Clifford theory for association schemes

Yasuaki Miyazaki

Shinshu University

1 Introduction

Association schemes are regarded as generalizations of finite groups. So it is natural to consider the generalization to association schemes of the theory of representation of finite groups.

Let K be an algebraically closed field. Let G be a finite group, N a normal subgroup of G. The usual Clifford theory for finite groups shows that

- (CF1) the restriction of an irreducible KG-module to KN is a direct sum of Gconjugates of an irreducible KN-module L with the same multiplicities;
- (CF2) there exists a natural bijection between the set of irreducible KG-modules over L and the set of KT-modules over L, where T is the stabilizer of L in G;
- (CF3) and there exists a natural bijection between the set of irreducible KTmodules over L and the set of irreducible modules of a generalized group
 algebra of T/N.

We will generalize them to association schemes. But we only consider module over the complex number field \mathbb{C} .

2 Adjacency algebras of association schemes

We fix some notations for association schemes.

Let (X,S) be an association scheme. We denote by σ_s the adjacency matrix of $s \in S$. The intersection number is denoted by p^u_{st} for $s,t,u \in S$, namely $\sigma_s\sigma_t = \sum_{u \in S} p^u_{st}\sigma_u$. The valency is denoted by n_s for $s \in S$. An elements in the quotient scheme $S/\!\!/T$ is denoted by s^T .

2.1 Generalized adjacency algebras

In this section we define generalized adjacency algebras based on a definition of generalized group algebra. Details for factor sets and generalized group algebra (ring) are available in the literature [6, Chapter 2, Section 7].

Let G be a group and let K be a field. We say that $\alpha: G \times G \to K^{\times}$ is a factor set if it satisfies the following condition:

$$\alpha(xy,z)\alpha(x,y)=\alpha(y,z)\alpha(x,yz)$$
 for all $x,y,z\in G$.

Note that in general we can consider the action of G on K, but to simplify our arguments, we suppose that the action is trivial. Two factor sets α and β are cohomologous if there exists a map $\gamma: G \to K^{\times}$ such that

$$\alpha(x,y) = \beta(x,y)\gamma(x)\gamma(y)\gamma(xy)^{-1}$$

and we write $\alpha \sim \beta$ in this case. The relation \sim is an equivalence relation on the set of factor sets. A factor set α is said to be *normalized* if $\alpha(x,1) = \alpha(1,x) = 1$ for all $x \in G$. For a normalized factor set α , $\alpha(x,x^{-1}) = \alpha(x^{-1},x)$ also holds. For an arbitrary factor set α , there exists a normalized factor set β such that $\beta \sim \alpha$.

Let (X,S) be an association scheme and let T be a strongly normal closed subset of S. Then the quotient $S/\!\!/ T$ can be regarded as a finite group. Let α : $S/\!\!/ T \times S/\!\!/ T \to K^{\times}$ be a factor set. We define a K-algebra $K^{(\alpha)}S = \bigoplus_{u \in S} K\sigma_u^{(\alpha)}$ with formal basis $\{\sigma_u^{(\alpha)} \mid u \in S\}$ and multiplication

$$\sigma_u^{(\alpha)}\sigma_v^{(\alpha)} = \sum_{w \in S} p_{uv}^w \alpha(u^T, v^T) \sigma_w^{(\alpha)}.$$

The algebra $K^{(\alpha)}S$ is called the *generalized adjacency algebra* of (X,S) over K with factor set α . If the strongly normal closed subset T is trivial, then the scheme is thin and the generalized adjacency algebra is just a generalized group algebra.

2.2 Graded modules and simple modules

Let K be a field. Let (X, S) be a scheme and T a strongly normal closed subset of S. Then $S/\!\!/T$ is thin and we can regard it as a finite group. Then

$$KS = \bigoplus_{s^T \in S /\!\!/ T} K(TsT)$$

is an $S/\!\!/T$ -graded K-algebra, where $K(TsT) = \bigoplus_{u \in TsT} K\sigma_u$. Obviously $(KS)_{1^T} = KT$. We can apply Dade's theory for KS, but we restrict our attention to the case $K = \mathbb{C}$.

Theorem 2.1. [4, Theorem 3.6] For any simple $\mathbb{C}T$ -module L and $s \in S$, $L \otimes \mathbb{C}(TsT)$ is a simple $\mathbb{C}T$ -module or 0.

For any simple $\mathbb{C}T$ -module L, the set of $S/\!\!/T$ -conjugates is $\{L\otimes\mathbb{C}(TsT)|s\in S, L\otimes\mathbb{C}(TsT)=0\}$. We remark that there exist examples such that L and L' are $S/\!\!/T$ -conjugate simple $\mathbb{C}T$ -modules but their dimensions are different.

3 Clifford Theory

First we define some notations. Let A a finite-dimensional K-algebra and let B be a subalgebra of A. For a right B-module L, the induction $L \otimes_B A$ of L to A is denoted by $L \uparrow^A$. For a right A-module M, we write $M \downarrow_B$ if M is considered as a B-module. We denote by IRR(A) the complete set of representatives of the isomorphism classes of simple A-modules. Suppose that both A and B are semisimple. For a simple B-module L, we define $IRR(A \mid L) = \{M \in IRR(A) \mid Hom_A(L \uparrow^A, M) \neq 0\}$.

Let (X, S) be an association scheme and let T be a closed subset of S. For a right $\mathbb{C}T$ -module L and a right $\mathbb{C}S$ -module M, we write $L \uparrow^S$ and $M \downarrow_T$ instead of $L \uparrow^{\mathbb{C}S}$ and $M \downarrow_{\mathbb{C}T}$, respectively.

In the rest of this section, we fix a scheme (X, S) and its strongly normal closed subset T.

Let $M \in IRR(\mathbb{C}S)$. Then $M \in IRR(\mathbb{C}S|L)$ for some $L \in IRR(\mathbb{C}T)$. Since M is a direct summand of $L \uparrow^S$, any simple submodule of $M \downarrow_T$ is an $S/\!\!/ T$ -conjugate of L. If L and L' are $S/\!\!/ T$ -conjugate, then $L \uparrow^S \cong L' \uparrow^S$ as $\mathbb{C}S$ -modules. So

$$\dim_{\mathbb{C}} \operatorname{Hom} \mathbb{C}T(L, M \downarrow_T) = \dim_{\mathbb{C}} \operatorname{Hom} \mathbb{C}T(L', M \downarrow_T).$$

This shows the following theorem.

Theorem 3.1. [4, Theorem 4.1] Let $M \in IRR(\mathbb{C}S)$. There exists $L \in IRR(\mathbb{C}T)$ such that $M \in IRR(\mathbb{C}S \mid L)$. Then there exists a positive integer e such that

$$M\downarrow_T\cong e\left(\bigoplus_{L'\in C}L'
ight),$$

where $C = \{L \otimes \mathbb{C}(TsT) \mid s \in S, L \otimes \mathbb{C}(TsT) \neq 0\}.$

Fix a simple $\mathbb{C}T$ -module L. Put $U/\!\!/T$ the stabilizer of L in $S/\!\!/T$. Then

$$\bigoplus_{s^T \in S/\!\!/T} L \otimes \mathbb{C}(TsT) = L \otimes_{\mathbb{C}T} \mathbb{C}S \supset L \otimes_{\mathbb{C}T} \mathbb{C}U = \bigoplus_{u^T \in U/\!\!/T} L \otimes \mathbb{C}(TuT)$$

and, by Theorem 2.1,

$$\bigoplus_{u^T \in U /\!\!/ T} L \otimes \mathbb{C}(TuT) \cong n_{U /\!\!/ T} L$$

as a $\mathbb{C}T$ -module. So $\dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}U}(L \uparrow^U, L \uparrow^U) = \dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}T}(L, L \uparrow^U \downarrow_T) = n_{U/\!\!/T}$. On the other hand, by the Frobenius reciprocity, we have

$$\dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}S}(L \uparrow^{S}, L \uparrow^{S}) = \dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}T}(L, L \uparrow^{S} \downarrow_{T}) = n_{U /\!\!/ T}.$$

So $\dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}S}(L \uparrow^S, L \uparrow^S) = \dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}U}(L \uparrow^U, L \uparrow^U)$. Let $L \uparrow^U \cong \bigoplus_i m_i M_i$ be the irreducible decomposition of $L \uparrow^U$, with the property that $M_i \cong M_j$ if and only if i = j. Then

$$\dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}U}(L \uparrow^{U}, L \uparrow^{U}) = \dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}U}(\bigoplus_{i} m_{i}M_{i}, \bigoplus_{i} m_{i}M_{i})$$

$$\leq \dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}S}(\bigoplus_{i} m_{i}M_{i} \uparrow^{S}, \bigoplus_{i} m_{i}M_{i} \uparrow^{S})$$

$$= \dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}S}(L \uparrow^{S}, L \uparrow^{S})$$

This means that $\dim_{\mathbb{C}} \operatorname{Hom}_{\mathbb{C}S}(M_i \uparrow^S, M_i \uparrow^S) = 1$ and $M_i \uparrow^S$ is a simple $\mathbb{C}S$ -module for every i. Also $M_i \uparrow^S \cong M_j \uparrow^S$ if and only if i = j. Obviously $M_i \in \operatorname{IRR}(\mathbb{C}U|L)$ and $M_i \uparrow^S \in \operatorname{IRR}(\mathbb{C}S|L)$.

Conversely, let $N \in IRR(\mathbb{C}S|L)$. Then N is a direct summand of $L \uparrow^S$. So there exists some M_i such that N is a direct summand of $M_i \uparrow^S$. Since $M_i \uparrow^S$ is simple, such M_i is uniquely determined. This shows the following theorem.

Theorem 3.2. [4, Theorem 4.2] Fix a simple $\mathbb{C}T$ -module L. Put $U/\!\!/T$ the stabilizer of L in $S/\!\!/T$. Then there exists a bijection $\tau: \operatorname{IRR}(\mathbb{C}U|L) \to \operatorname{IRR}(\mathbb{C}S|L)$ such that $\tau(M) = M \uparrow^S$ and $\tau^{-1}(N)$ is the unique direct summand of $N \downarrow_U$ contained in $\operatorname{IRR}(\mathbb{C}U|L)$.

We consider $\operatorname{End}_{\mathbb{C}U}(L\uparrow^U)$. For $u^T\in U/\!\!/ T$, we define $\rho_{u^T}\in\operatorname{End}_{\mathbb{C}U}(L\uparrow^U)$ by $(\rho_{u^T}(\ell))_{v^T}=\ell_{u^Tv^T}$. Then $\operatorname{End}_{\mathbb{C}U}(L\uparrow^U)=\bigoplus_{u^T\in U/\!\!/ T}\mathbb{C}\rho_{u^T}$ and this is a $U/\!\!/ T$ -graded algebra ([3, Section 4]). The multiplication is $\rho_{u^T}\rho_{v^T}=\alpha(u^T,v^T)\rho_{u^Tv^T}$ and this defines a factor set α . Now $\operatorname{End}_{\mathbb{C}U}(L\uparrow^U)\cong\mathbb{C}^{(\alpha)}(U/\!\!/ T)$ is a generalized group algebra with factor set α .

Proposition 3.3. [5, Theorem 3.1] Under the above assumptions, the irreducible $\mathbb{C}T$ -module L is extensible to a $\mathbb{C}^{(\alpha^{-1})}U$ -module $(\mathbb{C}^{(\alpha^{-1})}U$ is the generalized adjacency algebra with factor set α^{-1}). The action is given by $\ell\sigma_u^{(\alpha^{-1})} = \rho_{(u^T)^{-1}}(\ell\sigma_u)$ for $\ell \in L$ and $u \in U$.

We denote by \widetilde{L} the extension of L to $\mathbb{C}^{(\alpha^{-1})}U$. Since L is a simple $\mathbb{C}T$ -module, \widetilde{L} is a simple $\mathbb{C}^{(\alpha^{-1})}U$ -module.

If M is an irreducible $\mathbb{C}^{(\alpha)}(U/\!\!/T)$ -module, then $\widetilde{L} \otimes_{\mathbb{C}} M$ is an irreducible $\mathbb{C}U$ -module and is in $\operatorname{IRR}(\mathbb{C}U \mid L)$. So we can define a map $\mu : \operatorname{IRR}(\mathbb{C}^{(\alpha)}(U/\!\!/T)) \to \operatorname{IRR}(\mathbb{C}U \mid L)$ by

$$\mu(M) = \widetilde{L} \otimes M.$$

Then μ is a bijection. This shows the following theorem.

Theorem 3.4. [5, Theorem 3.6] Let (X,S) be an association scheme, let T be a strongly normal closed subset, and let L be an irreducible $\mathbb{C}T$ -module. Let $U/\!\!/T$ be the stabilizer of L in $S/\!\!/T$. Then L is extensible to a $\mathbb{C}^{(\alpha^{-1})}U$ -module \widetilde{L} and the map $\mu: \operatorname{IRR}(\mathbb{C}^{(\alpha)}(U/\!\!/T)) \to \operatorname{IRR}(\mathbb{C}U \mid L)$ defined by $\mu(M) = \widetilde{L} \otimes_{\mathbb{C}} M$ is a bijection.

References

- [1] E.C. Dade, Clifford theory for group-graded rings, J. Reine Angew. Math. 369 (1986) 40–86.
- [2] A. Hanaki, Character products of association schemes, J. Algebra 283 (2005) 596–603.
- [3] A. Hanaki, Clifford theory for association schemes, J. Algebra 321 (2009) 1686–1695.
- [4] A. Hanaki, Representations of finite association schemes, Eur. J. Combin. 30 (2009) 1477–1496.
- [5] A. Hanaki, Y. Miyazaki, Clifford theory for association schemes II, J. Algebra, vol408, pp.109-114, 2014.
- [6] H. Nagao, Y. Tsushima, Representations of Finite Groups, Academic Press, Boston, MA, 1989.
- [7] P.-H. Zieschang, An Algebraic Approach to Association Schemes, Lecture Notes in Mathematics, Vol. 1628, Springer-Verlag, Berlin, 1996.