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Abstract. In this article, using the concept of strongly asymptotically invariant nets, we first
introduce a broad semigroup of not necessarily continuous mappings in a Hilbert space. Fur-
thermore, we consider such a semigroup in a Banach space which contains discrete semigroups
generated by generalized nonspreading mappings [22] and semigroups of $\phi-$-nonexpansive map-
pings [40]. Then we prove weak convergence theorems of Mann’s type iteration and strong
convergence theorems of Halpern’s type iteration for the semigroups of mappings in a Hilbert
space. Furthermore, we obtain a weak convergence theorem of Mann’s type iteration in a Ba-
nach space. Using these results, we obtain well-known and new theorems which are connected
with weak and strong convergence theorems in a Hilbert space and a Banach space.

1 Introduction

Let $H$ be a real Hilbert space and let $C$ be a nonempty subset of $H$ . We denote by $\mathbb{R}$ the
set of real numbers. Kocourek, Takahashi and Yao [21] defined a class of nonlinear mappings
containing nonexpansive mappings, nonspreading mappings and hybrid mappings in a Hilbert
space. A mapping $T:Carrow C$ is called generalized hybrid [21] if there exist $\alpha,$

$\beta\in \mathbb{R}$ such that

$\alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta\Vert Tx-y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2}$

for all $x,$ $y\in C$ ; see also [2]. We call such a mapping $(\alpha, \beta)$-generalized hybrid. $A(1,0)-$
generalized hybrid mapping is nonexpansive. It is nonspreading [25] for $\alpha=2$ and $\beta=1.$

It is hybrid [35] for $\alpha=\frac{3}{2}$ and $\beta=\frac{1}{2}$ . They proved a fixed point theorem and a mean
convergence theorem for the mappings. Takahashi and Takeuchi [36] introduced the concept
of attractive points of nonlinear mappings in a Hilbert space and then proved attractive point
and mean convergence theorems without convexity for generalized hybrid mappings; see also
[1, 26, 27, 37, 39]. In general, nonspreading and hybrid mappings are not continuous. We also
know the concept of one-parameter nonexpansive semigroups in a Hilbert space. Let $H$ be a
Hilbert space and let $C$ be a nonempty subset of $H$ . Let $S=\mathbb{R}^{+}=\{t\in \mathbb{R} : 0\leq t<\infty\}.$ $A$

family $\mathcal{S}=\{S(t) : t\in \mathbb{R}^{+}\}$ of mappings of $C$ into itself is called a one-parameter nonexpansive
semigroup on $C$ if $S$ satisfies the following:

(1) $S(t+s)x=S(t)S(s)x,$ $\forall x\in C,$ $t,$ $s\in \mathbb{R}^{+}$ ;
(2) $S(O)x=x,$ $\forall x\in C$ ;
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(3) for each $x\in C$ , the mapping $t\mapsto S(t)x$ from $\mathbb{R}^{+}$ into $C$ is continuous;

(2) for each $t\in \mathbb{R}^{+},$ $S(t)$ is nonexpansive.

Of course, $S(t)$ are continuous. Such one-parameter nonexpansive semigroups are used in
the theory of nonlinear evolution equations [7]. Recently, using the concept of means and
invariant means, Takahashi, Wong and Yao [38] introduced the concept of semigroups of

not necessarily continuous mappings in a Hilbert space which contains discrete semigroups
generated by generalized hybrid mappings and semigroups of nonexpansive mappings. They
proved a fixed point theorem and a mean convergence theorem of Baillon’s type [5] which
generalize simultaneously the results [21] and [6] for generalized hybrid mappings and one-
parameter nonexpansive semigroups in a Hilbert space. They also generalized such results to
Banach spaces; see [40]. It is natural to consider weak convergence theorems of Mann’s type

iteration [28] and strong convergence theorems of Halpern’s type iteration [9] for semigroups
of not necessarily continuous mappings.
In this article, using the concept of strongly asymptotically invariant nets, we first introduce

a broad semigroup of not necessarily continuous mappings in a Hilbert space. Furthermore,

we consider such a semigroup in a Banach space which contains discrete semigroups generated
by generalized nonspreading mappings [22] and semigroups of $\phi-$-nonexpansive mappings [40].
Then we prove weak convergence theorems of Mann’s type iteration and strong convergence
theorems of Halpern’s type iteration for the semigroups of mappings in a Hilbert space. Fur-
thermore, we obtain a weak convergence theorem of Mann’s type iteration in a Banach space.
Using these results, we obtain well-known and new theorems which are connected with weak
and strong convergence theorems in a Hilbert space and a Banach space.

2 Preliminaries

Let $H$ be a real Hilbert space with inner product $\rangle$ and norm $\Vert\cdot 1$ , respectively. Let $A$ be
a nonempty subset of $H$ . We denote by $\overline{co}A$ the closure of the convex hull of $A$ . In a Hilbert
space, it is known [34] that for all $x,$ $y\in H$ and $\alpha\in \mathbb{R},$

$\Vert y\Vert^{2}-\Vert x\Vert^{2}\leq 2\langle y-x, y\rangle$ ; (2.1)

$\Vert\alpha x+(1-\alpha)y\Vert^{2}=\alpha\Vert x\Vert^{2}+(1-\alpha)\Vert y\Vert^{2}-\alpha(1-\alpha)\Vert x-y\Vert^{2}$ (2.2)

Furthermore, we have that

$2\langle x-y, z-w)=\Vert x-w\Vert^{2}+\Vert y-z\Vert^{2}-\Vert x-z\Vert^{2}-\Vert y-w\Vert^{2}$ (2.3)

for all $x,$ $y,$ $z,$ $w\in H$ . From (2.3), we have that

$2\langle x-y, z-y\rangle-\Vert z-y\Vert^{2}=\Vert x-y\Vert^{2}-\Vert x-z\Vert^{2}$ (2.4)

for all $x,$ $y,$ $z\in H$ . Let $E$ be a real Banach space and let $E^{*}$ be the dual space of $E$ . For a
sequence $\{x_{n}\}$ of $E$ and a point $x\in E$ , the weak convergence of $\{x_{n}\}$ to $x$ and the strong
convergence of $\{x_{n}\}$ to $x$ are denoted by $x_{n}arrow x$ and $x_{n}arrow x$ , respectively. The duality
mapping $J$ from $E$ into $E^{*}$ is defined by

$Jx=\{x^{*}\in E^{*}:\langle x, x^{*}\rangle=\Vert x\Vert^{2}=\Vert x^{*}\Vert^{2}\}, \forall x\in E.$
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Let $S(E)$ be the unit sphere centered at the origin of $E$ , where $\langle x,$ $x^{*}\rangle$ is the value of $x^{*}\in E^{*}$

at $x\in E$ . The norm of $E$ is said to be G\^ateaux differentiable if for each $x,$ $y\in S(E)$ , the limit

$\lim_{tarrow 0}\frac{\Vert x+ty\Vert-\Vert x\Vert}{t}$ (2.5)

exists. In this case, $E$ is called smooth. The norm of $E$ is said to be Fk\’echet differentiable
if for each $x\in S(E)$ , the limit (2.5) is attained uniformly for $y\in S(E)$ . A Banach space $E$

is said to be strictly convex if $\Vert\frac{x+y}{2}\Vert<1$ whenever $x,$ $y\in S(E)$ and $x\neq y$ . It is said to be
uniformly convex if for each $\epsilon\in(0,2$], there exists $\delta>0$ such that $\Vert\frac{x+y}{2}\Vert<1-\delta$ whenever
$x,$ $y\in S(E)$ and $\Vert x-y\Vert\geq\epsilon$ . It is known that if $E$ uniformly convex, then $E$ is strictly convex
and reflexive. Furthermore, we know from [33] that

(i) if $E$ is smooth, then $J$ is single-valued;
(ii) if $E$ is reflexive, then $J$ is onto;
(iii) if $E$ is strictly convex, then $J$ is one-to-one;
(iv) if $E$ is strictly convex, then $J$ is strictly monotone;
(v) if $E$ has a Fr\’echet differentiable norm, then $J$ is continuous.

Let $E$ be a smooth Banach space and let $J$ be the duality mapping on $E$ . Throughout this
paper, define a function $\phi$ : $E\cross Earrow \mathbb{R}$ by

$\phi(x, y)=\Vert x\Vert^{2}-2\langle x, Jy\rangle+\Vert y\Vert^{2}, \forall x, y\in E.$

Observe that, in a Hilbert space $H,$ $\phi(x, y)=\Vert x-y\Vert^{2}$ for all $x,$ $y\in H$ . Furthermore, we know
that for each $x,$ $y,$ $z,$ $w\in E,$

$(\Vert x\Vert-\Vert y\Vert)^{2}\leq\phi(x, y)\leq(\Vert x\Vert+\Vert y\Vert)^{2}$ ; (2.6)

$\phi(x, y)=\phi(x, z)+\phi(z, y)+2\langle x-z, Jz-Jy\rangle$ ; (2.7)

$2\langle x-y, Jz-Jw\rangle=\phi(x, w)+\phi(y, z)-\phi(x, z)-\phi(y, w)$ . (2.8)

If $E$ is additionally assumed to be strictly convex, then

$\phi(x, y)=0$ if and only if $x=y$ . (2.9)

The following lemmas are in Xu [42] and Kamimura and Takahashi [20].

Lemma 2.1 ([42]). Let $E$ be a uniformly convex Banach space and let $r>$ O. Then there
exists a strictly increasing, continuous, and convex function $g$ : $[0, 2r]arrow[0, \infty$ ) such that
$g(O)=0$ and

$\Vert ax+(1-a)y\Vert^{2}\leq a\Vert x\Vert^{2}+(1-a)\Vert y\Vert^{2}-a(1-a)g(\Vert x-y$

for all $x,$ $y\in B_{r}$ and $a\in[O$ , 1$]$ , where $B_{r}=\{z\in E:\Vert z\Vert\leq r\}.$

Lemma 2.2 ([20]). Let $E$ be a uniformly convex Banach space and let $r>$ O. Then there
exists a strictly increasing, continuous, and convex function $g$ : $[0, 2r]arrow[0, \infty$ ) such that
$g(O)=0$ and

$g(\Vert x-y \leq\phi(x, y)$

for all $x,$ $y\in B_{r}$ , where $B_{r}=\{z\in E:\Vert z\Vert\leq r\}.$
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Let $E$ be a smooth Banach space and let $C$ be a nonempty subset of $E$ . A mapping
$T$ : $Carrow E$ is called generalized nonexpansive [16] if $F(T)\neq\emptyset$ and $\phi(Tx, y)\leq\phi(x, y)$ for
all $x\in C$ and $y\in F(T)$ . Let $D$ be a nonempty subset of a Banach space $E$ . A mapping
$R:Earrow D$ is said to be sunny if $R(Rx+t(x-Rx))=Rx$ for all $x\in E$ and $t\geq 0$ . A mapping
$R:Earrow D$ is said to be a retraction or a projection if $Rx=x$ for all $x\in D$ . A nonempty subset
$D$ of a smooth Banach space $E$ is said to be a generalized nonexpansive retract (resp. sunny
generalized nonexpansive retract) of $E$ if there exists a generalized nonexpansive retraction
(resp. sunny generalized nonexpansive retraction) $R$ from $E$ onto $D$ ; see [16, 15] for more
details. The following results are in Ibaraki and Takahashi [16].

Lemma 2.3 ([16]). Let $C$ be a nonempty closed sunny generalized nonexpansive retract of
a smooth and strictly convex Banach space E. Then the sunny generalized nonexpansive
retraction from $E$ onto $C$ is uniquely determined.

Lemma 2.4 ([16]). Let $C$ be a nonempty closed subset of a smooth and strictly convex Banach
space $E$ such that there exists a sunny generalized nonexpansive retraction $R$ from $E$ onto $C$

and let $(x, z)\in E\cross C$. Then the following hold:

(i) $z=Rx$ if and only if $\langle x-z,$ $Jy-Jz\rangle\leq 0$ for all $y\in C$ ;
侮$)$ $\phi(Rx, z)+\phi(x,Rx)\leq\phi(x,z)$ .

In 2007, Kohsaka and Takahashi [23] proved the following results:

Lemma 2.5 ([23]). Let $E$ be a smooth, strictly convex and reflexive Banach space and let $C$

be a nonempty closed subset of E. Then the following are equivalent.$\cdot$

(a) $C$ is a sunny generalized nonexpansive retract of $E$ ;
(b) $C$ is a generalized nonexpansive retract of $E$ ;
(c) $JC$ is closed and convex.

Lemma 2.6 ([23]). Let $E$ be a smooth, strictly convex and reflexive Banach space and let
$C$ be a nonempty closed sunny generalized nonexpansive retract of E. Let $R$ be the sunny
generalized nonexpansive retraction from $E$ onto $C$ and let $(x, z)\in E\cross C$ . Then the following
are equivalent:

(i) $z=Rx$;
(ii) $\phi(x, z)=\min_{y\in C}\phi(x, y)$ .

Inthakon, Dhompongsa and Takahashi [19] obtained the following result concerning the set
of fixed points of a generalized nonexpansive mapping in a Banach space; see also Ibaraki and
Takahashi [18].

Lemma 2.7 ([19]). Let $E$ be a smooth, strictly convex and reflexive Banach space and let $C$ be
a closed subset of $E$ such that $J(C)$ is closed and convex. Let $T$ be a generalized nonexpansive
mapping from $C$ into itself. Then, $F(T)$ is closed and $JF(T)$ is closed and convex.

The following is a direct consequence of Lemmas 2.5 and 2.7.

Lemma 2.8 ([19]). Let $E$ be a smooth, strictly convex and reflexive Banach space and let $C$ be
a closed subset of $E$ such that $J(C)$ is closed and convex. Let $T$ be a generalized nonexpansive
mapping from $C$ into itself. Then, $F(T)$ is a sunny generalized nonexpansive retract of $E.$

Let $\iota\infty$ be the Banach space of bounded sequences with supremum norm. Let $\mu$ be an
element of $(l^{\infty})^{*}$ (the dual space of $l^{\infty}$ ). Then, we denote by $\mu(f)$ the value of $\mu$ at $f=$
$(x_{1}, x_{2}, x_{3}, \ldots)\in l^{\infty}$ . Sometimes, we denote by $\mu_{n}(x_{n})$ the value $\mu(f)$ . A linear functional $\mu$
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on $l^{\infty}$ is called a mean if $\mu(e)=\Vert\mu\Vert=1$ , where $e=(1,1,1, \ldots)$ . A mean $\mu$ is called a Banach
limit on $\iota\infty$ if $\mu_{n}(x_{n+1})=\mu_{n}(x_{n})$ . We know that there exists a Banach limit on $l^{\infty}$ . If $\mu$ is a
Banach limit on $l^{\infty}$ , then for $f=(x_{1}, x_{2}, x_{3}, \ldots)\in l^{\infty},$

$\lim_{narrow}\inf_{\infty}x_{n}\leq\mu_{n}(x_{n})\leq\lim_{narrow}\sup_{\infty}x_{n}.$

In particular, if $f=(x_{1}, x_{2}, x_{3}, \ldots)\in l^{\infty}$ and $x_{n}arrow a\in \mathbb{R}$ , then we have $\mu(f)=\mu_{n}(x_{n})=a.$

See [33] for the proof of existence of a Banach limit and its other elementary properties.

3 Attractive Point Theorems for Families of Mappings

Let $S$ be a semitopological semigroup, i.e., $S$ is a semigroup with a Hausdorff topology such
that for each $a\in S$ the mappings $s\mapsto a\cdot s$ and $s\mapsto s\cdot$ $a$ from $S$ to $S$ are continuous. In
the case when $S$ is commutative, we denote $st$ by $s+t$ . Let $B(S)$ be the Banach space of
all bounded real-valued functions on $S$ with supremum norm and let $C(S)$ be the subspace of
$B(S)$ of all bounded real-valued continuous functions on $S$ . Let $\mu$ be an element of $C(S)^{*}$ (the
dual space of $C(S)$ ). We denote by $\mu(f)$ the value of $\mu$ at $f\in C(S)$ . Sometimes, we denote
by $\mu_{t}(f(t))$ or $\mu_{t}f(t)$ the value $\mu(f)$ . For each $s\in S$ and $f\in C(S)$ , we define two functions
$l_{s}f$ and $r_{s}f$ as follows:

$(l_{S}f)(t)=f(st)$ and $(r_{s}f)(t)=f(ts)$

for all $t\in S$ . An element $\mu$ of $C(S)^{*}$ is called a mean on $C(S)$ if $\mu(e)=\Vert\mu\Vert=1$ , where
$e(s)=1$ for all $s\in S$ . We know that $\mu\in C(S)^{*}$ is a mean on $C(S)$ if and only if

$\inf_{s\in S}f(s)\leq\mu(f)\leq\sup_{s\in S}f(s) , \forall f\in C(S)$ .

A mean $\mu$ on $C(S)$ is called left invariant if $\mu(l_{s}f)=\mu(f)$ for all $f\in C(S)$ and $s\in S.$

Similarly, a mean $\mu$ on $C(S)$ is called right invariant if $\mu(r_{s}f)=\mu(f)$ for all $f\in C(S)$ and
$s\in S$ . A left and right invariant invariant mean on $C(S)$ is called an invariant mean on $C(S)$ .
If $S=\mathbb{N}$ , an invariant mean on $C(S)=B(S)$ is a Banach limit on $l^{\infty}$ . The following theorem
is in [33, Theorem 1.4.5].

Theorem 3.1 ([33]). Let $S$ be a commutative semitopological semigroup. Then there exists
an invariant mean on $C(S)$ , i. e., there exists an element $\mu\in C(S)^{*}$ such that $\mu(e)=\Vert\mu\Vert=1$

and $\mu(r_{s}f)=\mu(f)$ for all $f\in C(S)$ and $s\in S.$

Let $E$ be a Banach space and let $C$ be a nonempty subset of $E$ . Let $S$ be a semitopological
semigroup and let $\mathcal{S}=\{T_{s} : s\in S\}$ be a family of mappings of $C$ into itself. Then $S=$

$\{T_{s} : s\in S\}$ is called a continuous representation of $S$ as mappings on $C$ if $T_{st}=T_{s}T_{t}$ for all
$s,$ $t\in S$ and $\mathcal{S}\mapsto T_{s}x$ is continuous for each $x\in C$ . We denote by $F(S)$ the set of common
fixed points of $T_{s},$ $s\in S$ , i.e.,

$F(S)=\cap\{F(T_{s}):s\in S\}.$

The following definition [31] is crucial in the nonlinear ergodic theory of abstract semigroups;
see also [10]. Let $E$ be a reflexive Banach space and let $E^{*}$ be the dual space of $E$ . Let
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$u:Sarrow E$ be a continuous function such that $\{u(s) : s\in S\}$ is bounded and let $\mu$ be a mean
on $C(S)$ . Then there exists a unique point $z_{0}\in co\{u(s) : s\in S\}$ such that

$\mu_{s}\langle u(s) , y^{*}\rangle=\langle z_{0}, y^{*}\rangle, \forall y^{*}\in E^{*}$ . (3.1)

We call such $z_{0}$ the mean vector of $u$ for $\mu$ . In particular, let $\mathcal{S}=\{T_{s}:s\in S\}$ be a continuous
representation of $S$ as mappings on $C$ such that $\{T_{s}x : s\in S\}$ is bounded for some $x\in C.$

Putting $u(s)=T_{s}x$ for all $s\in S$ , we have that there exists $z_{0}\in E$ such that

$\mu_{s}\langle T_{s}x, y^{*}\rangle=\langle z_{0}, y^{*}\rangle, \forall^{*}y\in E^{*}.$

We denote such $z_{0}$ by $T_{\mu}x$ . A net $\{\mu_{\alpha}\}$ of means on $C(S)$ is said to be strongly asymptotically
invariant if for each $s\in S,$

$\Vert\ell_{s}^{*}\mu_{\alpha}-\mu_{\alpha}\Vertarrow 0$ and $\Vert r_{s}^{*}\mu_{\alpha}-\mu_{\alpha}\Vertarrow 0,$

where $l_{s}^{*}$ and $r_{s}^{*}$ are the adjoint operators of $\ell_{s}$ and $r_{s}$ , respectively. See [8] and [33] for more
details.
Let $E$ be a smooth Banach space and let $C$ be a nonempty subset of $E$ . For a mapping $T$

from $C$ into $C$ , we denote by $A(T)$ the set of attractive points [26, 36] of $T$ , i.e.,

$A(T)=\{u\in E:\phi(u, Tx)\leq\phi(u, x), \forall x\in C\}.$

We know from Lin and Takahashi [26] that $A(T)$ is always closed and convex. Let $S$ be a
commutative semitopological semigroup with identity. For a continuous representation $S=$

$\{T_{s} : \mathcal{S}\in S\}$ of $S$ as mappings of $C$ into itself, we denote the set $A(S)$ of common attractive
points [4, 40] of $S=\{T_{8} : \mathcal{S}\in S\}$ by

$A(S)=\cap\{A(T_{t}):t\in S\}.$

It is obvious from Lin and Takahashi [26] that $A(S)$ is closed and convex. Using the technique
developed by Takahashi [31], Takahashi, Wong and Yao [40] also proved the following attractive
point theorem for a family of mappings in a Banach space.

Theorem 3.2 ([40]). Let $E$ be a smooth and reflexive Banach space with the duality mapping
$J$ and let $C$ be a nonempty subset of E. Let $S$ be a commutative semitopological semigroup
with identity. Let $S=\{T_{s}:s\in S\}$ be a continuous representation of $S$ as mappings of $C$ into

itself such that $\{T_{s}x:s\in S\}$ is bounded for some $x\in C$ . Let $\mu$ be a mean on $C(S)$ . Suppose
that

$\mu_{s}\phi(T_{s}x, T_{t}y)\leq\mu_{s}\phi(T_{s}x, y)$

for all $y\in C$ and $t\in S$ , Then, $A(S)=\cap\{A(T_{t}) : t\in S\}$ is nonempty. In particular, if $E$ is
strictly convex and $C$ is closed and convex, then $F(S)=\cap\{F(T_{t}) : t\in S\}$ is nonempty.

Let $E$ be a smooth Banach space and let $C$ be a nonempty subset of $E$ . Let $T$ be a mapping
from $C$ into $C$ . We denote by $B(T)$ the set of skew-attractive points [26] of $T$ , i.e.,

$B(T)=\{z\in E, \phi(Tx, z)\leq\phi(x, z), \forall x\in C\}.$

Lin and Takahashi [26] proved that $B(T)$ is always closed. Using the duality theory of nonlinear
mappings [41] and [12], they also proved that $JB(T)$ is closed and convex. We can also define
by $B(S)$ the set of all common skew-attractive points of a family $S=\{T_{s} : s\in S\}$ of mappings
of $C$ into itself, i.e., $B(S)=\cap\{B(T_{s}) : s\in S\}$ . Takahashi, Wong and Yao [40] obtained the
following skew-attractive point theorem for semigroups of not necessarily continuous mappings
in a Banach space.
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Theorem 3.3 ([40]). Let $E$ be a strictly convex and reflexive Banach space with a F$\succ$\’echet

differentiable norm and let $C$ be a nonempty subset of E. Let $S$ be a commutative semitopo-
logical semigroup with identity. Let $S=\{T_{s} : s\in S\}$ be a continuous representation of $S$ as
mappings of $C$ into itself such that $\{T_{s}x:s\in S\}$ is bounded for some $x\in C$ . Let $\mu$ be a mean
on $C(S)$ . Suppose that

$\mu_{s}\phi(T_{t}y, T_{s}x)\leq\mu_{s}\phi(y, T_{s}x)$

for all $y\in C$ and $t\in S.$ Then, $B(S)=\cap\{B(T_{t}) : t\in S\}$ is nonempty. In particular, if $C$ is
closed and $JC$ is closed and convex, then $F(S)=\cap\{F(T_{t}):t\in S\}$ is nonempty.

4 Weak Convergence Theorems in Hilbert Spaces

In this section, we prove a weak convergence theorem of Mann’s type iteration for semigroups
of not necessarily continuous mappings in a Hilbert space.

Theorem 4.1 ([13]). Let $H$ be a Hilbert space and let $C$ be a nonempty, bounded, closed
and convex subset of H. Let $S$ be a commutative semitopological semigroup with identity. Let
$S=\{T_{s} : s\in S\}$ be a continuous representation of $S$ as mappings of $C$ into itself. Suppose
that

$\lim_{\alpha}\sup\sup_{x,y\in C}(\mu_{\alpha})_{s}(\Vert T_{s}x-T_{t}y\Vert^{2}-\Vert T_{s}x-y\Vert^{2})\leq 0, \forall t\in S$ (4.1)

for all strongly asymptotically invariant nets $\{\mu_{\alpha}\}$ of means on $C(S)$ . Let $\{\mu_{n}\}$ be a strongly
asymptotically invariant sequence of means on $C(S)$ , i. e.,

$\Vert\mu_{n}-\ell_{s}^{*}\mu_{n}\Vertarrow 0, \forall s\in S.$

Define a sequence $\{x_{n}\}$ in $C$ as follows: $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})T_{\mu_{n}}x_{n}, \forall n\in \mathbb{N},$

where $0\leq\alpha_{n}\leq 1$ and $\lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})>$ O. Then, $\{x_{n}\}$ converges weakly to a point
$z\in F(S)$ and $z= \lim_{narrow\infty}P_{F(S)}x_{n}$ , where $P_{F(S)}$ is the metric projection of $H$ onto $F(S)$ .

Using Theorem 4.1, we obtain the following weak convergence theorem for generalized hybrid
mappings in a Hilbert space.

Theorem 4.2. Let $C$ be a nonempty, closed and convex subset of a Hilbert space H. Let $T$

be a generalized hybrid mapping of $C$ into itself such that $F(T)$ is nonempty. Let $\{\mu_{n}\}$ be a
strongly asymptotically invariant sequence of means on $B(\mathbb{N})$ . Define a sequence $\{x_{n}\}$ in $C$

as follows: $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})T_{\mu_{n}}x_{n}, \forall n\in \mathbb{N},$

where $0\leq\alpha_{n}\leq 1$ and $\lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})>0$ . Then $\{x_{n}\}$ converges weakly to $z\in F(T)$

and $z= \lim_{narrow\infty}P_{F(T)}x_{n}$ , where $P_{F(T)}$ is the metric projection of $H$ onto $F(T)$ .

Using Theorem 4.1, we obtain the following weak convergence theorem for semigroups of
nonexpansive mappings in a Hilbert space; see also [3].
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Theorem 4.3. Let $H$ be a Hilbert space, let $C$ be a nonempty, closed and convex subset of $H.$

Let $S$ be a commutative semitopological semigroup with identity and let $S=\{T_{t} : t\in S\}$ be a
nonexpansive semigroup on $C$ such that $\{T_{t}x:t\in S\}$ is bounded for some $x\in C.$ Let $\{\mu_{n}\}$

be a strongly asymptotically invariant sequence of means on $C(S)$ , i.e., a sequence of means
on $C(S)$ such that

$\lim_{narrow\infty}\Vert\mu_{n}-\ell_{s}^{*}\mu_{n}\Vert=0, \forall s\in S.$

Define a sequence $\{x_{n}\}$ in $C$ as follows: $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})T_{\mu_{n}}x_{n)} \forall n\in \mathbb{N},$

where $0\leq\alpha_{n}\leq 1$ and $\lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})>$ O. Then, $\{x_{n}\}$ converges weakly to a point
$z\in F(S)$ and $z= \lim_{narrow\infty}P_{F(S)}x_{n}$ , where $P_{F(S)}$ is the metric projection of $H$ onto $F(S)$ .

5 Strong Convergence Theorems in Hilbert Spaces

In this section, we prove a strong convergence theorem of Halpern’s type iteration for semi-
groups of not necessarily continuous mappings in a Hilbert space.

Theorem 5.1 ([13]). Let $H$ be a Hilbert space and let $C$ be a nonempty, bounded, closed
and convex subset of H. Let $S$ be a commutative semitopological semigroup with identity. Let
$S=\{T_{s} : s\in S\}$ be a continuous representation of $S$ as mappings of $C$ into itself Suppose
that

$\lim_{\alpha}\sup\sup_{x,y\in C}(\mu_{\alpha})_{s}(\Vert T_{s}x-T_{t}y\Vert^{2}-\Vert T_{s}x-y\Vert^{2})\leq 0, \forall t\in S$ (5.1)

for all strongly asymptotically invariant nets $\{\mu_{\alpha}\}$ of means on $C(S)$ . Let $\{\mu_{n}\}$ be a strongly
asymptotically invariant sequence of means on $C(S)$ , i. e.,

$\Vert\mu_{n}-\ell_{s}^{*}\mu_{n}\Vertarrow 0, \forall s\in S.$

Let $u\in C$ and define a sequence $\{x_{n}\}$ in $C$ as follows: $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}u+(1-\alpha_{n})T_{\mu_{n}}x_{n}, \forall n\in \mathbb{N},$

where $0\leq\alpha_{n}\leq 1,$ $\alpha_{n}arrow 0$ and $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ . Then, $\{x_{n}\}$ converges strongly to a point
$z\in F(S)$ , where $z=P_{F(S)}u.$

Using Theorem 5.1, we can prove the following strong convergence theorem for generalized
hybrid mappings in a Hilbert space.

Theorem 5.2. Let $C$ be a nonempty, closed and convex subset of a Hilbert space H. Let $T$

be a generalized hybrid mapping of $C$ into itself such that $F(T)$ is nonempty. Let $\{\mu_{n}\}$ be
a strongly asymptotically invariant sequence of means on $B(\mathbb{N})$ . Let $u\in C$ and define two
sequences $\{x_{n}\}$ and $\{z_{n}\}$ in $C$ as follows: $x_{1}=x\in C$ and

$\{\begin{array}{l}x_{n+1}=\alpha_{n}u+(1-\alpha_{n})z_{n},z_{n}=T_{\mu_{n}}x_{n}\end{array}$

for all $n\in \mathbb{N}$ , where $0\leq\alpha_{n}\leq 1,$ $\alpha_{n}arrow 0$ and $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ . Then $\{x_{n}\}$ and $\{z_{n}\}$ converge
strongly to Pu, where $P$ is the metric projection of $H$ onto $F(T)$ .
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In particular, we obtain the following strong convergence theorem [11] from Theorem 5.2.

Theorem 5.3 ([11]). Let $C$ be a nonempty, closed and convex subset of a Hilbert space $H.$

Let $T$ be a generalized hybrid mapping of $C$ into itself. Let $u\in C$ and define two sequences
$\{x_{n}\}$ and $\{z_{n}\}$ in $C$ as follows: $x_{1}=x\in C$ and

$\{\begin{array}{l}x_{n+1}=\alpha_{n}u+(1-\alpha_{n})z_{n},z_{n}=\frac{1}{n}\sum_{k=0}^{n-1}T^{k}x_{n}\end{array}$

for all $n\in \mathbb{N}$ , where $0\leq\alpha_{n}\leq 1,$ $\alpha_{n}arrow 0$ and $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ . If $F(T)$ is nonempty, then
$\{x_{n}\}$ and $\{z_{n}\}$ converge strongly to Pu, where $P$ is the metric projection of $H$ onto $F(T)$ .

Using Theorem 5.1, we also have a strong convergence theorem for semigroups of nonex-
pansive mappings in a Hilbert space.

Theorem 5.4 ([30]). Let $H$ be a Hilbert space and let $C$ be a nonempty, closed and convex
subset of H. Let $S$ be a commutative semitopological semigroup with identity. Let $S=\{T_{s}$ :
$s\in S\}$ be a nonexpansive semigroup on $C$ such that $F(S)\neq\emptyset$ . Let $\{\mu_{n}\}$ be a strongly

asymptotically invariant sequence of means on $C(S)$ , i. e.,

$\Vert\mu_{n}-\ell_{s}^{*}\mu_{n}\Vertarrow 0, \forall s\in S.$

Let $u\in C$ and define a sequence $\{x_{n}\}$ in $C$ as follows: $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}u+(1-\alpha_{n})T_{\mu_{n}}x_{n}, \forall n\in \mathbb{N},$

where $0\leq\alpha_{n}\leq 1,$ $\alpha_{n}arrow 0$ and $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ . Then, $\{x_{n}\}$ converges strongly to a point
$z\in F(S)$ , where $z=P_{F(S)}u.$

6 Weak Convergence Theorems in Banach Spaces

In this section, using the results in Sections 2 and 3, we prove a weak convergence theorem
of Mann’s type iteration [28] for a commutative family of not necessarily continuous mappings

in a Banach space. The following lemma is crucial in the proof of our theorem.

Lemma 6.1. Let $E$ be a smooth and reflexive Banach space and let $C$ be a nonempty subset

of E. Let $S$ be a commutative semitopological semigroup with identity. Let $S=\{T_{s} : s\in S\}$

be a continuous representation of $S$ as mappings of $C$ into itself such that $B(\mathcal{S})\neq\emptyset$ . Let $\mu$

be a mean on $C(S)$ . Then

$\phi(T_{\mu}x, m)\leq\phi(x, m) , \forall x\in C, m\in B(\mathcal{S})$ ,

where $T_{\mu}x$ is a mean vector of $\{T_{s}x:s\in S\}$ and $\mu.$

Using Lemma 6.1, we have the following result.

Lemma 6.2. Let $E$ be a uniformly convex and smooth Banach space and let $C$ be a nonempty,
closed and convex subset ofE. Let $S$ be a commutative semitopological semigroup with identity.

Let $S=\{T_{s} : s\in S\}$ be a continuous representation of $S$ as mappings of $C$ into itself such
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that $B(S)\neq\emptyset$ . Let $\{\mu_{n}\}$ be a sequence of means on $C(S)$ . Let $\{\alpha_{n}\}$ be a sequence of real
numbers such that $0\leq\alpha_{n}<1$ and let $\{x_{n}\}$ be a sequence in $E$ generated by $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})T_{\mu_{\mathfrak{n}}}x_{n}, \forall n\inN.$

If $R_{B(S)}$ is a sunny generalized nonexpansive retraction of $E$ onto $B(\mathcal{S})$ , then $\{R_{B(S)}x_{n}\}$

converges strongly to $z\in B(S)$ .

Now, we can prove the following weak convergence theorem for semigroups of not necessarily
continuous mappings in a Banach space.

Theorem 6.3 ([14]). Let $E$ be a uniformly convex Banach space with a Fk\’echet differentiable
norm and let $C$ be a nonempty, closed and convex subset of E. Let $S$ be a commutative
semitopological semigroup with identity. Let $S=\{T_{s} : s\in S\}$ be a continuous representation

of $S$ as mappings of $C$ into itself such that $A(S)=B(S)\neq\emptyset$ and let $R_{B(S)}$ be the sunny
generalized nonexpansive retraction of $E$ onto $B(S)$ . Suppose that

$\lim_{\alpha}\sup\sup_{x,y\in D}(\mu_{\alpha})_{s}(\phi(T_{s}x, T_{t}y)-\phi(T_{s}x, y))\leq 0, \forall t\in S$ (6.1)

for every strongly asymptotically invariant net $\{\mu_{\alpha}\}$ of means on $C(S)$ and every bounded
subset $D$ of C. Let $\{\mu_{n}\}$ be a strongly asymptotically invariant sequence of means on $C(S)$ ,
i. e., a sequence of means on $C(S)$ such that

$\Vert\mu_{n}-\ell_{s}^{*}\mu_{n}\Vertarrow 0, \forall s\in S.$

Define a sequence $\{x_{n}\}$ in $C$ as follows: $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})T_{\mu_{n}}x_{n}, \forall n\in \mathbb{N},$

where $0\leq\alpha_{n}\leq 1$ and $\lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})>$ O. Then, $\{x_{n}\}$ converges weakly to a point
$z\in F(S)$ and $z= \lim_{narrow\infty}R_{B(S)}x_{n}.$

Using Theorem 6.3, we obtain well-known and new theorems which are connected with
weak convergence results in Banach spaces. Let $E$ be a smooth Banach space and let $C$ be a
nonempty subset of $E$ . A mapping $T:Carrow C$ is called generalized nonspreading [22] if there
exist $\alpha,$

$\beta,$
$\gamma,$

$\delta\in \mathbb{R}$ such that

$\alpha\phi(Tx, Ty)+(1-\alpha)\phi(x, Ty)+\gamma\{\phi(Ty, Tx)-\phi(Ty, x)\}$ (6.2)

$\leq\beta\phi(Tx, y)+(1-\beta)\phi(x, y)+\delta\{\phi(y, Tx)-\phi(y, x)\}$

for all $x,$ $y\in C$ . Putting $\alpha=\beta=\gamma=1$ and $\delta=0$ in (6.2), we obtain that

$\phi(Tx, Ty)+\phi(Ty, Tx)\leq\phi(Tx, y)+\phi(Ty, x) , \forall x, y\in C.$

Such a mapping $T$ is nonspreading in the sense of Kohsaka and Takahashi [25]. In the case of
$\alpha=1$ and $\beta=\gamma=\delta=0$ in (6.2), we obtain that

$\phi(Tx, Ty)\leq\phi(x, y) , \forall x, y\in C.$

Such a mapping $T$ is called $\phi-$ nonexpansive. Using Theorem 6.3, we obtain the following weak
convergence theorem of Mann’s type iteration for generalized nonspreading mappings in a
Banach space.

188



Theorem 6.4. Let $E$ be a uniformly convex Banach space with a Fr\’echet differentiable norm
and let $C$ be a nonempty, closed and convex subset of E. Let $T$ : $Carrow C$ be a generalized
nonspreading mapping such that $A(T)=B(T)\neq\emptyset$ . Let $R_{B(T)}$ be the sunny generalized
nonexpansive retraction of $E$ onto $B(T)$ . Let $\{\mu_{n}\}$ be a strongly asymptotically invariant
sequence of means on $\iota\infty$ , i. e., a sequence of means on $\iota\infty$ such that

$\Vert\mu_{n}-\ell_{1}^{*}\mu_{n}\Vertarrow 0.$

Define a sequence $\{x_{n}\}$ in $C$ as follows: $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})T_{\mu_{n}}x_{n}, \forall n\in \mathbb{N},$

where $0\leq\alpha_{n}\leq 1$ and $\lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})>$ O. Then the sequence $\{x_{n}\}$ converges weakly

to a point $z\in F(T)$ , where $z= \lim_{narrow\infty}R_{B(T)}x_{n}.$

Using Theorem 6.4, we obtain the following theorem.

Theorem 6.5. Let $E$ be a uniformly convex Banach space with a FV\’echet differentiable norm.
Let $T$ : $Earrow E$ be an $(\alpha, \beta, \gamma, \delta)$ -generalized nonspreading mapping such that $\alpha>\beta$ and $\gamma\leq\delta.$

Assume that $F(T)\neq\emptyset$ and let $R_{F(T)}$ be the sunny generalized nonexpansive retraction of $E$

onto $F(T)$ . Let $\{\mu_{n}\}$ be a strongly asymptotically invariant sequence of means on $l^{\infty}$ , i. e., $a$

sequence of means on $l^{\infty}$ such that

$\Vert\mu_{n}-\ell_{1}^{*}\mu_{n}\Vertarrow 0.$

Define a sequence $\{x_{n}\}$ in $C$ as follows: $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})T_{\mu_{n}}x_{n}, \forall n\in \mathbb{N},$

where $0\leq\alpha_{n}\leq 1$ and $\lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})>0$ . Then the sequence $\{x_{n}\}$ converges weakly

to a point $z\in F(T)$ , where $z= \lim_{narrow\infty}R_{F(T)}x_{n}.$

Let $E$ be a smooth Banach space and let $C$ be a nonempty subset of $E$ . Let $S$ be a
semitopological semigroup. A continuous representation $S=\{T_{s} : \mathcal{S}\in S\}$ of $S$ as mappings

on $C$ is a $\phi$-nonexpansive semigroup on $C$ if each $T_{s},$ $s\in S$ is $\phi$-nonexpansive. Using Theorem
6.3, we also have the following weak convergence theorem for $\phi$-nonexpansive semigroups in a
Banach space.

Theorem 6.6. Let $E$ be a uniformly convex Banach space with a Frechet differentiable norm
and let $C$ be a nonempty closed and convex subset $ofE$ . Let $S$ be a commutative semitopological
semigroup with identity. Let $S=\{T_{s} : s\in S\}$ be a $\phi$ -nonexpansive semigroup on $C$ such that
$A(S)=B(\mathcal{S})\neq\emptyset$ and let $R_{B(S)}$ be the sunny generalized nonexpansive retraction of $E$ onto
$B(S)$ . Let $\{\mu_{n}\}$ be a strongly asymptotically invariant sequence of means on $C(S)$ , i. e., $a$

sequence of means on $C(S)$ such that

$\Vert\mu_{n}-\ell_{s}^{*}\mu_{n}\Vertarrow 0, \forall s\in S.$

Define a sequence $\{x_{n}\}$ in $C$ as follows: $x_{1}=x\in C$ and

$x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})T_{\mu_{n}}x_{n}, \forall n\in \mathbb{N},$

where $0\leq\alpha_{n}\leq 1$ and $\lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})>0$ . Then the sequence $\{x_{n}\}$ converges weakly

to a point $z\in F(S)$ , where $z= \lim_{narrow\infty}R_{B(S)}x_{n}.$
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