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1 Introduction

Much attention has been paid to a problem of classification of all $Q$-polynomial distance-regular

graphs with large diameter [1] (for the definitions, we refer the reader to Section 2). One of the steps

towards solution of this problem is a characterization of known distance-regular graphs by their

intersection arrays. For the current status of the classification of the $Q$-polynomial distance-regular

graphs, we refer the reader to the survey paper [3] by Van Dam, Koolen and Tanaka.

The bilinear forms graph denoted here by $Bil_{q}(d\cross n)$ is a graph defined on the set of $d\cross n$-matrices

over $\mathbb{F}_{q}$ with two matrices being adjacent if and only if the rank of their difference is 1. We refer

to [2, Chapter 9. $5.A$] for the detailed description of these graphs.

In 1999, K. Metsch [5] obtained the following result.

Result 1.1 The bilinear forms graph $Bil_{q}(d\cross n)$ is characterized by its intersection array if:

$\bullet$ $q=2$ and $n\geq d+4,$

$\bullet$ $q\geq 3$ and $n\geq d+3.$

Thus, the open cases are:

$\bullet$ $q=2$ and $n\in\{d, d+1, d+2, d+3\},$

$\bullet$ $q\geq 3$ and $n\in\{d, d+1, d+2\}.$

In this paper, we discuss a problem of characterization of the bilinear forms graphs $Bil_{q}(d, d)$ ,

$d\geq 3$ , by their intersection arrays.
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This paper is based on a talk given at RIMS, and describes a sketch of the proof of our main result
(see Section 3). The details of the proof will be given elsewhere.

2 Definitions and preliminaries

All the graphs considered in this paper are finite, undirected and simple. Suppose that $\Gamma$ is a
connected graph with vertex set $V(\Gamma)$ and edge set $E(\Gamma)$ , where $E(\Gamma)$ consists of unordered pairs of
adjacent vertices. The distance $d(x, y)$ between any two vertices $x,$ $y$ of $\Gamma$ is the length of a shortest
path connecting $x$ and $y$ in $\Gamma.$

For a subset $X$ of the vertex set of $\Gamma$ , we will also w1ite $X$ for the subgraph of $\Gamma$ induced by $X.$

For a vertex $x\in V(\Gamma)$ , define $\Gamma_{i}(x)$ to be the set of vertices which are at distance precisely $i$ from
$x(0\leq i\leq D)$ , where $D$ $:= \max\{d(x, y)|x, y\in V(\Gamma)\}$ is the diameter of $\Gamma$ . In addition, define
$\Gamma_{-1}(x)=\Gamma_{D+1}(x)=\emptyset$ . The subgraph induced by $\Gamma_{1}(x)$ is called the neighborhood or the local
graph of a vertex $x$ . The ball of radius 1 around $x$ is denoted by $x^{\perp}$ , i.e. $x^{\perp}=\{x\}\cup\Gamma_{1}(x)$ . We
write $\Gamma(x)$ instead of $\Gamma_{1}(x)$ for short, and we denote $x\sim ry$ or simply $x\sim y$ if two vertices $x$ and $y$

are adjacent in $\Gamma$ . For a graph $G$ , a graph $\Gamma$ is called locally $G$ if any local graph of $\Gamma$ is isomorphic
to $G.$

For a set of vertices $x_{1}$ , . . . , $x_{n}$ , let $\Gamma(x_{1}, \ldots, x_{n})$ denote $\bigcap_{i=1}^{n}\Gamma_{1}(x_{i})$ . Moreover, if $x$ and $y$ are at
distance 2 in $\Gamma$ , we call $\Gamma(x, y)$ the $\mu$-graph of $x,$ $y.$

The eigenvalues of a graph are the eigenvalues of its adjacency matrix (recall that they are algebraic
integers). If, for some eigenvalue $\eta$ of $\Gamma$ , its eigenspace contains a vector orthogonal to the all ones
vector, we say the eigenvalue $\eta$ is non-principal. If $\Gamma$ is regular with valency $k$ then all its eigenvalues
are non-principal unless the graph is connected and then the only eigenvalue that is principal is its
valency $k.$

For a graph $\Gamma$ and its vertex $x$ , we say that $\eta$ is a local eigenvalue at $x$ , if $\eta$ is an eigenvalue of
$\Gamma_{1}(x)$ .

A connected graph $\Gamma$ with diameter $D$ is called distance-regular if there exist integers $b_{i-1},$ $c_{i}$

$(1\leq i\leq D)$ such that, for any two vertices $x,$ $y\in V(\Gamma)$ with $d(x, y)=i$ , there are precisely $c_{i}$

neighbors of $y$ in $\Gamma_{i-1}(x)$ and $b_{i}$ neighbors of $y$ in $\Gamma_{i+1}(x)$ . In particular, any distance-regular graph
is regular with valency $k$ $:=b_{0}$ . We define $a_{i}$ $:=k-b_{i}-c_{i}$ for notational convenience and note
that $a_{i}=|\Gamma(y)\cap\Gamma_{i}(x)|$ holds for any two vertices $x,$ $y$ with $d(x, y)=i(1\leq i\leq D)$ . The array
$\{b_{0}, b_{1}, . . . , b_{D-1};c_{1}, c_{2}, . . . , c_{D}\}$ is called the intersection array of the distance-regular graph $\Gamma.$

A distance-regular graph with diameter 2 is called a strongly regular graph. We say that a strongly
regular graph $\Gamma$ has parameters $(v, k, \lambda, \mu)$ , if $v=|V(\Gamma)|,$ $k$ is its valency, $\lambda$

$:=a_{1}$ , and $\mu$ $:=c_{2}.$

If a graph $\Gamma$ is distance-regular then, for all integers $h,$ $i,$ $j(0\leq h, i, j\leq D)$ , and all vertices
$x,$ $y\in V(\Gamma)$ with $d(x, y)=h$ , the number

$p_{ij}^{h}:=|\{z\in V(\Gamma)|d(x, z)=i, d(y, z)=j\}|$
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does not depend on the choice of $x,$ $y$ . The numbers $p_{ij}^{h}$ are called the intersection numbers of $\Gamma.$

Note that $c_{\eta}=p_{1i-1}^{i},$ $a_{i}=pi_{i}$ , and $b_{i}=p_{1i+1}^{i}.$

For each integer $i(0\leq i\leq D)$ , the ith distance matrix $A_{i}$ of $\Gamma$ has rows and columns indexed by

the vertex of $\Gamma$ , and, for any $x,$ $y\in V(\Gamma)$ ,

$(A_{i})_{x,y}=\{\begin{array}{l}1 if d(x, y)=i,0 if d(x, y)\neq i.\end{array}$

Then $A:=A_{1}$ is just the adjacency matrix of $\Gamma,$ $A_{0}=I,$ $A_{i}^{T}=A_{i}(0\leq i\leq D)$ , and

$A_{i}A_{j}= \sum_{h=0}^{D}p_{ij}^{h}A_{h} (0\leq i,j\leq D)$ ,

in particular,
$A_{1}A_{i}=b_{i-1}A_{i-1}+a_{i}A_{i}+c_{x+1}A_{i+1} (1\leq i\leq D-1)$ ,

$A_{1}A_{D}=b_{D-1}A_{D-1}+a_{D}A_{D},$

and this implies that $A_{i}=p_{i}(A_{1})$ for certain polynomial $p_{i}$ of degree $i.$

The Bose-Mesner algebra $\mathcal{M}$ of $\Gamma$ is a matrix algebra generated by $A_{1}$ over $\mathbb{C}$ . It follows that $\mathcal{M}$

has dimension $D+1$ , and it is spanned by the set of matrices $A_{0}=I,$ $A_{1}$ , . . . , $A_{D}$ , which form a

basis of $\mathcal{M}.$

Since the algebra $\mathcal{M}$ is semi-simple and commutative, $\mathcal{M}$ also has a basis of pairwise orthogonal

idempotents $E_{0}:= \frac{1}{|V(\Gamma)|}J,$ $E_{1}$ , . . . , $E_{D}$ (the so-called primitive idempotents of $\mathcal{M}$ ):

$E_{i}E_{j}=\delta_{ij}E_{i}(0\leq i,j\leq D) , E_{i}.=E_{i}^{T}(0\leq i,j\leq D)$ ,

$E_{0}+E_{1}+\ldots+E_{D}=I,$

where $J$ is the all ones matrix.

In fact, $E_{j}(0\leq j\leq D)$ is the matrix representing orthogonal projection onto the eigenspace of $A_{1}$

corresponding to some eigenvalue of $\Gamma$ . In other words, one can write

$A_{1}= \sum_{j=0}^{D}\theta_{j}E_{j},$

where $\theta_{j}(0\leq j\leq D)$ are the real and pairwise distinct scalars, known as the eigenvalues of $\Gamma$ . We

say that the eigenvalues are in natural order if $b_{0}=\theta_{0}>\theta_{1}>\ldots>\theta_{D}$ . We denote $\hat{\theta}_{i}=-1-\frac{b}{\theta_{i}+}\overline{1}$

for $i\in\{1, D\}.$

The Bose-Mesner algebra $\mathcal{M}$ is also closed under entrywise (Hadamard or Schur) matrix multipli-

cation, denoted by $0$ . Then the matrices $A_{0},$ $A_{1}$ , . . ., $A_{D}$ are the primitive idempotents of $\mathcal{M}$ with

respect to $\circ$ , i.e., $A_{i}\circ A_{j}=\delta_{ij}A_{i}$ , and $\sum_{i=0}^{D}A_{i}=J$ . This implies that

$E_{i} \circ E_{j}=\sum_{h=0}^{D}q_{ij}^{h}E_{h} (0\leq i,j\leq D)$
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holds for some real numbers $q_{ij}^{h}$ , known as the Krein parameters of $\Gamma.$

Let $\Gamma$ be a distance-regular graph, and $E$ be a primitive idempotent of its Bose-Mesner algebra.
The graph $\Gamma$ is called $Q$ -polynomial (with respect to $E$) if there exist real numbers $c_{i}^{*},$ $a_{i}^{*},$ $b_{i-1}^{*}$

$(1\leq i\leq D)$ and an ordering of primitive idempotents such that $E_{0}= \frac{1}{|V(\Gamma)|}J$ and $E_{1}=E$ , and

$E_{1}\circ E_{i}=b_{i-1}^{*}E_{i-1}+a_{i}^{*}E_{i}+c_{i+1}^{*}E_{i+1} (1\leq i\leq D-1)$ ,

$E_{1}\circ E_{D}=b_{D-1}^{*}E_{D-1}+a_{D}^{*}E_{D}.$

Note that a $Q$-polynomial ordering of the eigenvalues/idempotents does not have to be the natural
ordering.

Further, the dual eigenvalues of $\Gamma$ associated with $E$ are the real scalars $\theta_{i}^{*}(0\leq i\leq D)$ defined by

$E= \frac{1}{|V(\Gamma)|}\sum_{i=0}^{D}\theta_{i}^{*}A_{i}.$

We say that a distance-regular graph $\Gamma$ has classical parameters $(D, b, \alpha, \beta)$ if the diameter of $\Gamma$ is
$D$ , and the intersection numbers of $\Gamma$ satisfy

$c_{i}=\{\begin{array}{l}i1\end{array}\}(1+\alpha\{\begin{array}{l}i-11\end{array}\})$ , (1)

so that, in particular, $c_{2}=(b+1)(\alpha+1)$ ,

$b_{i}=(\{\begin{array}{l}D1\end{array}\}-\{\begin{array}{l}i1\end{array}\})(\beta-\alpha\{\begin{array}{l}i1\end{array}\})$ , (2)

where

$\{\begin{array}{l}j1\end{array}\}:=1+b+b^{2}+\ldots+b^{j-1}.$

The following important fact about $Q$-polynomial distance-regular graphs was proven in [7].

Result 2.1 Let $\Gamma$ be a $Q$ -polynomial distance-regular graph with diameter $D\geq 3$ . Then, for any
$i=2$ , . . . , $D-1$ , there exists a polynomial $T_{i}$ of degree 4 such that, for any vertex $x\in V(\Gamma)$

and any non-principal eigenvalue $\eta$ of the local graph of $x,$ $T_{\iota’}(\uparrow 7)\geq 0$ holds. The polynomials $T_{i},$

$i=2$ , . . . , $D-1$ , differ only in a scalar multiple.

We call these polynomials the Terwilliger polynomials of F. The existence of these polynornials
was established in [7]. In [4], the polynomial $T_{2}$ was calculated explicitly.
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Result 2.2 Suppose that $\Gamma$ has classical parameters $(D, b, \alpha, \beta)$ . Then the Terwilliger polynomial
$T_{2}(\lambda)$ of $\Gamma$ is

$T_{2}( \lambda)=\frac{b_{2}}{\alpha+1}(-\lambda^{2}+\lambda(\alpha\{\begin{array}{l}D1\end{array}\}+\beta-\alpha-1-(\alpha+1)(b+1))+\beta\{\begin{array}{l}D1\end{array}\}-(\alpha+1)(b+1))\cross$

$\cross(\lambda^{2}+\lambda(2-\alpha b)-\alpha b+1)-b_{2}^{2}(\lambda+1)^{2}$ . (3)

Furthermore, the roots of $T_{2}(\lambda)$ are

$\beta-\alpha-1, -1, -b-1, \alpha b\frac{b^{D-1}-1}{b-1}-1.$

Note that the bilinear forms graph $Bil_{q}(d\cross n)$ , $n\geq d$ , has classical parameters $(D, b, \alpha, \beta)=$

$(d, q, q-1, q^{n}-1)$ . In particular, if $\Gamma$ is a distance-regular graph with the same intersection array

as $Bil_{q}(d\cross d)$ , $d\geq 3$ , then, for any vertex $x\in V(\Gamma)$ and any non-principal eigenvalue $\eta$ of the local
graph of $x$ , one has:

$\eta\in[-q-1, -1]$ or $\eta=q^{n}-q-1$ , (4)

3 Main result

In this section, we suppose that $\Gamma$ is a distance-regular graph with the same intersection array as
$Bil_{2}(d\cross d)$ , $d\geq 3.$

Proposition 3.1 The local graph of any vertex $x$ of $\Gamma$ is the $(2^{d}-3)\cross(2^{d}-3)$ -grid.

Proof: By (4), for $q=2$ , a local non-principal eigenvalue $\eta$ at any vertex $x\in\Gamma$ satisfies:

$\eta\in[-3, -1]$ or $\eta=2^{d}-3.$

Claim 3.2 $\Gamma_{1}(x)$ has only integral eigenvalues, i. e., $-3,$ $-2,$ $-1$ , or $2^{d}-3.$

Proof: Recall that the eigenvalues of a graph are algebraic integers, and their product is an integer.

Let $\eta_{1}$ , . . . , $\eta_{s}$ be all irrational eigenvalues of $\Gamma_{1}(x)$ . Then $\eta_{i}\in(-3, -1)$ and $\Pi_{i=1}^{s}\eta_{i}$ is an integer,

and thus $\Pi_{i=1}^{s}(\eta_{i}+2)$ is an integer. Now $\eta_{i}\in(-3, -1)\Rightarrow|\eta_{i}+2|<1\Rightarrow\Pi_{i=1}^{s}(\eta_{i}+2)=0$ . The

claim is proved.

Claim 3.3 $\Gamma_{1}(x)$ has spectrum $2(2^{n}-2)^{1},$ $(2^{n}-3)^{2(2^{n}-2)},$ $(-2)^{(2^{n}-1)^{2}}$
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Proof: Recall the following basic fact from algebraic graph theory. Let $\theta_{0}^{m_{0}},$ $\theta_{1}^{m_{1}}$ , . . . , $\theta_{s}^{m_{s}}$ be the
spectrum of a regular (with valency k) graph on $v$ vertices, and $A$ be its adjacency matrix. Then:

$\sum_{i=0}^{s}m_{i}=v, tr(A)=\sum_{i=0}^{s}m_{i}\theta_{i}=0, tr(A^{2})=\sum_{i=0}^{s}m_{i}\theta_{i}^{2}=vk$ , (5)

where we may put $\theta_{0}=k$ and, moreover, $m_{0}=1$ if the graph is connected.

Apply this fact to $\Gamma_{1}(x)$ . In our notation:

$b_{0}=v=(2^{n}-1)^{2}, \theta_{0}=k=a_{1}=2(2^{n}-2)$ ,

$\theta_{1}=2^{n}-3, \theta_{2}=-1, \theta_{3}=-2, \theta_{4}=-3,$

and $m_{1},$ $m_{2},$ $m_{3},$ $m_{4}$ are unknown multiplicities of $\theta_{1},$ $\theta_{2},$ $\theta_{3},$ $\theta_{4}$ , respectively, while $m_{0}=1$ (as $\Gamma_{1}(x)$

is connected).

Then (5) gives a system of (three) linear equations with respect to (four) unknowns $m_{1}$ , . . . , $m_{4}.$

One can show that this system has the only non-negative integral solution:

$m_{1}=2(2^{n}-2) , m_{2}=0, m_{3}=(2^{n}-1)^{2}, m_{4}=0,$

which shows the claim,

We now see that $\Gamma_{1}(x)$ is a regular graph with exactly 3 distinct eigenvalues. This yields that
$\Gamma_{1}(x)$ is a strongly regular graph with smallest eigenvalue $-2$ . It now easily follows from Sei-
del’s classification of strongly regular graphs with smallest eigenvalue $-2$ , see [9], that $\Gamma_{1}(x)$ is a
$(2^{d}-3)\cross(2^{d}-3)$ -grid. 1

Lemma 3.4 For every pair of vertices $x,$ $y\in\Gamma$ with $d(x, y)=2$ , the induced subgraph $\Gamma(x)\cap\Gamma(y)$

is a 6-gon.

Proof: The lemma easily follows from Proposition 3.1 and the fact that $c_{2}=6$ . 1

We now see that $\Gamma$ has the same local graphs as $Bil_{2}(d\cross d)$ .

Let $\mathcal{H}$ denote the bilinear forms graph $Bil_{2}(d\cross d)$ . For vertices $x\in \mathcal{H},$ $x\in\Gamma$ , an isomorphism
$\varphi$ : $x^{\perp}arrow x^{\perp}$ is called extendable if there is a bijection $\varphi’$ : $x^{\perp}\cup \mathcal{H}_{2}(x)arrow x^{\perp}\cup\Gamma_{2}(x)$ , mapping

edges to edges, such that $\varphi’|_{x^{\perp}}=\varphi$ (in this case $\varphi’$ is called the extension of $\varphi$ ). We say that $\Gamma$

has distinct $\mu$-graphs if $\Gamma(x, y)=\Gamma(x, z)$ for $y,$ $z\in\Gamma_{2}(x)$ implies $y=z$ . This property yields that
the extension $\varphi’$ above is unique.

A graph $\triangle$ is called triangulable if every cycle in it can be decomposed into a product of triangles
(see [6, Section 6

For the following result, see [6, Theorem 7.1].
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Result 3.5 Assume:

(1) $\Gamma$ has distinct $\mu$ -graphs.

(2) There exist a vertex $x$ of $\mathcal{H}$ and a vertex $x$ of $\Gamma$ , and an extendable isomorphism $\varphi$ : $x^{\perp}arrow x^{\perp}.$

(3) If $x,$ $x$ are vertices of $\mathcal{H},$
$\Gamma$ , respectively, $\varphi$ : $x^{\perp}arrow x^{\perp}is$ an extendable isomorphism, $\varphi’$ is its

extension, and $w\in \mathcal{H}(x)$ , then $\varphi’|_{w^{\perp}}:$ $w^{\perp}arrow\varphi(w)^{\perp}is$ extendable.

(4) $\mathcal{H}$ is triangulable.

Then $\Gamma$ is covered by $\mathcal{H}.$

Indeed, since $\Gamma$ and $\mathcal{H}$ have the same intersection arrays, Result 3.5 implies that $\Gamma\cong \mathcal{H}.$

It is not difficult to see that $\Gamma$ satisfies Conditions (1) and (4) of Result 3.5.

Let $\Gamma(x)$ $:=\{w_{ij}\}_{i,j}$ , and, as usually, for distinct pairs $(i,j)$ and $(i’,j’)$ , $w_{ij}\sim w_{i’j’}$ holds if and
only if $i=i’$ or $j=j’$ . Denote by $L_{i}$ the maximal clique of $\Gamma(x)$ that contains the vertices $w_{ij}$ for
all $j$ , and by $L_{j}^{T}$ the maximal clique of $\Gamma(x)$ that contains the vertices $w_{ij}$ for all $i$ . For a vertex
$x\in\Gamma,$

$x^{\perp}$ denotes $\{x\}\cup\Gamma(x)$ .

Without loss of generality, we may assume that there is a vertex $z\in\Gamma_{2}(x)$ such that $\Gamma(x, z)\subset$

$L_{1}\cup L_{2}\cup L_{3}$ . Define a subgraph $\Sigma$ induced in $\Gamma$ by the vertex subset

$\{x\}\cup L_{1}\cup L_{2}\cup L_{3}\cup\{z’\in\Gamma_{2}(x)|\Gamma(x, z’)\subset L_{1}\cup L_{2}\cup L_{3}\},$

so that $\Sigma(x)=L_{1}\cup L_{2}UL_{3}.$

In order to show that $\Gamma$ satisfies Conditions (2) and (3) of Result 3.5, one has to show the following.

Lemma 3.6 $\Sigma$ is isomorphic to $Bil_{2}(2, d)$ .

The main result of this work is the following theorem.

Theorem 3.7 The bilinear forms graphs $Bil_{2}(d, d)$ , $d\geq 3$ , are uniquely determined by their inter-
section arrays.
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