and Kim ([5]) and Cho
([6]) used new kernel functions to calculate the iteration bound for a $P_{*}(\kappa)$ linear complementarity
problem (LCP).

The aim of this paper is to review main results of [8]. So, results of this paper are given from
ones in [8] without proof. In this paper, we define a new class of proximity functions for the $P_{*}(\kappa)$

LCP by a new class of kernel functions which are modified by [7]. Using the new class of proximity
functions for $P_{*}(\kappa)$ LCP, we formulate an algorithm for our large-update primal-dual IPM for the
$P_{*}(\kappa)$ LCP and we give results for its complexity analysis, and then we present that the iteration
bound in worst-case for our IPM is

$\mathcal{O}((1+2\kappa)\sqrt{n}\log n\log\frac{n}{\epsilon})$ ,

which is known as the best one.
We consider the following $P_{*}(\kappa)$ linear complementarity problem (LCP):

(LCP) Find $(x, s)\in \mathbb{R}^{n}\cross \mathbb{R}^{n}$

such that $x\geq 0,$ $s=Mx+q\geq 0,$ $xs=0,$
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where $M\in \mathbb{R}^{n\cross n}$ is a $P_{*}(\kappa)$ matrix, $q\in \mathbb{R}^{n}$ and $xs$ denote the componentwise product of the
vectors $x$ and $s.$

Now we recall the definition of $P_{*}(\kappa)$ matrix, which was given in [10].

Definition 1.1 Let $\kappa$ be a nonnegative number. A matrix $M\in \mathbb{R}^{n\cross n}$ is called a $P_{*}(\kappa)$ matrix if

$(1+4 \kappa)\sum_{i\in I_{+}(x)}x_{i}(Mx)_{i}+\sum_{i\in I_{-}(x)}x_{i}(Mx)_{i}\geqq 0,$

for all $x\in \mathbb{R}^{n}$ , where $I_{+}(x)=\{i\in I|x_{i}(Mx)_{i}\geqq 0\},$ $I_{-}(x)=\{i\in I|x_{i}(Mx)_{i}<0\}$ and
$I=\{1, \cdots, n\}.$

When we relax the complementarity condition to find an approximate solution for LCP, we get the
following parameterized system:

$\{\begin{array}{l}s=Mx+q,xs=\mu e,x>0, s>0,\end{array}$ (1)

where $\mu>0,$ $e=(1, \cdots, 1)^{T}\in \mathbb{R}^{n}$ . In the sequel, we assume that LCP satisfies the interior-point
condition (IPC), that is, there exists $(x, s)$ such that $s=Mx+q,$ $x>0$ and $s>0$ . Since $M$ is a
$P_{*}(\kappa)$ matrix and LCP satisfies IPC, (1) has a unique solution for any $\mu>0$ ([10]). The solution
of (1) is denoted by $(x(\mu), s(\mu))$ for given $\mu>0$ and it is called as $\mu$-center for a given $\mu$ . Also,
the solution set $\{(x(\mu), s(\mu))|\mu>0\}$ is called as the central path of LCP. As $\muarrow 0$ , the sequence
$(x(\mu), s(\mu))$ approach the solution $(x, s)$ of LCP ([3, 10, 11, 19

In general, IPMs consist of two strategies: the first one, which is called the inner iteration
scheme, is to keep the iterative sequence in a certain neighborhood of the central path or to keep
the iterative sequence in a certain neighborhood of the $\mu$-center; the second one, which is called
the outer iteration scheme, is to decrease the parameter $\mu$ to $\mu+:=(1-\theta)\mu$ , for some $\theta\in(0,1)$ .

2 Proximity Functions and Search Directions

Without loss of generality we assume that $(x(\mu), s(\mu))$ is known for some positive $\mu$ . Then we

decrease $\mu$ to $\mu$ $:=(1-\theta)\mu$ for some fixed $\theta\in(0,1)$ . Let $F(X, \mathcal{S})=(\begin{array}{l}s-Mx-qXSe-\mu e\end{array})$ . Then

$\nabla F(x, s)=(\begin{array}{ll}-M IS X\end{array})$ is a nonsingular matrix [10] for any positive diagonal matrices $X,$ $S\in$

$\mathbb{R}^{n\cross n}$ , where $I$ is the $n$-dimensional identity matrix. Then we get the following Newton system
having a unique solution $(\triangle x, \Delta s)$ :

$\{\begin{array}{l}-M\Delta x+\triangle s=0,s\Delta x+x\triangle s=\mu e-xs.\end{array}$ (2)

We define the following notation:

$v:=\sqrt{\frac{xs}{\mu}}.$

Then the last equation in (2) is the following:

$s\Delta x+x\triangle s=\mu e-\mu v^{2}=\mu v(v^{-1}-v)$ .

We consider a strictly convex function $\Psi(v)$ which has minimal at $v=e$ and $\Psi(e)=0$ , where $e$ is
the $n$-dimensional vector of ones. Then we replace $v^{-1}-v$ by $-\nabla\Psi(v)$ . So, we have the following
modified Newton system:

$\{\begin{array}{l}-M\Delta x+\Delta s=0,s\Delta x+x\Delta s=-\mu v\nabla\Psi(v) .\end{array}$ (3)
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From the following notations:
$dx:= \frac{v\Delta x}{x},$ $ds:= \frac{v\Delta s}{s}$

the second equation in (3) can be rewritten:

$dx+ds=-\nabla\Psi(v)$ . (4)

For our IPM, we use the following a new class of kernel functions associated with $P_{*}(\kappa)$ LCP:

$\psi(t)=\frac{t^{2}-1}{2}+\frac{e^{p(t^{-q}-1)}-1}{pq},$ $p\geqq landq\geqq 1$ for $t>0$ . (5)

Then, we have

$\psi’(t)=t-t^{-q-1}\cdot e^{p(t^{-q}-1)},$

$\psi"(t)=1+((q+1)t^{-q-2}+pqt^{-2q-2})e^{p(t^{-q}-1)}>1,$

$\psi"’(t)=-((q+1)(q+2)t^{-q-3}+3pq(p+2q+3)t^{-2q-3}+p^{2}q^{2}t^{-3q-3})e^{p(t^{-q}-1)}<0.$

Furthermore, our new kernel function (5) satisfies

$\lim_{tarrow 0+}\psi(t)=\lim_{tarrow\infty}\psi(t)=\infty.$

Note that $\psi(1)=\psi’(1)=0$ . Then $\psi(t)$ is determined

$\psi(t)=\int_{1}^{t}\int_{1}^{\xi}\psi"(\zeta)d\zeta d\xi.$

The proximity function(measure) for $P_{*}(\kappa)$ LCP is

$\Phi(x, s;\mu):=\Psi(v):=\sum_{i=1}^{n}\psi(v_{i})$ . (6)

For our large-update IPM for $P_{*}(\kappa)$ LCP, we discuss the above proximity functions instead of the
right hand side of the equation (4). We define the norm-based proximity measure $\sigma$ as follows:

$\sigma:=||-\nabla\Psi(v)||=||dx+ds$

Then the following proposition is easily checked from our new class of proximity functions:

Proposition 2.1 [8] For any $v_{1},$ $v_{2}\in \mathbb{R}_{++}^{n},$

$\Psi(\sqrt{v_{1}v_{2}})\leqq\frac{1}{2}(\Psi(v_{1})+\Psi(v_{2}))$ .

3 Algorithm and its Complexity Analysis

Now we explain our algorithm for the large-update primal-dual IPM for $P_{*}(\kappa)$ LCP. Assuming
that a starting point in a certain neighborhood of the central path is available, we can set out
from this point. Actually, by using the $s(\succ$called self-dual embedding model, one can further get
the point exactly on the central path corresponding to $\mu=1$ as an initial point ([9, 14,? Then,
we will go to the outer “while loop”. If $\mu$ satisfies $n\mu\geqq\epsilon$ , then it is reduced by the factor $1-\theta,$

where $\theta\in(0,1)$ . Then, we make use of inner “while loop and we repeat the procedure until we
find iterates that are “close” to $(x(\mu), s(\mu))$ , that is, the proximity $\Phi(x, s;\mu)<\tau$ . Here, we apply
Newton’s method targeting at the new $\mu$-centers to decide a search direction $(\triangle x, \Delta s)$ . We return
to the outer “while loop”. The whole process is repeated until $\mu$ is small enough, say until $n\mu<\epsilon.$
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The choice of the step size $\alpha$ is another crucial issue in the analysis of the algorithm. It has
to be taken such that the closeness of the iterates to the current $\mu$-center improves by a sufficient
amount. In algorithm, the inner “while loop” is called the inner iteration and the outer “while
loop” is called the outer iteration. Each outer iteration consists of an update of parameter $\mu$ and
a sequence of (one or more) inner iteration. The total number of inner iterations is the worst-case
iteration bound for our algorithm.

The algorithm for our large-update primal-dual IPM for $P_{*}(\kappa)$ LCP is given as follows:

Primal-Dual Algorithm for LCP
Inputs

A proximity parameter $\tau>0$ ;
an accuracy parameter $\epsilon>0$ ;
a variable damping factor $\alpha$ ;
a fixed barrier update parameter $\theta\in(0,1)$ ;
$(x^{0}, s^{0})$ and $\mu^{0}=1$ such that $\Phi(x^{0}, s^{0};\mu^{0})\leqq\tau.$

begin
$x:=x^{0_{;}}s:=s^{0_{;}}\mu:=\mu^{0_{;}}$

while $n\mu\geqq\epsilon$ do
begin

$\mu:=(1-\theta)\mu$ ;
while $\Phi(x, s;\mu)\geqq\tau$ do
begin

Solve the system (3) for $\Delta x,$
$\triangle s$ ;

Determine a step size $\alpha$ ;
$x:=x+\alpha\Delta x$ ;
$s:=s+\alpha\triangle s$ ;

end
end

end

3.1 Determining a default step size.

In this section, we compute the feasible step size $\alpha$ such that the proximity function is decreasing
and the bound for the decrease during inner iterations and then given our default step size $\overline{\alpha};\overline{\alpha}=$

$(1+2\kappa)^{-1}\cdot(1+3\sigma(1+pq+q)(1+(1/p)\log 3\sigma)^{(q+1)/q})^{-1}$ . Since $P_{*}(\kappa)$ LCPs are generalization
of LO problems, we lose the orthogonality of vectors $dx$ and $ds$ . So the analysis is different from
LO case. After a damped step for fixed $\mu$ , we have new iterations

$x_{+}=x+\alpha\Delta x, s_{+}=s+\alpha\Delta s.$

From the definitions of $v,$ $dx$ , and $ds$ , we have

$x+= \frac{x}{v}(v+\alpha dx) , s+=\frac{s}{v}(v+\alpha ds)$ .

Then we get

$v_{+}=\sqrt{\frac{x_{+}s+}{\mu}}=\sqrt{(v+\alpha dx)(v+\alpha ds)}.$

Throughout the paper, we assume that the step size $\alpha$ satisfies that the coordinates of the vectors
$v+\alpha dx$ and $v+\alpha ds$ are positive. Hence by Proposition 2.1,

$\Psi(v_{+})=\Psi(\sqrt{(v+\alpha dx)(v+\alpha ds)})\leq\frac{1}{2}(\Psi(v+\alpha dx)+(\Psi(v+\alpha ds$

For given $\mu>0$ , by letting $f(\alpha)$ be the difference between the proximity measures before and after
one step by a function of the step size, i.e.,

$f(\alpha)=\Psi(v_{+})-\Psi(v)$ ,
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we have
$f(\alpha)\leq f_{1}(\alpha)$ ,

where $f_{1}( \alpha)=\frac{1}{2}(\Psi(v+\alpha dx)+\Psi(v+\alpha ds))-\Psi(v)$ .
Here,

$f(0)=f_{1}(0)=0.$

For notational convenience, we denote by $dx_{i}$ and $ds_{i}$ are i-th components of vectors $dx$ and $ds,$

respectively. By taking the derivative of $f_{1}(\alpha)$ with respect to $\alpha$ , we have

$f_{1}’( \alpha)=\frac{1}{2}\sum_{i=1}^{n}(\psi’(v_{i}+\alpha dx_{i})dx_{i}+\psi’(v_{i}+\alpha ds_{i})ds_{i})$ .

From (4) and the definition of $\sigma,$

$f_{1}’(0)=- \frac{\sigma^{2}}{2}.$

By differentiating $f_{1}’(\alpha)$ with respect to $\alpha$ , we obtain

$f_{1}"( \alpha)=\frac{1}{2}\sum_{i=1}^{n}(\psi"(v_{i}+\alpha dx_{i})dx_{i}^{2}+\psi"(v_{i}+\alpha ds_{i})ds_{i}^{2})$ .

Here, since $M$ is a $P_{*}(x)$ matrix, MAx $=\Delta s$ from (2), for $\Delta x\in R^{n},$ $dxds= \frac{1}{\mu}\Delta x\Delta s$ and $\mu>0,$

$(1+4 \kappa)\sum_{i\in I_{+}}dx_{i}ds_{i}+\sum_{i\in I_{-}}dx_{i}ds_{i}\geqq 0$
, (7)

where $I+=\{i\in I:dx_{i}ds_{i}\geqq 0\},$ $I_{-}=\{i\in I:dx_{i}d_{\mathcal{S}_{i}}<0\}andI_{-}=I-I+\cdot$

By the definition of $\sigma,$

$\sigma^{2}=\sum_{i\in I}(dx_{i}+ds_{i})^{2}\geqq\sum_{i\in I_{+}}(dx_{i}+ds_{i})^{2}\geqq 4\sum_{i\in I_{+}}dx_{i}ds_{i}.$

By combining the above inequality and (7), we obtain

$(1+4 \kappa)\sigma^{2}\geqq 4(1+4\kappa)\sum_{i\in I_{+}}dx_{i}ds_{i}\geqq-4\sum_{i\in I_{-}}dx_{i}ds_{i}$
. (8)

The following result follows from the above inequalities (7) and (8), follows from the method [5].

Lemma 3.1 [5, 10] Suppose that (7) holds. Then

(i)
$\sum_{i\in I}(dx_{i}^{2}+ds_{i}^{2})\leqq(1+2\kappa)\sigma^{2},$

(ii) $\Vert dx\Vert\leqq\sigma\sqrt{1+2\kappa}$ and $\Vert ds\Vert\leqq\sigma\sqrt{1+2\kappa}.$

For $v=(v_{1}, \cdots, v_{n})^{T}\in \mathbb{R}^{n}$ , we define $v_{\min}= \min\{v_{1}, \cdots, v_{n}\}.$

Lemma 3.2 [8] Suppose that the kernel function is defined by (5). Then

$f_{1}"( \alpha)\leqq\frac{(1+\kappa)\sigma^{2}}{2}\psi"(v_{\min}-\alpha\sigma\sqrt{1+2\kappa})$ .
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Since $f_{1}(0)=0$ and $f_{1}’(0)=- \frac{\sigma^{2}}{2}$ , by Lemma 3.2,

$f( \alpha)\leqq f_{1}(\alpha):=f_{1}(0)+f_{1}’(0)\alpha+\int_{0}^{\alpha}\int_{0}^{\xi}f_{1}"(\zeta)d\zeta d\xi$

$\leqq f_{2}(\alpha):=f_{1}(0)+f_{1}’(0)\alpha+\frac{(1+\kappa)\sigma^{2}}{2}\int_{0}^{\alpha}\int_{0}^{\xi}\psi"(v_{\min}-\zeta\sigma\sqrt{1+2\kappa})d\zetad\xi.$

Note that $f_{2}(0)=0$ . Furthermore, since $f_{2}’( \alpha)=-\frac{\sigma^{2}}{2}+\frac{\sigma\sqrt{1+2\kappa}}{2}(\psi’(v_{\min})-\psi’(v_{\min}-\alpha\sigma\sqrt{1+2\kappa}))$ ,

we have $f_{2}’(0)=- \frac{\sigma^{2}}{2}$ which is the same value of the $f_{1}’(0)$ , and $f_{2}"( \alpha)=\frac{(1+\kappa)\sigma^{2}}{2}\sigma^{2}\psi"(v_{\min}-$

$\alpha\sigma\sqrt{1+2\kappa})$ , which is increasing on $\alpha\in[0, \frac{v}{2\sigma\sqrt{1+2\kappa}}$ ). Using $f_{1}’(0)=f_{2}’(O)$ and $f_{1}"(\alpha)\leqq f_{2}"(\alpha)$ , we
can easily check that

$f_{1}’( \alpha)=f_{1}’(0)+\int_{0}^{\alpha}f_{1}"(\xi)d\xi\leqq f_{2}’(\alpha)$ .

This relation gives that
$f_{1}’(\alpha)\leqq 0$ , if $f_{2}’(\alpha)\leqq 0.$

To compute the feasible step size $\alpha$ such that the proximity measure is decreasing when we take a
new iterate for fixed $\mu$ , we want to calculate the step size $\alpha$ which satisfies that $f_{2}’(\alpha)\leqq 0$ holds
with $\alpha$ as large as possible. Since $f_{2}"(\alpha)>0$ , that is, $f_{2}’(\alpha)$ is monotonically increasing at $\alpha$ , the
largest possible value at a satisfying $f_{2}’(\alpha)\leqq 0$ occurs when $f_{2}’(\alpha)=0$ , that is,

$- \psi’(v_{\min}-\alpha\sigma\sqrt{1+2x})+\psi’(v_{\min})=\frac{\sigma}{\sqrt{1+2\kappa}}$ . (9)

Since $\psi"(t)$ is monotonically decreasing, the derivative of the left hand side in (9) with respect to
$v_{\min}$ Is

$-\psi"(v_{\min}-\alpha\sigma\sqrt{1+2\kappa})+\psi"(v_{\min})<0.$

So, the left hand side in (9) is decreasing at $v_{\min}$ . This implies that if $v_{\min}$ gets smaller, then $\alpha$

gets smaller with fixed $\sigma$ . Note that

$\sigma=\Vert\nabla\Psi(v)\Vert=\sqrt{\sum_{i\in I}\psi’(v_{i})^{2}}\geqq|\psi’(v_{\min})|\geqq-\psi’(v_{\min})$

and the equality is true if and only if $v_{\min}$ is the only coordinate in $v$ which is different from 1 and
$v_{\min}<1$ , that is, $\psi’(v_{\min})<0.$

Hence, the worse situation for the largest step size occurs when $v_{\min}$ satisfies

$-\psi’(v_{\min})=\sigma$ . (10)

In that case, the largest a satisfying (9) is minimal. For our purpose, we need to deal with the
worse case and so we assume that (10) is hold.

From now on, we denote that $\rho$ : $[0, \infty$ ) $arrow(0$ , 1] is the inverse function of the restriction of
$-\psi’(t)$ in the interval $(0,1].$ Then, $(10)$ implies

$v_{\min}=\rho(\sigma)$ . (11)

By using (9) and (10), we immediately obtain

$- \psi’(v_{\min}-\alpha\sigma\sqrt{1+2\kappa})=(1+\frac{1}{\sqrt{1+2\kappa}})\sigma.$

By the definition of $\rho,$

$v_{\min}- \alpha\sigma\sqrt{1+2\kappa}=\rho((1+\frac{1}{\sqrt{1+2\kappa}})\sigma)$ .
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By applying (11), the largest step size $\alpha$ of the worse case is given as follows:

$\alpha^{*}=\frac{\rho(\sigma)-\rho((1+\frac{1}{\sqrt{1+2\kappa}})\sigma)}{\sigma\sqrt{1+2\kappa}}$ . (12)

For the purpose of findipg an upper bound of $f(\alpha)$ , we need a default step size $\overline{\alpha}$ that is the lower
bound of the $\alpha^{*}$ and consists of $\sigma.$

Lemma 3.3 [8] Let $\sigma\geqq 1$ . Then, for $0<t<\rho(2\sigma)$ ,

$\psi"(t)\leqq 1+3\sigma(1+pq+q)(1+\frac{1}{p}\log 3\sigma)^{9_{\frac{+1}{q}}}$

Theorem 3.1 [8] Let $\alpha^{*}$ be as defined in (12). Then

$\alpha^{*}\geqq\frac{1}{1+2\kappa}. \underline{1}$

$1+3 \sigma(1+pq+q)(1+\frac{1}{p}\log 3\sigma)^{q_{\frac{+1}{q}}}.$

For using $\overline{\alpha}$ as the default step size in the Algorithm, define the $\overline{\alpha}$ as follows

$\overline{\alpha}=\frac{1}{1+2\kappa}. \underline{1}$ (13)
$1+3 \sigma(1+pq+q)(1+\frac{1}{p}\log 3\sigma)^{L+\underline{1}}q.$

3.2 Iteration bound
We need to count how many inner iterations are required to return to the situation where $\Psi(v)\leqq\tau$

after a $\mu$-update. We denote the value of $\Psi(v)$ after $\mu$-update as $\Psi_{0}$ ; the subsequent values in the
same outer iteration are denote as $\Psi_{k},$ $k=1,$ $\cdots$ . If $K$ denotes the total number of inner iterations
in the outer iteration, we then have

$\Psi_{0}\leqq L=\mathcal{O}(n) , \Psi_{K-1}>\tau, 0\leqq\Psi_{K}\leqq\tau$

and according to Theorem??,

$\Psi_{k+1}\leqq\Psi_{k}-\frac{1}{1+2\kappa}\cdot\frac{1}{2+6\sqrt{2}(1+pq+q)(1+\frac{1}{p}\log 3\sqrt{2\Psi_{0}})^{L+\underline{1}}q}\Psi_{k}^{1}z.$

At this stage we invoke the following lemma from Lemma 14 in [13] without proof.

Lemma 3.4 [13] Let $t_{0},$ $t_{1},$
$\cdots,$

$t_{K}$ be a sequence of positive numbers such that

$t_{k+1}\leqq t_{k}-\beta t_{k}^{1-\gamma}, k=0, 1, \cdot\cdot, K-1,$

where $\beta>0$ and $0<\gamma\leqq 1$ . Then

$K \leqq L\frac{t_{0}^{\gamma}}{\beta\gamma}\rfloor.$

Letting $t_{k}=\Psi_{k},$ $\beta=\frac{1}{1+2\kappa}.$
$\frac{1}{2+6\sqrt{2}(1+pq+q)(1+\frac{1}{p}\log 3\sqrt{2\Psi_{0}})^{A\pm\underline{1}}q}$

and $\gamma=\frac{1}{2}$ , we can get the

following lemma from Lemma 3.4.

Lemma 3.5 [8] Let $K$ be the total number of inner iterations in the outer iteration. Then we have

$K \leqq 2(1+2\kappa)(2+6\sqrt{2}(1+pq+q)(1+\frac{1}{p}\log 3\sqrt{2}\sqrt{\Psi_{0}})^{z\pm}q\underline{1})\Psi_{0}^{1/2},$

where $\Psi_{0}$ is the result of the after the $\mu$ -update in outer iteration.
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Now we estimate the main result which is the total complexity for our algorithm.

Theorem 3.2 [8] If $\tau\geqq 1$ , the total number of iterations is not more than

$\lceil 2(1+2\kappa)(2+6\sqrt{2}(1+pq+q)(1+\frac{1}{p}\log 3\sqrt{2}\sqrt{\Psi_{0}})^{L+\underline{1}}q)\Psi_{0}^{1/2}|\lceil\frac{1}{\theta}\log\frac{n}{\epsilon}\rceil.$

Since $\Psi_{0}^{1/2}=\mathcal{O}(\sqrt{n})$ , if we take $p=\mathcal{O}(\log n)$ and $q=1$ , then we can get the best known upper
bound for the total number of inner iterations in the outer iteration is

$\mathcal{O}((1+2\kappa)\sqrt{n}\log n)$ .

Also, we take for $\theta$ a constant (not depending on $n$ ), namely $-=\Theta(1)$ . With $\tau=\mathcal{O}(n)$ , the
best complexity of the primal-dual interior-point method for $P_{*}(\kappa)$ linear complementarity problem
based on our new proximity function with $p=\log n$ and $q=1$ , is given by

$\mathcal{O}((1+2\kappa)\sqrt{n}\log n\log\frac{n}{\epsilon})$ .
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