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1. INTRODUCTION

In this paper we construct multi-dimensional $p$-adic approximation lattices by
simultaneous rational approximations of $p$-adic numbers. For analyzing these
$p$-adic lattices we apply the LLL algorithm due to Lenstra, Lenstra and Lov\’asz,
which has been widely used to solve the various NP problems such as SVP (Short-
est Vector Problems), ILP (Integer Linear Programing).. and so on. In a two-
dimensional lattice the Gauss reduction algorithm for finding the shortest vector
is most powerful and useful. The LLL algorithm, which is a multi-dimensional
extension of the Gauss algorithm, approximately solves SVP within a factor of
$2^{O(n)}$ for the lattice dimension $n(\geq 3)$ in polynomial times.

Using the open source software SAGE, we compare the minimum norms of the
vectors given by the LLL reduction algorithm and the norms of vectors estimated
by the simultaneous approximation theory. We also study the two types of si-
multaneous approximations of $p$-adic numbers, which can be transferred from
one of types to the other type by the famous Ransference Principle. The Rans-
ference Principle only gives the equivalence relation between these two types on
the existence of solutions of approximation inequalities. Any algorithms, which
give the constructive relations between these two types of solutions, have not yet
been known. Here we can give this algorithm by using LLL reduction algorithms.

2. LATTICE AND LLL ALGORITHM

In this section we give a brief review on lattices and the LLL algorithm. (For
details, see [4], [5].)

Given linearly independent vectors $b_{1},$ $b_{n}\in \mathbb{R}^{m}$ , the lattice generated by
these vectors is defined by

$L(b_{1}, b_{n})= \{\sum_{i=1}^{n}x_{i}b_{i} : x_{i}\in \mathbb{Z}\}.$

We refer to $b_{1},$ $b_{n}$ as a basis of the lattice.
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Let $B$ be the $m\cross n$ matrix whose columns are $b_{1},$ $b_{n}$ , then the lattice
generated by $B$ is

$L(B)=\{Bx:x\in \mathbb{Z}^{n}\}.$

We say that the rank of lattice is $n$ and its dimension is $m$ . If $n=m$, the lattice
is called a full-rank lattice. Hereafter we consider full-rank lattices.

For matrix $B,$ $P(B)=\{Bx : x\in[0, 1)^{n}\}$ is called the fundamental paral-
lelepiped of $B$ . Let $\Lambda=L(B)$ be a lattice of rank $n$ . We define the determinant
of $\Lambda$ , denoted by $\det(\Lambda)$ , as the $n$-dimensional volume of $P(B)$ . In the full rank
case, $\det(\Lambda)=|\det(B)|.$

The ith successive minimum of lattice $\Lambda,$ $\lambda_{i}(\Lambda)$ , is defined by

$\lambda_{i}(\Lambda)=\inf\{r$ : dim(span $(\Lambda\cap\overline{B}(0,$ $r$ $\geq i$ }.
The length of the shortest nonzero vector in the lattice is denoted by $\lambda_{1}(\Lambda)$ and
the second minimum vector should be linearly independent to the shortest vector.
The following estimate for the shortest vector is given by Minkowski’s theorem.

(2.1) $\lambda_{1}(\Lambda)\leq\sqrt{n}\{\det(\Lambda)\}^{1/n}$

Next we introduce the algorithm given by Lenstra, Lenstra and Lov\’asz, which
approximately solves the Shortest Vector Problem (SVP) within a factor of $2^{O(n)}$

for the lattices dimension $n$ . The basic idea of LLL algorithm is to generalize
Gauss’s algorithm to higher dimensions. For a basis $b_{1},$ $b_{n}$ of a lattice, the
Gram-Schmidt orthogonalized basis $b_{1}^{*},$ $b_{n}^{*}$ , which satisfies

span$(b_{1}, b_{k})=span(b_{1}^{*}, b_{k}^{*})$ , $k=1,$ $n$

$b_{k}= \sum_{i=1}^{k}\mu_{k,i}b_{i}^{*},$ $\mu_{k,i}=\frac{(b_{k},b_{i}^{*})}{(b_{i}^{*},b_{i}^{*})}$ for $i\leq k-1,$ $\mu_{k,k}=1,$

is essentially used to construct the reduced basis.

Definition 2.1. For a constant $\delta$ : $1/4<\delta<1$ , a basis $\{b_{1}, b_{n}\}$ of a lattice is
called a $\delta$-reduced basis if it satisfies the following two conditions.

$\bullet$ $| \mu_{k,i}|=|\frac{(b_{k},b_{i}^{*})}{(b_{i}^{*},b_{i}^{*})}|\leq\frac{1}{2}$ for all $i<k,$

$\bullet$ for any pair of consecutive vectors $b_{i},$ $b_{i+1},$

$\delta\Vert\pi_{i}(b_{i})\Vert^{2}\leq\Vert\pi_{i}(b_{i+1})\Vert^{2}$

where we define projection operations $\pi_{i}$ from $\mathbb{R}^{n}$ onto span $(b_{i}^{*}, b_{i+1}^{*}, b_{n}^{*})$ by

$\pi_{i}(x)=\sum_{j=i}^{n}\frac{(x,b_{j}^{*})}{(b_{j}^{*},b_{j}^{*})}b_{j}^{*}.$

The following estimate is well-known for the first vector in a $\delta$-LLL reduced
basis.

Lemma 2.2. If $B=$ $(b_{1}, b_{n})\in \mathbb{R}^{nxn}$ is a $\delta-LLL$ reduced basis with $\delta\in(1/4,1)$ ,
then

(2.2) $\Vert b_{1}\Vert\leq(\frac{2}{\sqrt{4\delta-1}})^{n-1}\lambda_{1}(B)$ .
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Using the estimate (2.1), we obtain

(2.3) $\Vert b_{1}\Vert\leq\sqrt{n}|\det(B)|^{\frac{1}{n}}(\frac{2}{\sqrt{4\delta-1}})^{n-1}$

3. $p$-ADIC LATTICE

In this section we introduce p–adic approximation lattices and investigate si-
multaneous rational approximations of $p$-adic numbers. Let $p$ be a fixed rational
prime number and $|\cdot|_{p}$ be the corresponding p–adic valuation, normalized so that
$|p|_{p}=p^{-1}$ . The completion of $\mathbb{Q}$ w.r.t. $|\cdot|_{p}$ is called the field of $p\mapsto$-adic numbers,
denoted by $\mathbb{Q}_{p}$ . The strong triangle inequality

$|a+b|_{p} \leq\max\{|a|_{p}, |b|_{p}\}, a, b\in \mathbb{Q}_{p}$

is most important and essential to construct p–adic approximation lattices. The
set of $p$-adic integers is defined by $\mathbb{Z}_{p}=\{z\in \mathbb{Q}_{p} : |z|_{p}\leq 1\}.$

Let $n\geq 1$ be an integer and let $=\{\xi_{1}, \xi_{2}, \xi_{n}\}$ be a $n$-tuple of p–adic
integers.

Definition 3.1. We denote by $w_{n}$ the supremum of the real numbers $w$

such that, for some infinitely many real numbers $X_{j}$ , which goes to infinity, the
inequalities

$0<|a_{0,j}+a_{1,j}\xi_{1}+\cdots+a_{n,j}\xi_{n}|_{p}\leq X_{j}^{-w-1},$

$\max_{0\leq i\leq n}|a_{i,j}|\leq X_{j},$

have a solution in integers $a_{0,j},$ $a_{1,j},$ $a_{n,j}.$

It follows from the Dirichlet principle that $w_{n}(\Xi)\geq n$ holds for every $n$-tuple
: of -adic numbers.

For a positive integer $m$ we define the $p$-adic approximation lattice $\Gamma_{m}$ by

$\Gamma_{m}=\{(a_{0}, a_{1}, a_{n})\in \mathbb{Z}^{n+1}:|a_{0}+a_{1}\xi_{1}+\cdots+a_{n}\xi_{n}|_{p}\leq p^{-rn}\}.$

When a $p$-adic integer $\xi_{i}$ has the $p$-adic expansion

$\xi_{i}=\sum_{k=0}^{\infty}x_{i,k}p^{k}, 0\leq x_{i,k}\leq p-1,$

let $\xi_{i,m}$ be the m-th order approximation of $\xi_{i}$ defined by

$\xi_{i,m}=\sum_{k=0}^{m-1}x_{i,k}p^{k}.$

Consider the basis $\{b_{0,m}, b_{1,m}, b_{n,m}\}\subset \mathbb{Z}^{n+1}$ of the lattice $\Gamma_{m}$ given by

$b_{0,m}= (p^{m}, 0, 0)^{t}, b_{1,m}=(\xi_{1,m}, -1,0, 0)^{t},$

$b_{2,m}= (\xi_{2,m}, 0, -1,0, 0)^{t}, \cdots, b_{n,m}=(\xi_{n,m}, 0, 0, -1)^{t}.$

In fact, we have $b_{k,m}\in\Gamma_{m},$ $\forall k$ , since we can estimate

$|\xi_{k,m}-\xi_{k}|_{p}\leq p^{-rn}.$
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For $B_{m}=(b_{0,m}b_{1,m}\ldots b_{n,m})$ we have

$B_{m}=(\begin{array}{lllll}p^{m} \xi_{1,m} \xi_{2,m} \cdots \xi_{n,m}0 -1 0 \cdots 00 0 -1 \cdots 0\vdots \vdots \vdots \ddots \vdots 0 0 0 \cdots -1\end{array}), |\det(B_{m})|=p^{m}$

Applying the LLL algorithm for $\delta\in(1/4,1)$ , we denote $\{b_{0}, b_{1}, b_{n}\}$ a reduced
basis and $B=$ $(b_{0}b_{1} b_{n})$ . It follows from (2.3) that the shortest vector $b_{0}$ in
$B$ satisfies

(3.1) $\Vert b_{0}\Vert \leq \sqrt{n+1}|\det(B)|^{\frac{1}{\mathfrak{n}+1}}(\frac{2}{\sqrt{4\delta-1}})^{n}$

$= \sqrt{n+1}|\det(B_{m})|^{\frac{1}{n+1}}(\frac{2}{\sqrt{4\delta-1}})^{n}$

$= \sqrt{n+1}p^{\frac{m}{n+1}}(\frac{2}{\sqrt{4\delta-1}})^{n}$

Furthermore, it is known that

$( \prod_{i=0}^{n}\Vert b_{i}\Vert)^{\frac{1}{n+1}}\leq K_{n}|\det(B)|^{\frac{1}{n+1}}=K_{n}p^{\frac{m}{n+1}}, K_{n}\sim 2^{O(n)}$

for the reduced basis $\{b_{0}, b_{1}, b_{n}\}.$

On the other hand, since for $=\{\xi_{1}, \xi_{n}\}$ the inequality $w_{n}(\Xi)\geq n$ holds,
we have the sequence $\{X_{m}\}$ , going to infinity, and the sequence of integers
$a_{0,m},$ $a_{1,m},$ $a_{n,m}$ , which satisfy the following inequalities

(3.2) $0<|a_{0,m}+a_{1,m}\xi_{1}+\cdots+a_{n,m}\xi_{n}|_{p}\leq X_{m}^{-n-1},$

$\max_{0\leq i\leq n}|a_{i,m}|\leq X_{m}, \forall m.$

Thus, putting $X_{m}^{-n-1}=p^{-m}$ , that is, $X_{m}=p^{\frac{m}{n+1}}$ , we can admit that the LLL
algorithm gives the approximate solutions of the simultaneous approximation
problem (3.2). In section 5 we give the numerical calculations, comparing these
two solutions.

4. TRANSFERENCE THEOREM

We consider the following type of simultaneous approximation problems.

Definition 4.1. We denote by $\lambda_{n}$ the supremum of the real numbers $\lambda$ such
that, for some infinitely many real numbers $Y_{m}$ , which goes to infinity, the in-
equalities

$0< \max_{1\leq i\leq n}|a_{0,m}\xi_{i}-a_{i,m}|_{p}\leq Y_{m}^{-\lambda-1},$

$\max_{0\leq i\leq n}|a_{i,m}|\leq Y_{m},$

have a solution in integers $a_{0,m},$ $a_{1,m},$ $a_{n,m}.$
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Applying Khintchine’s transference principle ([2], [3], for p–adic case see [7]), it
is known that the following inequality relations between the two types of $p$-adic
simultaneous approximations hold.

(4.1) $\frac{1}{n}\leq\frac{w_{n}(---)}{(n-1)w_{n}(_{-}^{-}-)+n}\leq\lambda_{n}(\Xi)\leq\frac{w_{n}(---)-n+1}{n}.$

The famous transference principle implies the equivalence of the inequalities
between the 1st approximation problem given by Definition 3.1 and the 2nd ap-
proximation problem given by Definition 4.1 Next we construct the algorithm,
which gives the solutions of the 2nd approximation problem from the solutions
of the 1st approximation problem by using the LLL algorithm.

For $p$-adic integers $\{\xi_{1}, \xi_{n}\}$ and their m-th order approximations $\{\xi_{1,m}, \xi_{n,m}\},$

let

$B_{m}=(\begin{array}{lllll}p^{m} \xi_{1,m} \xi_{2,m} \cdots \xi_{n,m}0 -1 0 \cdots 00 0 -1 \cdots 0\vdots \vdots \vdots \ddots \vdots 0 0 0 \cdots -1\end{array})$

Applying the LLL reduction to the lattice $L(B_{m})$ , we can get the LLL reduced
basis $\{b_{0}, b_{1}, b_{n}\}$ and we can obtain the matrix $B=(b_{0}b_{1}\cdots b_{n})$ .

Define the change of basis matrix $D$ by

$D=B(B_{m})^{-1}$

Next, considering the transpose of $B_{m}$ , define the matrix $D’$ by

$D’=(B_{m}^{T})^{-1}B$

and put $D”=|\det(B_{m})|D’$ . We denote the first column of the matrix $D”$ by

$(Q_{m}P_{1},{}_{m}P_{2}, {}_{m}P_{n,m})^{T}$

Theorem 4.2. The tuple of integers $\{Q_{m}, P_{1,m}, P_{2,m}, \cdots, P_{n,m}\}$ is a solution of
the following 2nd type simultaneous approximation problem

$|P_{i,m}-Q_{m}\xi_{i}|_{p}\leq p^{-m}, \forall i=1, n,$

$\max_{1\leq i\leq n}\{|P_{i,m}|\}\leq K_{n}p^{m(1+\frac{1}{n+1})}, |Q_{m}|\leqK_{n}p^{\frac{m}{n+1}}, K_{n}\sim 2^{O(n)}.$

except the following rare case where for some $\xi_{k}$

(4.2) $|P_{k,m}-Q_{m}\xi_{k,m}|_{p}>p^{-m}$ and

(4.3)
$(P_{k,m}-Q_{m} \xi_{k,m})\xi_{k}+\sum_{i\neq k}(P_{i,m}-Q_{m}\xi_{i,m})\xi_{i}\equiv 0 mod p^{m}.$

Remark 4.3. When we randomly choose a $p$-adic integer $\xi$ , the probability of
satisfying the relation $\xi\equiv 0mod p^{m}$ is $p^{-m}.$
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5. NUMERICAL CALCULATIONS BY LLL

Using the open source software SAGE, we compare the minimum and maxi-
mum norms of the vectors given by the LLL reduction algorithm and the norms
of vectors estimated by the simultaneous approximation theory, using $X_{m}=$

$p^{m/(n+1)}$ . We investigate the following case.
$\bullet$ $p=13$ : prime number
$\bullet$

$\xi_{i}=a^{\frac{1}{i103}}$ : $p$-adic number, $103rd$ root of $a_{i}$

$a_{i}=3, 5, 9, 12, 29, 31, 41, 50, 53, 61, 75, 83, 89, 92, 96$ ,
$101, 109, 123, 140, 154, 164, 167, 172, 175, 185, 196$ ,
$200, 203, 214, 222, 229, 235, 254, 267, 276, 288, 298$ ,
$300, 307, 313, 337, 340, 352, 363, 370, 375, 389, 396$ ,
$404, 410, 418, 425, 437, 441, 446, 453, 478, 485, 492, 498$

$\bullet$ $m=5$ , 6, 40: approximation orders
$\bullet$ $n=10$ , 20, 60: dimensions

First we show our numerical process by using the small parameters, $n=10,$
$\xi_{i}=a^{\frac{1}{i103}},$ $m=5$ . For the approximation order $m=5$ and the dimension $n=10,$

we operate the LLL reduction $(\delta=0.99999)$ . Then we obtain the reduced basis
$B$ from $B_{m}$ . Here we note that the basis is given by row vectors in SAGE.

$B_{m}=[2271773172732672832862722939263528233712931444442489715744389958 -10000000000 -10000000000 -10000000000 -10000000000 -10000000000 -10000000000 -10000000000 -10000000000 -10000000000 -10000000000)$

$B=(-20000001111 -2-1-2-1-1000111 -1-1-202002111 -2-1-130000011 -1-2-100321011 -1-1-1-2-1000011 -1-1-2-3-1000011 -2-2-1-1-1-2-10111 -1-2-1-10000011 -1-2-2-10001011 -2-1000211111]$

We obtain
$\Vert b_{1}\Vert=3, \Vert b_{n+1}\Vert=4.898979\ldots,$

which are sufficiently effective solutions of SVP, comparing to the theoretical
value

$X_{m}=p^{m/(n+1)}=3.208764\ldots.$

Next we give the graphs which compare these numerical values for the SVP
by LLL and the theoretical values $X_{m}$ for the approximation orders $m$ from 5 to
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40 and the dimensions $n=10$ , 20, 60. The following graphs show that the LLL
algorithm is strong enough to solve the SVP of dimensions under 100.

FIGURE 1. $n=10$

FIGURE 2. $n=20$
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FIGURE 3. $n=60$

6. NUMERICAL CALCULATIONS FOR TRANSFERENCE PRINCIPLE

We apply the algorithm given in section 4 to obtain the solutions of the 2nd
type simultaneous approximation problem for the parameters $p=13,$ $n=4,$ $m=$

$10,$
$\xi_{i}=a^{\frac{1}{i103}},$

$a_{i}=5$ , 29, 53, 61.

$B_{m}=(\begin{array}{llll}137858491849 0 0 0076365194160-1 0 0051552443868 0-l 0066523226082 00 0-172516179394 00 0-1\end{array})$

Applying the LLL algorithm to $B_{m}$ , we obtain the LLL reduced matrix $B.$

$B=(\begin{array}{lllll}-56 11 12 78 30-23 22 -50 -62 151-98 80 -22 -96 -87-14 -149 105 -29 -920 138 234 -25 -34\end{array})$

Since $p^{m/(n+1)}=169$ , almost all elements of $B$ is less than $p^{m/(n+1)}.$

We can obtain the change of basis matrix $D$ by

$D=B(B_{m})^{-1}=(\begin{array}{lllll}64 -11 -12 -78 -3043 -22 50 62 -151-56 -80 22 96 87-62 149 -105 29 9134 -138 -234 25 34\end{array})$

170



We give the 2nd type simultaneous approximations, using the matrix $D’$ de-
fined by $D’=B(B_{m}^{T})^{-1}.$

$|\det(B_{m}^{T})|D’=|\det(B_{m}^{T})|B(B_{m}^{T})^{-1}$

$=(\begin{array}{lllll}-56 -5792894283299 -454l238758796 -14478263024814 -8196660801534-23 -4789286286358 5707218383486 7017192294752 -22484504395261-98 -18512468375600 -2019252678386 6715139061468 4887103210251-14 1947l802567261 -15196875858297 3066571098473 22549991512520 -17497167991962 -31227838215306 4776926817865 6137512310746\end{array})$

We denote the first row of this matrix by

$(Q P_{1} P_{2} . . . P_{n})$ .

Then we can calculate

Since $p^{-m}=13^{-10}$ , we obtain the following 2nd type simultaneous approxima-
tions

$|P_{i}-Q\xi_{i}|_{p}\leq p^{-m}, \forall i=1, n.$
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