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THEORY
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ABSTRACT. In our earlier foundational works on the KKM theory, we
were based on several KKM type theorems or the Fan-Browder type
coincidence theorems. Recently, we obtained three general KKM type
theorems $A,$ $B$ , and $C$ for abstract convex spaces. In this paper, we ob-
tain a new coincidence theorem (Theorem D) and recollect that several
particular forms of Theorems A-D were applied to establish our ear-
lier foundational works for each of convex spaces, $H$-spaces, $G$-convex
spaces, and abstract convex spaces.

1. Introduction

The KKM theory, first called by the author [1], is the study on appli-
cations of equivalent formulations of the KKM theorem due to Knaster,
Kuratowski, and Mazurkiewicz in 1929. The KKM theorem provides the
foundations for many of the modern essential results in diverse areas of
mathematical sciences.

Some of the basic theorems which are useful to applications of the KKM
theory were first obtained by Ky Fan, Browder, Granas, and others for
convex subsets of topological vector spaces. Later extensions of the theory
were due to Lassonde for convex spaces, Horvath for $H$-spaces, Park for
$G$-convex spaces, and others; see [6,11] and the references therein.

Recently, the KKM theory is extended to abstract convex spaces by the
author and we obtained new results in such frame; see [8-13] and the ref-
erences therein. Moreover, in such frame, we obtained three basic KKM
theorems $A,$ $B$ , and $C$ in our works [13-15,17]. Recall that there are large
numbers of equivalent formulations, generalizations, and applications of the
KKM theorem.

Until now, we have published several papers on the elements or foun-
dations of the KKM theory; namely, for convex spaces [1,2], $H$-spaces [3],
generalized convex spaces [4,5,7], and abstract convex spaces [8,9,11,12].
Each of these papers is based on KKM type theorems or Fan-Browder type
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coincidence theorems and concerned with useful fundamental results in the
KKM theory.

In the present paper, we obtain a Fan-Browder type coincidence theorem
(Theorem D) and show that the basic theorems in [1-5,7-9,11,12] follow from
one of Theorems $A,$ $B,$ $C$ , and D.

Section 2 devotes to give some necessary terminology on abstract convex
spaces. In Section 3, we introduce Theorems $A,$ $B$ , and C. Section 4 is to
deduce a new Fan-Browder type coincidence theorem (Theorem D) from
Theorem C. Finally, in Section 5, we recollect several particular forms of
Theorems A-D, which were applied to establish our earlier foundational
works for each of convex spaces, $H$-spaces, $G$-convex spaces, and abstract
convex spaces.

2. Abstract convex spaces

For the concepts of abstract convex spaces and KKM spaces, the reader
may consult with the references in [8-12].

Definition. An abstract convex space $(E, D;\Gamma)$ consists of a topological
space $E$ , a nonempty set $D$ , and a multimap $\Gamma$ : $\langle D\ranglearrow E$ with nonempty
values $\Gamma_{A}$ $:=\Gamma(A)$ for $A\in\langle D\rangle$ , where $\langle D\rangle$ is the set of all nonempty finite
subsets of $D.$

For any $D’\subset D$ , the $\Gamma$-convex hull of $D’$ is denoted and defined by

$co_{\Gamma}D’:=\cup\{\Gamma_{A}|A\in\langle D’\rangle\}\subset E.$

A subset $X$ of $E$ is called a $\Gamma$-convex subset of $(E, D;\Gamma)$ relative to $D’$ if
for any $N\in\langle D’\rangle$ , we have $\Gamma_{N}\subset X$ , that is, $co_{\Gamma}D’\subset X.$

Definition. Let $(E, D;\Gamma)$ be an abstract convex space and $Z$ a topological
space. For a multimap $F$ : $Earrow Z$ with nonempty values, if a multimap
$G:Darrow Z$ satisfies

$F( \Gamma_{A})\subset G(A):=\bigcup_{y\in A}G(y)$
for all $A\in\langle D\rangle,$

then $G$ is called a $KKM$ map with respect to F. AKKM map $G:Darrow E$

is a KKM map with respect to the identity map $1_{E}.$

A multimap $F:Earrow Z$ is called a $\mathfrak{K}\mathfrak{C}$-map [resp., $a\mathfrak{K}D$ -map] if, for any
closed-valued [resp., open-valued] KKM map $G:Darrow Z$ with respect to $F,$

the family $\{G(y)\}_{y\in D}$ has the finite intersection property. In this case, we
denote $F\in \mathfrak{K}\mathfrak{C}(E, D, Z)$ [resp., $F\in \mathfrak{K}O(E,$ $D,$ $Z$

Definition. The partial $KKM$principle for an abstract convex space $(E, D;\Gamma)$

is the statement $1_{E}\in \mathfrak{K}\mathfrak{C}(E, D, E)$ ; that is, for any closed-valued KKM map
$G:Darrow E$, the family $\{G(y)\}_{y\in D}$ has the finite intersection property. The
$KKM$ principle is the statement $1_{E}\in \mathfrak{K}\mathfrak{C}(E, D, E)\cap \mathfrak{K}O(E, D, E)$ ; that is,
the same property also holds for any open-valued KKM map.
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An abstract convex space is called $a$ (partial) $KKM$ space if it satisfies the
(partial) KKM principle, respectively.

We had the following diagram for triples $(E, D;\Gamma)$ :

Siinplex $\Rightarrow$ Convex subset of a t.v. $s$ . Lassonde type convex space
$\vec{\underline{H}}-$space $\Rightarrow G$-convex space $\Rightarrow\phi_{A}$-space $\vec{\underline{},}$ KKM space

$\Rightarrow$ Partial KKM space $\Rightarrow$ Abstract convex space.

3. General KKM Theorems $A,$ $B$ , and $C$

In [13,14,16], we gave standard forms of the KKM type theorems as fol-
lows.

Theorem A. Let $(E, D;\Gamma)$ be a partial $KKM$ space [resp., a $KKM$ space],
and $G:Darrow E$ a multimap satisfying

(1) $G$ has closed [resp., open] values; and
(2) $\Gamma_{N}\subset G(N)$ for any $N\in\langle D\rangle$ $(that is, G is a KKM map)$ .

Then $\{G(y)\}_{y\in D}$ has the finite intersection property.
Further, if
(3) $\bigcap_{y\in M}\overline{G(y)}i_{\mathcal{S}}$ compact for some $M\in\langle D\rangle,$

then we have

$\bigcap_{y\in D}\overline{G(y)}\neq\emptyset.$

Recall that Theorem A is a simple consequence of the definitions of the
partial KKM principle or the KKM principle.

Consider the following related four conditions for a map $G:Darrow Z$ with
a topological space $Z$ :

(a) $\bigcap_{y\in D}\overline{G(y)}\neq\emptyset$ implies $\bigcap_{y\in D}G(y)\neq\emptyset.$

(b) $\bigcap_{y\in D}\overline{G(y)}=\overline{\bigcap_{y\in D}G(y)}$ ( $G$ is intersectionally $clo\mathcal{S}ed$-valued).

(c) $\bigcap_{y\in D}\overline{G(y)}=\bigcap_{y\in D}G(y)$ ( $G$ is transfer closed-valued).

(d) $G$ is closed-valued.

From the partial KKM principle we have a whole intersection property of
the Fan type as follows.

Theorem B. Let $(E, D;\Gamma)$ be a partial $KKM$ space and $G$ : $Darrow E$ a map
such that

(1) $\overline{G}$ is a $KKM$ map [that is, $\Gamma_{A}\subset\overline{G}(A)$ for all $A\in\langle D\rangle$ ]; and
(2) there exists a nonempty compact subset $K$ of $E$ such that either

(i) $\cap\{\overline{G(y)\prime}|y\in M\}\subset K$ for some $M\in\langle D\rangle$ ; or
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(ii) for each $N\in\langle D\rangle$ , there exists a compact $\Gamma$ -convex subset $L_{N}$ of $E$

relative to some $D’\subset D$ such that $N\subset D’$ and

$\overline{L_{N}}\cap\bigcap_{y\in D’}\overline{G(y)}\subset K.$

Then we have $K \cap\bigcap_{y\in D}\overline{G(y)}\neq\emptyset.$

Furthermore,
$(\alpha)$ if $G$ is transfer closed-valued, then $K\cap\cap\{G(y)|y\in D\}\neq\emptyset_{i}$

$(\beta$ $)$ if $G$ is intersectionally closed-valued, $then\cap\{G(y)|y\in D\}\neq\emptyset.$

Recall that conditions (i) and (ii) in Theorem $B$ are usually called the
compactness conditions or the coercivity conditions, and (ii) has numerous
variations or particular forms appeared in a very large number of litera-
ture. Note that Theorem $B$ can be easily deduced from the compact case of
Theorem $A$ ; see [13, 14].

Theorem $B$ can be extended for $F\in \mathfrak{K}\mathfrak{C}(E, D, Z)$ instead of $1_{E}\in \mathfrak{K}\mathfrak{C}(E, D, E)$ )
as the following in [13,14]:

Theorem C. Let $(E, D;\Gamma)$ be an abstract convex space, $Z$ a topological
space, $F\in \mathfrak{K}\mathfrak{C}(E, D, Z)$ , and $G$ : $Darrow Z$ a map such that

(1) $\overline{G}$ is a $KKM$ map w.r.t. $F$ ; and
(2) there exists a nonempty compact subset $K$ of $Z$ such that either

(i) $K\supset\cap\{\overline{G(y)}|y\in M\}$ for some $M\in\langle D\rangle$ ; or
(ii) for each $N\in\langle D\rangle$ , there exists a $\Gamma$ -convex subset $L_{N}$ of $X$ relative

to some $D’\subset D$ such that $N\subset D’,$ $\overline{F(L_{N})}$ is compact, and

$K\supset\overline{F(L_{N})}\cap\cap\{\overline{G(y)}|y\in D$

Then we have

$\overline{F(E)}\cap K\cap\bigcap_{y\in D}\overline{G(y)}\neq\emptyset.$

Furthermore,
$(\alpha)$ if $G$ is transfer $clo\mathcal{S}ed$-valued, then $\overline{F(E)}\cap K\cap\cap\{G(y)|y\in D\}\neq\emptyset$ ;

and
$(\beta$ $)$ if $G$ is intersectionally closed-valued, $then\cap\{G(y)|y\in D\}\neq\emptyset.$

In Theorem $C$ , let $\Lambda_{A}$ $:=F(\Gamma_{A})$ for each $A\in\langle D\rangle$ . Then $(Z, D;\Lambda)$ is
called the abstract convex space induced by $F$. In our recent work [17], by
replacing $(E, D;\Gamma)$ , $K,$ $L_{N}$ in Theorem $B$ by $(Z, D;\Lambda)$ , $\overline{F(E)}\cap K,$ $F(L_{N})$ ,
respectively, we obtained Theorem C. Consequently, we showed that Theo-
rem A(closed case), Theorem $B$ , and Theorem $C$ are mutually equivalent.

In [17], the following was basic.

Proposition. For an abstract convex space $(E, D, \Gamma)$ , the corresponding
abstract convex $\mathcal{S}pace(Z, D;\Lambda)$ induced by $F$ : $Darrow Z$ is a partial $KKM$

space if and only if $F\in \mathfrak{K}\mathfrak{C}(E, D, Z)$ .
The $ab_{\mathcal{S}}tract$ convex space $(Z, D;\Lambda)$ induced by $F$ : $Darrow Z$ is a $KKM$

space if and only if $F\in \mathfrak{K}\mathfrak{C}(E, D, Z)\cap \mathfrak{K}D(E, D, Z)$ .
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4. A basic coincidence theorem

From the KKM theorem $C$ , we can deduce the following coincidence the-
orem of the Fan-Browder type.

Theorem D. Let $(E, D;\Gamma)$ be an abstract convex space, $Z$ a topological
space, $F\in \mathfrak{K}\mathfrak{C}(E, D, Z)$ , and $S:Darrow Z,$ $T:Earrow Z$ maps. Suppose that

(1) for each $z\in F(E)$ , we have $co_{\Gamma}S^{-}(z)\subset T^{-}(z)$

(2) there exists a nonempty compact subset $K$ of $Z$ such that either
(i) $\bigcap_{y\in M}\overline{Z\backslash S(y)}\subset K$ for some $M\in\langle D\rangle$ ; or
(ii) for each $N\in\langle D\rangle$ , there exists a $\Gamma$ -convex subset $L_{N}$ of $E$ relative

to some $D’\subset D\mathcal{S}uch$ that $N\subset D’,$ $\overline{F(L_{N})}$ is compact, and

$\overline{F(L_{N})}\cap\bigcap_{y\in D’}\overline{Z\backslash S(y)}\subset K.$

(a) If $S$ is transfer open-valued and $\overline{F(E)}\cap K\subset S(D)$ , then there exist
$\overline{x}\in E$ and $\overline{z}\in\overline{F(E)}\cap K$ such that $\overline{z}\in F(\overline{x})\cap T(\overline{x})$ .

$(\beta$ $)$ if $S$ is unionly open-valued and $Z=S(D)$ , then there exists an $\overline{x}\in E$

such that $F(\overline{x})\cap T(\overline{x})\neq\emptyset.$

Proof of Theorem $D$ using Theorem $C$. Suppose that $F(x)\cap T(x)=\emptyset$ and
hence $F(x)\subset Z\backslash T(x)$ for all $x\in E$ . Let

$G(y)$ $:=Z\backslash S(y)$ for all $y\in D$ ; and $H(x)$ $:=Z\backslash T(x)$ for all $x\in E.$

Then we have
(3) $F(x)\subset H(x)$ for all $x\in E.$

From (1.1) and (1.3), it follows that
(4) $G$ is a KKM map w.r. $t.$ $F.$

In fact, suppose that there exists an $N\in\langle D\rangle$ such that $F(\Gamma_{N})\not\subset G(N)$ .
Then there exist $x\in\Gamma_{N}$ and $z\in F(x)$ such that $z\not\in G(y)=Z\backslash S(y)$ for
all $y\in N$ . Hence $z\in S(y)$ or $y\in S^{-}(z)$ for all $y\in N$ , that is, $N\in\langle S^{-}(z)\rangle.$

Therefore, $\Gamma_{N}\subset T^{-}(z)$ by (1.1). Since $x\in\Gamma_{N}\subset T^{-}(z)$ , we have $z\in T(x)$

and hence $z\not\in H(x)$ . Since $z\in F(x)$ , this contradicts (3). Therefore (4)
holds.

Note that (4) and (2) imply the requirements (1) and (2) of Theorem $C,$

resp. Now by Theorem $C$ , there exists $z_{0}\in F(E)\cap K\cap\cap\{\overline{G(y)}|y\in D\}.$

Case $(\alpha)$ . Since $G$ is transfer closed-valued, $z_{0}\in F(E)\cap K$ such that
$z0\in\cap\{\overline{G(y)}|y\in D\}=\cap\{G(y)|y\in D\}=\cap\{Z\backslash S(y)|y\in D\}$ and
hence $z_{0}\not\in S(y)$ for all $y\in D$ . This contradicts $F(E)\cap K\subset S(D)$ .

Case ( $\beta$) . Since $G$ is intersectionally closed-valued, by Theorem $C$ , there
exists $z_{0}\in\cap\{G(y) y\in D\}$ , that is, $z_{0}\not\in S(y)$ for all $y\in D$ . This
contradicts $Z=S(D)$ .

Therefore our proof is complete.
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5. Particular forms in our earlier works

In this section, we recollect that several particular forms of Theorems A-D
were applied to establish our earlier foundational works on the KKM theory
for each of convex spaces, $H$-spaces, $G$-convex spaces, and abstract convex
spaces.

5.1. FPTA 1992 [1]

Abstract: From a Lefschetz type fixed point theorem for composites of
acyclic maps, we obtain a general Fan-Browder type coincidence theorem,
which can be shown to be equivalent to a matching theorem and a KKM
type theorem. From the main result, we deduce the Himmelberg type fixed
point theorem for acyclic compact multifunctions, acyclic versions of general
geometric properties of convex sets, abstract variational inequality theorems,
new minimax theorems, and non-continuous versions of the Brouwer and
Kakutani type fixed point theorems with very generous boundary conditions.

This paper is based on the following particular form of Theorem D.

Theorem 1 ([1]). Let $D$ be a nonempty subset of a convex space $X,$ $Y$ a
Hausdorff space, $S$ : $Darrow 2^{Y},$ $T$ : $Xarrow 2^{Y}$ multifunctions, $F$ : $Xarrow Y$ a
$u.s.c$ . multifunction with compact acyclic values, and $K$ a nonempty compact
subset of Y. Suppose that

(1.1) for each $x\in D,$ $Sx\subset Tx$ and $Sx$ is compactly open;
(1.2) for each $y\in F(X)$ , $T^{-}y$ is convex,$\cdot$

(1.3) cl $F(X)\cap K\subset S(D)$ ; and
(1.4) for each $N\in\langle D\rangle$ , there exists a compact convex subset $L_{N}$ of $X$

containing $N$ such that $x\in L_{N}\backslash F^{+}(K)$ implies $Fx\subset S(L_{N}\cap D)$ .
Then $T$ and $F$ have a coincidence point $x_{0}\in X$ ; that is, $Tx_{0}\cap Fx_{0}\neq\emptyset.$

Particular forms. Given in earlier works of Park and S. Y. Chang; see [1].

5.2. JKMS 1994 [2]

$Rom$ Introduction: The purpose in [2] is, first, to establish some coin-
cidence theorems for composites of multifunctions including a class of very
general u.s. $c$ . maps. Consequently, we obtain generalizations of main re-
sults of some previous works to a class of maps which properly includes that
of multifunctions factorizable by Kakutani or acyclic maps. Secondly, we
show that fundamental theorems in the KKM theory can be obtained in
far-reaching generalized forms related to such class of maps. Those are the
KKM theorem, the matching theorem, the Fan-Browder fixed point theorem,
the Ky Fan minimax inequality, analytic alternatives, geometric properties
of convex sets, and others.

This paper is based on the following form of Theorem D.

Theorem 5 ([2]). Let $(X, D)$ be a convex space, $Y$ a $Hau\mathcal{S}dorff$ space,
$S:Darrow 2^{Y},$ $T:Xarrow 2^{Y}$ multifunctions, and $F\in \mathfrak{A}_{c}^{\kappa}(X, Y)$ . Suppose that
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(5.1) for each $x\in D,$ $Sx\subset Tx$ and $Sx$ is compactly open;
(5.2) for each $y\in F(X)$ , $T^{-}y$ is $D$ -convex;
(5.3) there $exist_{\mathcal{S}}$ a nonempty compact subset $KofY$ such that $\overline{F(X)}\cap K\subset$

$S(D)$ ; and
(5.4) for each $N\in\langle D\rangle$ , there $exi_{\mathcal{S}}ts$ a compact $D$ -convex subset $L_{N}$ of $X$

containing $N$ such that $F(L_{N})\backslash K\subset S(L_{N}\cap D)$ .
Then $F$ and $T$ have a coincidence point.

Here $\mathfrak{A}_{c}^{\kappa}(X, Y)$ is the admissible class of multimaps in the sense of Park.

5.3. JKMS 1995 [3]

From Introduction: In [3], we extend the main coincidence theorem of [2]
to $H$-spaces and apply it to obtain a far-reaching generalization of the KKM
theorem and a fixed point theorem for $H$-spaces. Many of the main results
in previous papers are extended and unified.

This paper [3] is based on the following particular form of Theorem D.

Theorem 1 ([3]). Let $(X, D;\Gamma)$ be an $H$ -space, $Y$ a Hausdorff space, $F\in$

$\mathfrak{A}_{c}(X, Y)$ , and $K$ a nonempty compact subset of Y. Let $S$ : $Darrow 2^{Y}$ and
$T:Xarrow 2^{Y}$ satisfy the following:

(1.1) for each $x\in D,$ $Sx$ is (compactly) open in $Y_{f}.$

(1.2) for each inF(X) , $M\in\langle S^{-}\rangle$ implies $\Gamma_{M}\subset T^{-}y$ ;

(1.3) $F(X)\cap K\subset S(D)$ ; and
(1.4) suppose that either

(i) $Y\backslash K\subset S(M)$ for some $M\in\langle D\rangle$ ; or
(ii) for each $N\in\langle D\rangle$ , there exists a compact $H$ -subspace $L_{N}$ of $X$

containing $N$ such that $F(L_{N})\backslash K\subset S(L_{N}\cap D)$ .
Then $T$ and $Fha\mathcal{S}$ a coincidence point $x_{0}\in X$ ; that is, $Tx_{0}\cap Fx_{0}\neq\emptyset.$

5.4. JMAA 1996, 1997 [4,5]

Abstract: [4] We defined admissible classes of maps which are general
enough to include composites of maps appearing in nonlinear analysis or
algebraic topology, and generalized convex spaces which are generalizations
of many general convexity structures. In [4] we obtain a coincidence theorem
for admissible maps defined on generalized convex spaces. Our new result is
applied to obtain an abstract variational inequality, a KKM type theorem,

and fixed point theorems.
[5] Recently, we introduced new concept of a generalized convex space. In

[5], from a coincidence theorem, we deduce far-reaching generalizations of
the KKM theorem, the matching theorem, a whole intersection property, an
analytic alternative, the Ky Fan minimax inequality, geometric or section
properties, and others on generalized convex spaces.

These papers are based on the following form of Theorem D.

Theorem 1 ([4,5]). Let $(X \supset D;\Gamma)$ be a $G$ -convex space, $Y$ a Hausdorff
space, $S:Darrow Y,$ $T:Xarrow Y$ maps, and $F\in \mathfrak{A}_{c}^{\kappa}(X, Y)$ . Suppose that
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(1.1) for each $x\in D,$ $S(x)$ is compactly open in $Y_{f}.$

(1.2) for each $y\in F(X)$ , $coS^{-}(y)\subset T^{-}(y)$ ;
(1.3) there exists a nonempty compact subset $K$ of $Y$ such that $\overline{F(X)}\cap K$

$\subset S(D)$ ; and
(1.4) either

(i) $Y\backslash K\subset S(M)$ for some $M\in\langle D\rangle$ ; or
(ii) for each $N\in\langle D\rangle$ , there exists a compact $G$-convex subset $L_{N}$ of $X$

containing $N$ such that $F(L_{N})\backslash K\subset S(L_{N}\cap D)$ .
Then there exists an $\overline{x}\in X$ such that $F\overline{x}\cap T\overline{x}\neq\emptyset.$

This theorem contains a very large number of previously known results;
see [4].

Remark. 1. If $X$ is a convex space with $\Gamma_{A}=coA$ , then (i) implies (ii). In
fact we can choose $L_{N}=co(M\cup N)$ . However, in general, we cannot say
$(i)\Rightarrow(ii)$ for $G$-convex spaces.

2. Note that the Hausdorffness of $Y$ is necessary for the partition of unity
argument in the proof. If $F$ is single-valued, we do not need to assume the
Hausdorffness of $Y.$

3. Note that (1.2) generalizes the following:

(1.2)’ for each $x\in D,$ $Sx\subset Tx$ and $T^{-}y$ is $G$-convex for each $y\in F(X)$ ,

as in previous works of Park for convex spaces and $H$-spaces.
4. If $F$ is compact, then by putting $K=F(X)$ , condition (1.4) holds

automatically.

Particular forms for compact admissible maps [4].
1. For convex spaces: Browder, Tarafdar and Husain, Ben-El-Mechaiekh

et al., Takahashi, Komiya, Granas and Liu, Lassonde, Park et al.
2. For other particular types of $G$-convex spaces: Komiya, Bielawski,

Horvath, and Park and Kim.

Particular forms for non-compact admissible maps[4].
1. For convex spaces: Park, and for $H$-spaces: Park and Kim.
2. For $\mathbb{V}$ instead of $\mathfrak{A}_{c}^{\kappa}$ : Browder, Tarafdar, Tarafdar and Husain, Ben-El-

Mechaiekh et al., Yannelis and Prabhakar, Lassonde, $Ko$ and Tan, Simons,
Takahashi, Komiya, Mehta, Mehta and Tarafdar, Sessa, Jiang, McLinden,
Granas and Liu, Park, and Chang.

3. For an $H$-space: Horvath, Ding and Tan, Ding et al., Tarafdar, Chen,
and Park.

In [5], the following particular form of Theorem $C$ was given.

Theorem 3 ([5]). Let $(X, D;\Gamma)$ be a $G$ -convex space, $Y$ a Hausdorff space,
and $F\in \mathfrak{A}_{c}^{\kappa}(X, Y)$ . Let $G$ : $Darrow Y$ be a map such that

(3.1) for each $x\in D,$ $Gx$ is (compactly) closed in $Y$ ;
(3.2) for any $N\in\langle D\rangle,$ $F(\Gamma_{N})\subset G(N),\cdot$ and
(3.3) there exist a nonempty compact subset $K$ of $Y$ such that either

(i) $\cap\{Gx:x\in M\}\subset K$ for some $M\in\langle D\rangle$ ; or
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(ii) for each $N\in\langle D\rangle$ , there exists a compact $G$ -convex subset $L_{N}$ of $X$

containing $N$ such that $F(L_{N})\cap\cap\{Gx:x\in L_{N}\cap D\}\subset K.$

Then $\overline{F(X)}\cap K\cap\cap\{Gx:x\in D\}\neq\emptyset.$

This also contains a large number of previous results; see [5].

Particular forms 1. The origin of Theorem 3: Sperner and Knaster-Kuratowski-
Mazurkiewicz.

2. For a convex space $X$ : Fan, Lassonde, Chang, and Park. Also Sehgal-
Singh-Whitfield, Shioji, Liu, Chang-Zhang, and Guillerme.

3. For an $H$-space $X$ : Horvath, Bardaro-Ceppitelli, Ding-Kim-Tan, Park,
and Ding.

5.5. KJCAM 2000 [7]

Abstract: In [7], we introduce fundamental results in the KKM theory for
$G$-convex spaces which are equivalent to the Brouwer theorem, the Sperner
lemma, and the KKM theorem. Those results are all abstract versions of
known corresponding ones for convex subsets of topological vector spaces.
Some earlier applications of those results are indicated. Finally, we give a
new proof of the Himmelberg fixed point theorem and $G$-convex space ver-
sions of the von Neumann type minimax theorem and the Nash equilibrium
theorem as typical examples of applications of our theory.

This paper [7] is based on the following KKM theorem for $G$-convex spaces
particular to Theorem A.

Theorem 1 ([7]). Let $(X, D;\Gamma)$ be a $G$ -convex space and $F$ : $Darrow X$ a
map such that

(1.1) $F$ has (compactly) closed [resp., open] values; and
(1.2) $F$ is a $KKM$ map.

Then $\{F(z)\}_{z\in D}$ has the finite intersection property.
Further, if $F$ has (compactly) closed values and if
(1.3) $\bigcap_{z\in M}F(z)$ is compact for some $M\in\langle D\rangle,$

then we have

$\bigcap_{z\in D}F(z)\neq\emptyset.$

5.6. JKMS $20OS[S]$

Abstract: We introduce a new concept of abstract convex spaces and
a multimap class $\mathfrak{K}$ having certain KKM property. Erom a basic KKM
type theorem for a $\mathfrak{K}$-map defined on an abstract convex space without
any topology, we deduce ten equivalent formulations of the theorem. As
applications of the equivalents, in the frame of abstract convex topological
spaces, we obtain Fan-Browder type fixed point theorems, almost fixed point
theorems for multimaps, mutual relations between the map classes $\mathfrak{K}$ and
$\mathfrak{B}$ , variational inequalities, the von Neumann type minimax theorems, and
the Nash equilibrium theorems.
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This paper [8] is based on the following variant of Theorem A.

Theorem 1 ([8]). Let $(E, D;\Gamma)$ be an abstract convex space, $Z$ a set, and
$F:Earrow Zamap$. Then $F\in \mathfrak{K}(E, Z)if$ and only if for any map $G:Darrow Z$

satisfying
(1.1) $F(\Gamma_{N})\subset G(N)$ for any $N\in\langle D\rangle,$

we have $F(E)\cap\cap\{G(y)|y\in N\}\neq\emptyset$ for each $N\in\langle D\rangle.$

Here, a multimap $F:Earrow Z$ is called $a\mathfrak{K}$-map if, for a KKM map $G$ :
$Darrow Z$ with respect to $F$ , the family $\{G(y)\}_{y\in D}$ has the finite intersection
property. We denote

$\mathfrak{K}(E, Z):=\{F:Earrow Z|F$ is a $\mathfrak{K}$-map$\}.$

5.7. JNCA 2008 [9]

Abstract: A KKM space is an abstract convex space satisfying an ab-
stract form of the KKM theorem and its ‘open’ version. We give several
characterizations of KKM spaces as abstract convex spaces satisfying one of
the properties of matching, intersection, geometric or section, Fan-Browder
type fixed point, or existence of maximal elements. We deduce fundamen-
tal results on KKM spaces; for example, several whole intersection prop-
erties, analytic alternatives, minimax inequalities, variational inequalities,
etc. These results are all abstract versions of known corresponding ones for
convex subsets of topological vector spaces, convex spaces due to Lassonde,
$c$-spaces due to Horvath, $G$-convex spaces due to the author, and their vari-
ations. Some earlier applications of those results are indicated. Moreover,
it is noted that many of the results are mutually equivalent.

This paper [9] is based on several equivalent formulations of Theorem A.
The following is one of them.

Theorem 4.1 ([9]). An abstract convex space $(X, D;\Gamma)$ satisfies the partial
$KKM$ principle iff for any maps $S:Darrow X,$ $T:Xarrow X$ satisfying

(1) $S$ has closed $value\mathcal{S}$;
(2) for each $x\in X,$ $co_{\Gamma}(D\backslash S^{-}(x))\subset X\backslash T^{-}(x)$ ; and
(3) $x\in T(x)$ for each $x\in X,$

$\{S(z)\}_{z\in D}$ has the finite intersection property.
An abstract convex space $(X, D;\Gamma)$ is a $KKM$ space iff the above condition

also holds for any open-valued map $S.$

5.8. NA 2010 [11]

Abstract: The partial KKM principle for an abstract convex space is an
abstract form of the classical KKM theorem. A KKM space is an abstract
convex space satisfying the partial KKM principle and its “open” version. In
[11], we clearly derive a sequence of a dozen statements which characterize
the KKM spaces and equivalent formulations of the partial KKM princi-
ple. As their applications, we add more than a dozen statements including
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generalized formulations of von Neumann minimax theorem, von Neumann
intersection lemma, the Nash equilibrium theorem, and the Fan type mini-
max inequalities for any KKM spaces. Consequently, this paper [11] unifies
and enlarges previously known several proper examples of such statements
for particular types of KKM spaces.

This paper [11] begins with the following form of Theorem A.

(O) The KKM principle. For any closed-valued [resp., open valued3 $KKM$

map $G:Darrow E$ , the family $\{G(z)\}_{z\in D}$ has the finite intersection property.

This paper [11] contains some incorrectly stated statements such as (VI),
Theorem 4, (XVI), and (XVII). These can be corrected easily.

5.9. NA 2011 [12]

Abstract: In [12], we obtain a new KKM type theorem for intersectionally
closed-valued KKM maps and some useful new basic consequences. Typi-
cal examples of them are abstract forms of Fan’s matching theorem, Fan’s
geometric lemma, the Fan-Browder fixed point theorem, maximal element
theorems, Fan’s minimax inequality, variational inequalities, and others.

The paper [12] is based on Theorem B.
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