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1 Introduction

Mathematical model for pattern dynamics of aggregating region of biological individuals pos-
sessing the chemotaxis was proposed in [3], [19], [21], [25] as follows:

$\{\begin{array}{ll}u_{t}=\mathcal{D}\nabla\{\nabla u-\alpha u\nabla\chi(v)\}+f(u) , (x, t)\in\Omega\cross R+,v_{t}=d\Delta v+u-v, (x, t)\in\Omega\cross R_{+},u(\cdot, 0)=u_{0}\geq 0, v(\cdot, 0)=v_{0}\geq 0, x\in\Omega,u_{\nu}(x, t)=0, v_{\nu}(x, t)=0, (x, t)\in\partial\Omega\cross R+,\end{array}$ (1)

where $\mathcal{D},$ $d$ and $\alpha$ are positive constants and $\Omega\subset R^{N}(N\leq 3)$ denotes a bounded domain with
smooth boundary $\partial\Omega$ . The sensitive function $\chi(v)$ satisfies $\chi’(v)>0$ for $0<v$ . In this paper,
we treat the logistic growth term $f(u)$ given by

$f(u)=u(1-u)$ .

For this model, several spatio-temporal patterns due to the T\"uring and Hopf instability induced
the chemotaxis have been investigated by many people ([2], [13], [14], [26], [31]). Specifically,
this model exhibits that there are many static and dynamic patterns in virtue of the balance
between three effects, chemotaxis, diffusion and growth. In the critical case, as chemotaxis effect
is very strong, static and chaotic spots patterns is introduced in [2], [10], [26] as $N=1$ , 2. It is
one of the features which the system of Keller-Segel type [12] exhibits. On the other hand, Yagi
et al. [2] show that the existence of the global solutions of (1) and the exponential attractor,
which dimension is growing as $\alphaarrow\infty$ . This result implies that the dynamics induced from (1)
becomes more complex under this situation.

Here, we only study the stationary problem of (1) as follows:

$\{\begin{array}{ll}\mathcal{D}\nabla\{\nabla u-\alpha u\nabla\chi(v)\}+f(u)=0, x\in\Omega,d\triangle v+u-v=0, x\in\Omega,u\geq 0, v\geq 0, x\in\Omega u_{\nu}(x)=v_{v}(x)=0, x\in\partial\Omega.\end{array}$ (2)

For suitable values of parameters $\mathcal{D}$ , a and $d$ , the existence and nonexistence of the stationary
solution are studied in [6], [13], [14], [31]. Therefore, our goal is to obtain all solutions of (2).
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Recently, the global structure of the stationary solution bifurcated from the constant solution
for one dimensional domain is shown by Gai et al. [7]. On the other hand, there are static

and moving spots patterns by several numerical simulations ([2], [10]) in the case which the
chemotaxis effect is very strong, that is, $\alpha\gg 1$ . Another motivation is to show the existence of
the spiky solution which corresponds to a concentrative pattern. To do so, we first treat the case
$\alphaarrow\infty$ . Then, the solution of (2) converges to each one of two constant solutions $(0,0)$ , $(1, 1)$

with respect to suitable norm ([7], [14]). Therefore, the solution set of (2) is not so complex
in the stationary problem as $\alpha$ is very large. If there exists a sequence of the solutions which
converges to $(0,0)$ , these solution has several peak points because of $\min_{\overline{\Omega}}u\leq 1\leq\max_{\overline{\Omega}}u$ (

see [7], [14]). We think that these sequence corresponds to the spots pattern obtained by the
numerical simulations, but the existence is not proved.

On the other hand, we consider the case when one of the diffusion coefficients and chemotaxis
intensity are both large. We treated the same situation for the other model and obtain several
results about the stationary problem ([15], [16], [17]). Our interest is to show the global structure
of the stationary solution of (2) depending on the parameter $\alpha$ as $\mathcal{D}arrow\infty$ . Then, we formally
obtain the limiting system as follows:

$\{\begin{array}{ll}\nabla\{\nabla u-\alpha u\nabla\chi(v)\}=0, x\in\Omega,d\Delta v+u-v=0, x\in\Omega,u\geq 0, v\geq 0, x\in\Omega,u_{\nu}(x)=v_{\nu}(x)=0, x\in\partial\Omega\end{array}$ (3)

and

$\int_{\Omega}f(u)dx=0$ . (4)

Since (3) becomes the stationary problem of Keller-Segel type system, there are many results
of the solutions of this system $(e. g. [4], [11], [20], [27], [29])$ .

The organization of this paper is as follows: In Section 2, it is proved that there exists a
sequence of the solutions of (2) which converge to the solution of (3), (4) as $\mathcal{D}arrow\infty$ . For
$\Omega=(0,1)$ , we show the global structure of solutions of (3), (4) depending on the the parameters
$d,$ $\alpha$ in Section 3. In these two sections, we treat the simple sensitive function $\chi(v)=v$ . In
Section 4, we similarly consider the existence of the solution of (3), (4) with $\chi(v)=\log v.$

2 Convergence theorem for stationary solutions as $N=2$ , 3

In this section, we consider the convergence property for solutions of (2) with $\chi(v)=v$ as $\mathcal{D}$

tends to $\infty$ . First we will show the universal bound for the solutions of (2) with respect to $\mathcal{D}$

and $d$ . Using $f(u)=u(1-u)$ and applying the elliptic regularity theory to (2), we can easily
prove

Lemma 2.1 There is a constant $C$ depending on $\partial\Omega$ such that

$\Vert u\Vert_{L^{1}}=\Vert u\Vert_{L^{2}}\leq|\Omega|$ (5)

and
$\Vert v\Vert_{L^{1}}\leq|\Omega|, \Vert v\Vert_{H^{2}}\leq\frac{C}{d}\Vert u\Vert_{L^{2}}$ . (6)

Lemma 2.2 For any positive constant $A$ , there exists a positive constant $C$ independent of $\mathcal{D},$ $d$

such that for any $A<d,$ $\mathcal{D}$

$\Vert u\Vert_{W^{2,6}(\Omega)}<C, \Vert v\Vert_{W^{2,6}(\Omega)}<C$ (7)

for any positive solutions $(u, v)$ of (2).
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Proof. Integrating the first equation of (2) and using the boundary conditions, we have

$\int_{\Omega}|\nabla u|^{2}\leq\frac{1}{\mathcal{D}}\{\Vert u\Vert_{L^{1}}+\Vert u\Vert_{L^{2}}^{2}\}+\alpha\int_{\Omega}u\nabla u\nabla v\leq\frac{1}{\mathcal{D}}\{\Vert u\Vert_{L^{1}}+\Vert u\Vert_{L^{2}}^{2}\}+\frac{\alpha}{2}\int_{\Omega}\nabla u^{2}\nabla v$ . (8)

It follows from the Gagliardo-Nirenberg inequality (see [1]) that

$\int_{\Omega}\nabla u^{2}\nabla v=-\int_{\Omega}u^{2}\triangle v=-\frac{1}{d}\int_{\Omega}u^{2}(v-u)\leq\frac{1}{d}\int_{\Omega}u^{3}\leq\frac{K}{d}\Vert u\Vert_{H^{1}}^{\frac{N}{2}}\Vert u\Vert_{L^{2}}^{3-\frac{N}{2}}$ (9)

By Young’s inequality, we obtain

$\frac{1}{2}\Vert u\Vert_{H^{1}}^{2}\leq\frac{1}{\mathcal{D}}\{\Vert u\Vert_{L^{1}}+\Vert u\Vert_{L^{2}}^{2}\}+\frac{1}{2}\Vert u\Vert_{L^{2}}^{2}+C\Vert u\Vert\frac{2(6-N)}{L^{2}4-N}$ (10)

Then it holds that for $N<4,$

$\Vert u\Vert_{H^{1}}^{2}\leq 2(\frac{1}{\mathcal{D}}+C)(\Vert u\Vert_{L^{1}}+\Vert u\Vert_{L^{2}}^{2}+\Vert u\Vert^{\frac{2(6-N)}{L^{2}4-N}})$ . (11)

Therefore, $u\in L^{6}(\Omega)$ and $v\in W^{1,6}(\Omega)$ . By using $v\in W^{2,6}(\Omega)\subset C^{1}(\overline{\Omega})$ and the elliptic

regularity theory, we obtain $u\in H^{2}(\Omega)\subset W^{1,6}(\Omega)\cap C^{0}(\overline{\Omega})$ and $u\in W^{2,6}(\Omega)\subset C^{1}(\overline{\Omega})$ . $1$

Theorem 2.3 For any positive sequence $\{\mathcal{D}_{n}\}$ with $\lim_{narrow\infty}\mathcal{D}_{n}=\infty$ , let $(u_{n}, v_{n})$ be any se-
quence of solutions of (2) with $\mathcal{D}=\mathcal{D}_{n}$ . Then there exists a solution $(u_{\infty}, v_{\infty})$ of (3), (4)

$\lim_{narrow\infty}(u_{n}, v_{n})=(u_{\infty}, v_{\infty})$
$in$ $C(\overline{\Omega})\cross C(\overline{\Omega})$ (12)

passing to a subsequence.

Proof. It follows from Lemma 2.2 that $\{(u_{n}, v_{n})\}$ is uniformly bounded in $W^{2,6}(\Omega)\cross W^{2,6}(\Omega)$

with respect to $\mathcal{D}_{n}$ . By using Sobolev’s theorem, we note $W^{2,6}(\Omega)\subset C^{1}(\overline{\Omega})$ with compact

embedding (see [8]). Then we find a subsequence $\{(u_{n’}, v_{n} and (u_{\infty}, v_{\infty})\in W^{2,6}(\Omega)\cross$

$W^{2,6}(\Omega)$ such that
$\lim_{narrow\infty}(u_{n’}, v_{n’})=(u_{\infty}, v_{\infty})$ (13)

weakly in $W^{2,6}(\Omega)\cross W^{2,6}(\Omega)$ and strongly in $C^{1}(\overline{\Omega})\cross C^{1}(\overline{\Omega})$ . The weak forms of (2) with $\mathcal{D}_{n’}$

can be expressed by

$\{\begin{array}{l}\int_{\Omega}(\nabla u_{n’}-\alpha u_{n’}\nabla v_{n’})\nabla\varphi dx=\frac{1}{\mathcal{D}_{n’}}\int_{\Omega}f(u_{n’})\varphi dx,d\int_{\Omega}\nabla u_{n’}\nabla\varphi dx=\int_{\Omega}(u_{n’}-v_{n’})\varphi dx\end{array}$ (14)

for any $\varphi\in H^{1}(\Omega)$ . By virtue of (13), letting $n’arrow\infty$ in (14) gives the fact that $(u_{\infty}, v_{\infty})$ is

a weak solution of (3). It follows from the elliptic regularity theory that $(u_{\infty}, v_{\infty})$ becomes a
classical solution of (3). Furthermore, integrating the first equation of (2) with $\mathcal{D}_{n’}$ , one can see

$\int_{\Omega}f(u_{n’})dx=0$ . (15)

Owing to (13), the Lebesgue dominated convergence theorem enables us to let $n’arrow\infty$ in (15)

to obtain (4) with $(u, v)=(u_{\infty}, v_{\infty})$ . Therefore, we know that $(u_{\infty}, v_{\infty})$ is a solution of the
shadow system (3), (4). 1
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3 Global bifurcation structure of solutions of (3), (4) as $N=1$

First, we remark from (3) that $u$ is represented by $u=Ee^{\alpha v}$ for any positive constant $E$ . Then
(3), (4) are rewritten as

$\{\begin{array}{ll}dv_{xx}+g(v, E)=0, x\in(O, 1) ,v(x)\geq 0, x\in(O, 1) ,v_{x}(0)=v_{x}(1)=0, \end{array}$ (16)

and

$\int_{0}^{1}f(Ee^{\alpha v})dx=0$ , (17)

where $g(v, E)=Ee^{\alpha v}-v.$

Although the global structure of solutions of (16) for a parameter $d$ is already known, we
need some estimates to solve the integral constraint (17). Here, we only treat a monotone
increasing solution $v(x, d, E)$ of (16), (17) because all oscillating and reflecting solution can be
constructed by connecting rescaling parts of monotone solutions.

By using the bifurcation theory, the solutions of (16) is obtained as one bifurcated from the
large constant solution $v^{*}(E)$ at the bifurcation point $d=d^{*}(E)=(\alpha v^{*}(E)-1)/\pi^{2}(e.$ $g.,$ $[5],$

[27], [28], [30]).

Theorem 3.1 For any $E\in(0,1/\alpha e)$ and $d\in(0, d^{*}(E))$ , there exists a nonconstant solution
$v(x, d, E)$ of (16) which satisfies $v_{*}(E)<v(x, d, E)$ , $v^{*}(E) \leq\max_{x\in[0}$ , 1 $]^{v(x},$ $d,$ $E$) and there
is $\eta(E)>v^{*}(E)$ such that

$\lim_{darrow 0}v(x, d, E)=\{\begin{array}{ll}v_{*}(E) compact uniformly in [0, 1), \eta(E) x=1, (18)\end{array}$

$hm_{darrow d^{*}(E)}v(x, d, E)=v^{*}(E)$ uniformly in $[0$ , 1$]$

where $\int_{v_{*}(E)}^{\eta(E)}g(v, E)dv=0.$

Our goal is to derive the global structure of solutions of (16) satisfying the integral constraint
(17) for two parameters $d,$ $E.$

Theorem 3.2 [32] For any $E\in(0, e^{-\alpha})$ , (16), (17) admits at least one nonconstant solution
$v(x, d, E)$ for some $d=d(E)\in(O, d^{*}(E))$ . Moreover, there exists a sequence $\{v(\cdot, d_{n}, E_{n})\}_{n=1}^{\infty}$

of solutions of (16), (17) such that

$\lim_{narrow\infty}(d_{n}, E_{n})=(0,0)$ (19)

and

$\lim_{narrow\infty}v(x, d_{n}, E_{n})=\{\begin{array}{ll}0 compact uniformly in [0, 1),\infty x=1.\end{array}$ (20)

(i) If $0<\alpha<1$ , there is no nonconstant solution of (16), (17) for $E\in(e^{-\alpha}, \infty)$ . Moreover,
in a neighborhood of the singular limit $(d, E)=(O, e^{-\alpha})$ , all nonconstant solution of (16), (17)
can be expressed by a local curve $\{(v(_{\rangle}d, E(d)$ ) $|0<d<\delta_{1}$ }, where $E(d)$ is a smooth function
and $\delta_{1}$ is some small number.

(ii) If $\alpha>1$ , in a neighborhood of the bifurcation point $(d, E)=(d^{*}(e^{-\alpha}), e^{-\alpha})$ , all noncon-
stant solution of (16), (17) can be expressed by a local curve $\{(v(\cdot, d, E(d))|0\leq d^{*}(e^{-\alpha})-d<$

$\delta_{2}\}$ , where $E(d)$ is a smooth functions and $\delta_{2}$ is some small number.
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Sketch of Proof: In order to prove the theorem, let $T$ be a domain defined by $T:=$

$\{(E, d)|0<E\leq 1/\alpha e, 0<d\leq d^{*}(E)\}$ . By using Theorem 2.7 in [30], one can verify that

the bifurcation at $d=d^{*}(E)$ is subcritical with respect to $d$ because that $g(v, E)$ is an $A$-B-

function. Therefore there is no nonconstant solution of (16) for $(E, d)\in R_{+}^{2}\backslash T$ from Theorem

3.1.

To obtain solutions of (16) satisfying the integral constraint (17), we may only consider for
$(E, d)\in T$ . Setting

$\Phi(d, E)=\int_{0}^{1}f(Ee^{\alpha v})dx=\int_{0}^{1}Ee^{\alpha v}(1-Ee^{\alpha v})dx$

for the solution $v(x, d, E)$ of (16), we will obtain solutions of (16) satisfying $\Phi(d, E)=0.$

First we consider the value of $\Phi(d, E)$ on the boundary of the domain $T$ except $E=$ O.

Since $\lim_{darrow d^{*}(E)}v(x, d, E)=v^{*}(E)$ in $C^{0}([0,1 we can$ define $\Phi^{*}(E)$ $:= \lim_{darrow d^{*}(E)}\Phi(d, E)=$

$f(Ee^{\alpha v^{*}(E)})$ . Moreover, it follows from Theorem 3.1 and Lebesgue convergence theorem that

$\Phi_{*}(E)$ $:=darrow 0hm\Phi(d, E)=f(Ee^{\alpha v_{*}(E)})$ . (21)

Therefore, we will show the signs of $1-Ee^{\alpha v_{*}(E)}$ and $1-Ee^{\alpha v^{*}(E)}$ because of $f(u)=u(1-u)$

and $u=Ee^{\alpha v}.$

To do so, we introduce two functions $\Psi_{*}(E)$ , $\Psi^{*}(E)$ by $\Psi_{*}(E)=Ee^{\alpha v_{*}(E)}$ and $\Psi^{*}(E)=$

$Ee^{\alpha v^{*}(E)}$ . Then we can prove that $\Psi_{*}(E)$ and $\Psi^{*}(E)$ are monotone increasing and decreasing

for $E\in(0,1/\alpha e)$ such that $\Psi_{*}(1/\alpha e)=\Psi^{*}(1/\alpha e)=1/\alpha,$ $\Psi_{*}(0)=0$ and $hm_{Earrow 0}\Psi^{*}(E)=\infty.$

First, we assume $\alpha<1$ . Since $\Psi_{*}(E)<1/\alpha$ for $E\in(0,1/\alpha e)$ , there is only $E_{*}\in(O, 1/\alpha e)$

such that $\Psi_{*}(E_{*})-1=E_{*}e^{\alpha v_{*}(E_{*})}-1=$ O. Therefore, we have $v_{*}(E_{*})=1$ and $E_{*}=e^{-\alpha}$

because of $g(v_{*}(E_{*}), E_{*})=E_{*}e^{\alpha v_{*}(E_{*})}-v_{*}(E_{*})=0$ . Moreover, it holds that $0<\Psi_{*}(E)<1$ for
$E\in(0, e^{-\alpha})$ and $\Psi_{*}(E)>1$ for $E\in(e^{-\alpha}, 1/\alpha e)$ .

Since $\Phi(d^{*}(E), E)<0$ for any $0<E<1/\alpha e$ and $\lim_{darrow 0}\Phi(d, E)=\Psi_{*}(E)(1-\Psi_{*}(E))>0$

for any $0<E<e^{-\alpha}<1/\alpha e$ , there exist solutions of (16), (17) with some $0<d(E)<d^{*}(E)$ for

any $0<E<e^{-\alpha}$ by the intermediate value theorem.
Moreover, since $\lim_{Earrow E_{*}}\frac{\partial}{\partial E}\Phi_{*}(E)=-E_{*}e^{2\alpha}<0$ (see [18]), it holds that there exists an

unique solution $v(x, d(E), E)$ in the neighborhood of $(E, d)$ $=(E_{*}, 0)$ with respect to $d$ by

the implicit function theorem.

Next, we show the nonexistence of the nonconstant solution of (16), (17) for $(E, d)\in T$ and
$E\in(e^{-\alpha}, 1/\alpha e)$ . Thanks to Theorem 3.1, we have $1=v_{*}(e^{-\alpha})<v_{*}(E)<v(x, d, E)$ for any
$d\in(O, d^{*}(E_{*}))$ . Therefore, it holds that

$\Phi(d, E)<E\int_{0}^{1}e^{\alpha v(x,d,E)}(1-e^{\alpha(v(x,d,E)-1)})dx<0.$

Therefore, there is not any point $(E, d)\in T$ satisfying $\Phi(d, E)=0.$

Next, we consider the case (ii), that is, $\alpha>1$ . By using a similar argument as the above,

we show that $\Phi^{*}(E)<0$ for $E\in(0, e^{-\alpha})$ and $\Phi^{*}(E)>0$ for $E\in(e^{-\alpha}, 1/\alpha e)$ . On the other

hand, $\Phi_{*}(E)$ satisfies $\Phi_{*}(E)>0$ for any $E\in(0,1/\alpha e)$ . Then the solutions $v(x, d(E), E)$ of
(16), (17) with some $0<d(E)<d^{*}(E)$ are obtained for any $E\in(0,1/\alpha e)$ by the intermediate

value theorem.
Since $\lim_{Earrow e^{-\alpha}}\frac{\partial}{\partial E}\Phi(d^{*}(E), E)=\frac{\alpha e^{-\alpha}}{\alpha-1}e^{\alpha v^{*}(e^{-\alpha})}>0$ , there exists an unique solution $v(x, d(E), E)$

in the neighborhood of $(E, d)=(e^{-\alpha}, d^{*}(e^{-\alpha}))$ with respect to $d$ from the implicit function

theorem. 1
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4 Sensitive function of Keller-Segel type

In this section, we consider the another type of the sensitive function

$\chi(v)=\log v.$

Then, (2) is rewritten as

$\{\begin{array}{ll}0=\mathcal{D}\nabla(\nabla u-\alpha u\nabla\log v)+f(u) , x\in\Omega,0=d\triangle v+u-v, x\in\Omega,u\geq 0, v\geq 0, x\in\Omega,u_{\nu}=v_{\nu}=0, x\in\partial\Omega.\end{array}$ (22)

As $\mathcal{D}arrow\infty$ , it follows from the first equation of (22) and the boundary conditions that

$\nabla u-\alpha u\nabla\log v=0$ . (23)

Therefore, $u$ is given by
$u=Ev^{\alpha}$ (24)

with a positive constant $E.$

Then, (22) is rewritten as

$\{\begin{array}{ll}0=d\Delta v+Ev^{\alpha}-v, x\in\Omega,v\geq 0, x\in\Omega,v_{\nu}=0, x\in\partial\Omega\end{array}$ (25)

with the integral constraint

$\int_{\Omega}f(Ev^{\alpha})dx=0$ . (26)

By using $v=E^{\alpha}w$ , we have

$\{\begin{array}{ll}0=d\Delta w+w^{\alpha}-w, x\in\Omega,w\geq 0, x\in\Omega,w_{\nu}=0, x\in\partial\Omega\end{array}$ (27)

with the integral constraint

$\int_{\Omega}f(E^{\delta}w^{\alpha})dx=0$ (28)

for $\delta=1/(1-\alpha)$ .
Therefore, (27) does not include the parameter $E$ and is studied by many people (see

subcritical case [9], [22], [24], [33], [34], supercritical [23]).
Hereafter, we assume

$\alpha\neq 1$ . (29)

It follows from (28) that $E$ is given by

$E=( \int_{\Omega}w^{\alpha}dx/\int_{\Omega}w^{2\alpha}dx)^{1/\delta}$ (30)

Since the constant $E$ is determined by the solution $w$ of (27), we only consider the problem (27).
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Hereafter, we treat the $1-dim$ . problem corresponding to (25), (28). Let $\Omega=(0,1)$ . Then,

this problem is rewritten as

$\{\begin{array}{ll}0=dw_{xx}+w^{\alpha}-w, x\in(0,1) ,w(x)\geq 0, x\in(0,1) ,w_{x}(0)=w_{x}(1)=0 \end{array}$ (31)

and

$E=( \int_{0}^{1}w^{\alpha}dx/\int_{0}^{1}w^{2\alpha}dx)^{1/\delta}$ (32)

Letting $w^{*}=1$ and $d^{*}=(\alpha-1)/\pi^{2},$ $w^{*}$ and $d^{*}$ are a constant solution of (31) and the bifurcation

point from the constant solution, respectively. By using the bifurcation theory, the following

theorem was proved.

Theorem 4.1 [35] There exists a continuous curve $\{(w(x, d(s), d(s))|s\in(0,1)$ } such that
$w(x, d(s))$ is a solution of (31) with $d=d(s)$ where $\lim_{sarrow 0}d(s)=0,$ $\lim_{sarrow 1}d(s)=d^{*}$ and

$\lim_{sarrow 0}w(x, d(s))=\{\begin{array}{l}0 compact uniformly in [0, 1)\hat{w} x=1,(33)\end{array}$

$\lim_{sarrow 1}w(x, d(s))=w^{*}$ uniformly in $[0$ , 1 $].$

Here $\hat{w}$ is some constant given by $\int_{0}^{\hat{w}}(w^{\alpha}-w)dw=0$ . Moreover, the continuous junction $d(s)$

is monotone increasing for $s\in[0$ , 1 $].$

Let $\Phi(s)$ be given by

$\Phi(s)=\int_{0}^{1}w^{\alpha}dx/\int_{0}^{1}w^{2\alpha}dx$ . (34)

Then we have

$\lim_{sarrow 0}\Phi(s)=\Phi(0)=\int_{-\infty}^{0}W^{\alpha}(z)dz/\int_{-\infty}^{0}W^{2\alpha}(z)dz$ and $\lim_{sarrow 1}\Phi(s)=\Phi(1)=1$ . (35)

Here $W(z)$ is a monotone increasing solution of

$\{\begin{array}{l}0=W_{zz}+W^{\alpha}-W, -\infty<z<0,W_{z}(0)=0.\end{array}$ (36)

From Theorem 4.1 and (32), we have

Theorem 4.2 For any fixed $\alpha>1$ , there exists a continuous function $d(s)$ and solution $w(x, d(s))$

of (31) with $d=d(s)(0<d(s)<d^{*})$ for $0<s\leq 1$ . Mooeover, it holds that

$\lim_{sarrow 0}E(s)=\Phi(0)^{1-\alpha}, \lim_{sarrow 1}E(s)=1$ . (37)

Acknowledgment

The author is grateful to Professor Kazuhiro Kurata for helpful comments on Section 4.

61



References

[1] R. A. Adams and J. J. F. Fournier, Sovolev Spaces, Pure and Applies Mathematics Series,

Elsevier Science Ltd. Oxford, 2003.

[2] M. Aida, T. Tsujikawa, M. Efendiev, A. Yagi and M. Mimura, Lower estimate of the attractor
dimension for a chemotaxis growth system, J. London Math. Soc., 74, 453-474, 2006.

[3] W. Alt and D. A. Lauffenburger, Ransient behavior of a chemotaxis system modeling certain

types of tissue inflammation, J. Math. Biol., 24, 691-722, 1987.

[4] P. Biler, Local and global solvability of some parabolic system modelling chemotaxis, Ad-

vances in Mathematical Sciences and Applications, 4, 715-743, 1998.

[5] N. Chafee and E. F. Infante, A bifurcation problem for a nonlinear partial differential equa-

tion of parabolic type, Appl. Anal., 4, 17-37, 1974.

[6] S.-I. Ei, H. Izuhara and M. Mimura, Spatio-temporel oscillations in the Keller-Segel system

with logistic growth, preprint.

[7] C. Gai, Q. Wang and J. Yan, Qualitative analysis of stationary Keller-Segel chemotaxis
modelds with logistic growth, preprint.

[8] D. Gilbarg and N. S. Ttudinger, Elliptic partial differential equations of second order, $2^{nd}$

edition, Springer-Verlag, 1983.

[9] C. Gui and J. Wei, On multiple mixed interior and boundary peak solutions for some singu-

larly perturbed Newmann problems, Can. J. Math., 52, 522-538, 2000.

[10] D. D. Hai and A. Yagi, Numerical computations and pattern formation for chemotaxis-

growth model, Sci. Math. Jpn, 70, 205-211, 2009.

[11] Y. Kabeya and W.-M., Ni, Stationary Keller-Segel model with the linear sensitivity, RIMS
Kokyuroku, 1025, 44-65, 1998.

[12] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,

J. Theor. Biol. 26, 399-415, 1970.

[13] N. Kurata, K. Kuto, K. Osaki, T. Tsujikawa and T. Sakurai, Bifurcation phenomena of

pattern solution to Mimura-Tsujikawa model in one dimension, Mathematical Sciences and
Applications, 29, 265-278, 2008.

[14] K. Kuto, K. Osaki, T. Sakurai and T. Tsujikawa, Spatial pattern in a Chemotaxis-Diffusion-
Growth model, Physica D, 241, 1629-1639, 2012.

[15] K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate induced phase transition

model: II. Shadow system, Nonlinearity, 26, 1313-1343, 2013.

[16] K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for bistable equations
with nonlocal constraint, to appear in Discrete Continuous Dynam. Systems 2013.

[17] K. Kuto and T. Tsujikawa, Stationary solutions of the Lotka-Volterra competions model

with diffusion and advection, manuscript

62



[18] K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for generalized Allen-Cahn
equations with nonlocal constraint, preprint.

[19] D. A. Lauffenburger and C. R. Kennedy, Localized bacterial infection in a chemotaxis-
diffusion-growth model, J. Math. Biol., 16, 141-163, 1983.

[20] C.-S. Lin, W.-N. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis
system, J. Differential Equations, 72, 1-27, 1988.

[21] P. K. Maini, M. R. Myerscough, K. H. Winters and J. D. Murray, Bifurcating spatially
heterogeneous solutions in a chemotaxis model for biological pattern formation, Bull. Math.
Biol., 53, 701-719, 1991.

[22] A. Malchiodi and M. Montenegro, Boundary concentration phenomena for a singularly
perturbed elliptic problem, Comm. Pure Appl. Math.. 55, 1507-1568, 2002.

[23] Y. Miyamoto, Structure of the positive radial solutions for the supercritical Newmann
problem $\epsilon^{2}\triangle u-u+u^{p}=0$ in a ball, manuscript.

[24] W.-M. Ni and I. Takagi, On the shape of least-enagy solutions to a semilinear Newmann
problem, Comm. Pure Appl. Math., 44, 819-851, 1991.

[25] M. Mimura and T. Tsujikawa, Aggregating pattern dynamics in a chemotaxis model inclu-
ding growth, Physica A, 230, 499-543, 1996.

[26] K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D, 240,
363-375, 2011.

[27] R. Schaaf, Global behaviour of solution branches for some Newmann problems depending
on one or several parameters, J. Reine Angew. Math., 364, 1-31, 1984.

[2S] R. Schaaf, Global solution branches of two-point boundary value problems, Lecture Notes
in Mathematics, 1458, Springer-Verlag, Berlin, 1990.

[29] T. Senba and T. Suzuki, Some structures of the solution set for a stationary system of
chemotaxis, Adv. Math. Sci. Appl., 10, 191-224, 2000.

[30] J. Shi, Semilinear Newmann boundary value problems on a rectangle, Trans. AMS, 354,
3117-3154, 2002.

[31] J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Dif-
ferential Equations, 35, 849-877.

[32] T. Tsujikawa, K. Kuto, Y. Miyamoto and H. Izuhara, Stationary solutions for some shadow
system of the Keller-Segel model with logistic growth, manuscript.

[33] J. Wei, On the boundary spike layer solutions to a singularly perturbed Newmann problem,
J. Differential Equations, 134, 104-133, 1997.

[34] J. Wei, On single interior spike solutions of Giere-Meinhardt system: uniqueness and
spectrum estimates, European J. Appl. Math., 10, 353-378, 1999.

[35] K. Yagasaki, Monotonicity of the periodic function for $u”-u+u^{p}=0$ with p $\in \mathbb{R}$ with
p $>$ 1, J. Differential Equations, 255, 1988-2001, 2013.

63


