On a Characterization of the Bilinear Forms Graphs $Bil_q(d \times d)$

Alexander L. Gavrilyuk, Jack H. Koolen

June 10, 2014

1 Introduction

Much attention has been paid to a problem of classification of all Q-polynomial distance-regular graphs with large diameter [1] (for the definitions, we refer the reader to Section 2). One of the steps towards solution of this problem is a characterization of known distance-regular graphs by their intersection arrays. For the current status of the classification of the Q-polynomial distance-regular graphs, we refer the reader to the survey paper [3] by Van Dam, Koolen and Tanaka.

The bilinear forms graph denoted here by $Bil_q(d \times n)$ is a graph defined on the set of $d \times n$ -matrices over \mathbb{F}_q with two matrices being adjacent if and only if the rank of their difference is 1. We refer to [2, Chapter 9.5.A] for the detailed description of these graphs.

In 1999, K. Metsch [5] obtained the following result.

Result 1.1 The bilinear forms graph $Bil_q(d \times n)$ is characterized by its intersection array if:

- q = 2 and $n \ge d + 4$,
- $q \geq 3$ and $n \geq d+3$.

Thus, the open cases are:

- q = 2 and $n \in \{d, d + 1, d + 2, d + 3\},\$
- $q \ge 3$ and $n \in \{d, d+1, d+2\}.$

In this paper, we discuss a problem of characterization of the bilinear forms graphs $Bil_q(d, d)$, $d \ge 3$, by their intersection arrays.

This paper is based on a talk given at RIMS, and describes a sketch of the proof of our main result (see Section 3). The details of the proof will be given elsewhere.

2 Definitions and preliminaries

All the graphs considered in this paper are finite, undirected and simple. Suppose that Γ is a connected graph with vertex set $V(\Gamma)$ and edge set $E(\Gamma)$, where $E(\Gamma)$ consists of unordered pairs of adjacent vertices. The distance d(x, y) between any two vertices x, y of Γ is the length of a shortest path connecting x and y in Γ .

For a subset X of the vertex set of Γ , we will also write X for the subgraph of Γ induced by X. For a vertex $x \in V(\Gamma)$, define $\Gamma_i(x)$ to be the set of vertices which are at distance precisely *i* from x ($0 \leq i \leq D$), where $D := \max\{d(x,y) \mid x, y \in V(\Gamma)\}$ is the *diameter* of Γ . In addition, define $\Gamma_{-1}(x) = \Gamma_{D+1}(x) = \emptyset$. The subgraph induced by $\Gamma_1(x)$ is called the *neighborhood* or the *local graph* of a vertex x. The ball of radius 1 around x is denoted by x^{\perp} , i.e. $x^{\perp} = \{x\} \cup \Gamma_1(x)$. We write $\Gamma(x)$ instead of $\Gamma_1(x)$ for short, and we denote $x \sim_{\Gamma} y$ or simply $x \sim y$ if two vertices x and y are adjacent in Γ . For a graph G, a graph Γ is called *locally* G if any local graph of Γ is isomorphic to G.

For a set of vertices x_1, \ldots, x_n , let $\Gamma(x_1, \ldots, x_n)$ denote $\bigcap_{i=1}^n \Gamma_1(x_i)$. Moreover, if x and y are at distance 2 in Γ , we call $\Gamma(x, y)$ the μ -graph of x, y.

The eigenvalues of a graph are the eigenvalues of its adjacency matrix (recall that they are algebraic integers). If, for some eigenvalue η of Γ , its eigenspace contains a vector orthogonal to the all ones vector, we say the eigenvalue η is non-principal. If Γ is regular with valency k then all its eigenvalues are non-principal unless the graph is connected and then the only eigenvalue that is principal is its valency k.

For a graph Γ and its vertex x, we say that η is a *local* eigenvalue at x, if η is an eigenvalue of $\Gamma_1(x)$.

A connected graph Γ with diameter D is called *distance-regular* if there exist integers b_{i-1} , c_i $(1 \leq i \leq D)$ such that, for any two vertices $x, y \in V(\Gamma)$ with d(x, y) = i, there are precisely c_i neighbors of y in $\Gamma_{i-1}(x)$ and b_i neighbors of y in $\Gamma_{i+1}(x)$. In particular, any distance-regular graph is regular with valency $k := b_0$. We define $a_i := k - b_i - c_i$ for notational convenience and note that $a_i = |\Gamma(y) \cap \Gamma_i(x)|$ holds for any two vertices x, y with d(x, y) = i $(1 \leq i \leq D)$. The array $\{b_0, b_1, \ldots, b_{D-1}; c_1, c_2, \ldots, c_D\}$ is called the *intersection array* of the distance-regular graph Γ .

A distance-regular graph with diameter 2 is called a *strongly regular* graph. We say that a strongly regular graph Γ has parameters (v, k, λ, μ) , if $v = |V(\Gamma)|$, k is its valency, $\lambda := a_1$, and $\mu := c_2$.

If a graph Γ is distance-regular then, for all integers $h, i, j \ (0 \le h, i, j \le D)$, and all vertices $x, y \in V(\Gamma)$ with d(x, y) = h, the number

$$p_{ij}^h := |\{z \in V(\Gamma) \mid d(x, z) = i, \ d(y, z) = j\}|$$

does not depend on the choice of x, y. The numbers p_{ij}^h are called the *intersection numbers* of Γ . Note that $c_i = p_{1i-1}^i$, $a_i = p_{1i}^i$, and $b_i = p_{1i+1}^i$.

For each integer $i \ (0 \le i \le D)$, the *i*th distance matrix A_i of Γ has rows and columns indexed by the vertex of Γ , and, for any $x, y \in V(\Gamma)$,

$$(A_i)_{x,y} = \begin{cases} 1 \text{ if } d(x,y) = i, \\ 0 \text{ if } d(x,y) \neq i. \end{cases}$$

Then $A := A_1$ is just the *adjacency matrix* of Γ , $A_0 = I$, $A_i^{\top} = A_i$ $(0 \le i \le D)$, and

$$A_i A_j = \sum_{h=0}^{D} p_{ij}^h A_h \quad (0 \le i, j \le D),$$

in particular,

$$A_1A_i = b_{i-1}A_{i-1} + a_iA_i + c_{i+1}A_{i+1} \quad (1 \le i \le D-1),$$

$$A_1A_D = b_{D-1}A_{D-1} + a_DA_D,$$

and this implies that $A_i = p_i(A_1)$ for certain polynomial p_i of degree *i*.

The Bose-Mesner algebra \mathcal{M} of Γ is a matrix algebra generated by A_1 over \mathbb{C} . It follows that \mathcal{M} has dimension D + 1, and it is spanned by the set of matrices $A_0 = I, A_1, \ldots, A_D$, which form a basis of \mathcal{M} .

Since the algebra \mathcal{M} is semi-simple and commutative, \mathcal{M} also has a basis of pairwise orthogonal idempotents $E_0 := \frac{1}{|V(\Gamma)|} J, E_1, \ldots, E_D$ (the so-called *primitive idempotents* of \mathcal{M}):

$$E_i E_j = \delta_{ij} E_i \quad (0 \le i, j \le D), \quad E_i = E_i^{+} \quad (0 \le i, j \le D),$$

 $E_0 + E_1 + \ldots + E_D = I,$

where J is the all ones matrix.

In fact, E_j $(0 \le j \le D)$ is the matrix representing orthogonal projection onto the eigenspace of A_1 corresponding to some eigenvalue of Γ . In other words, one can write

$$A_1 = \sum_{j=0}^D \theta_j E_j,$$

where θ_j $(0 \le j \le D)$ are the real and pairwise distinct scalars, known as the *eigenvalues* of Γ . We say that the eigenvalues are in *natural* order if $b_0 = \theta_0 > \theta_1 > \ldots > \theta_D$. We denote $\hat{\theta}_i = -1 - \frac{b_1}{\theta_i + 1}$ for $i \in \{1, D\}$.

The Bose-Mesner algebra \mathcal{M} is also closed under entrywise (Hadamard or Schur) matrix multiplication, denoted by \circ . Then the matrices A_0, A_1, \ldots, A_D are the primitive idempotents of \mathcal{M} with respect to \circ , i.e., $A_i \circ A_j = \delta_{ij}A_i$, and $\sum_{i=0}^D A_i = J$. This implies that

$$E_i \circ E_j = \sum_{h=0}^{D} q_{ij}^h E_h \quad (0 \le i, j \le D)$$

holds for some real numbers q_{ij}^h , known as the *Krein parameters* of Γ .

Let Γ be a distance-regular graph, and E be a primitive idempotent of its Bose-Mesner algebra. The graph Γ is called *Q*-polynomial (with respect to E) if there exist real numbers c_i^* , a_i^* , b_{i-1}^* $(1 \le i \le D)$ and an ordering of primitive idempotents such that $E_0 = \frac{1}{|V(\Gamma)|}J$ and $E_1 = E$, and

$$E_1 \circ E_i = b_{i-1}^* E_{i-1} + a_i^* E_i + c_{i+1}^* E_{i+1} \quad (1 \le i \le D - 1),$$
$$E_1 \circ E_D = b_{D-1}^* E_{D-1} + a_D^* E_D.$$

Note that a Q-polynomial ordering of the eigenvalues/idempotents does not have to be the natural ordering.

Further, the dual eigenvalues of Γ associated with E are the real scalars θ_i^* $(0 \le i \le D)$ defined by

$$E = \frac{1}{|V(\Gamma)|} \sum_{i=0}^{D} \theta_i^* A_i.$$

We say that a distance-regular graph Γ has classical parameters (D, b, α, β) if the diameter of Γ is D, and the intersection numbers of Γ satisfy

$$c_i = \begin{bmatrix} i \\ 1 \end{bmatrix} \left(1 + \alpha \begin{bmatrix} i - 1 \\ 1 \end{bmatrix} \right),\tag{1}$$

so that, in particular, $c_2 = (b+1)(\alpha+1)$,

$$b_{i} = \left(\begin{bmatrix} D\\1 \end{bmatrix} - \begin{bmatrix} i\\1 \end{bmatrix} \right) \left(\beta - \alpha \begin{bmatrix} i\\1 \end{bmatrix} \right), \tag{2}$$

where

$$\binom{j}{1} := 1 + b + b^2 + \ldots + b^{j-1}.$$

The following important fact about Q-polynomial distance-regular graphs was proven in [7].

Result 2.1 Let Γ be a Q-polynomial distance-regular graph with diameter $D \geq 3$. Then, for any i = 2, ..., D - 1, there exists a polynomial T_i of degree 4 such that, for any vertex $x \in V(\Gamma)$ and any non-principal eigenvalue η of the local graph of x, $T_i(\eta) \geq 0$ holds. The polynomials T_i , i = 2, ..., D - 1, differ only in a scalar multiple.

We call these polynomials the *Terwilliger* polynomials of Γ . The existence of these polynomials was established in [7]. In [4], the polynomial T_2 was calculated explicitly.

Result 2.2 Suppose that Γ has classical parameters (D, b, α, β) . Then the Terwilliger polynomial $T_2(\lambda)$ of Γ is

$$T_{2}(\lambda) = \frac{b_{2}}{\alpha+1} \left(-\lambda^{2} + \lambda \left(\alpha \begin{bmatrix} D\\1 \end{bmatrix} + \beta - \alpha - 1 - (\alpha+1)(b+1) \right) + \beta \begin{bmatrix} D\\1 \end{bmatrix} - (\alpha+1)(b+1) \right) \times \left(\lambda^{2} + \lambda(2-\alpha b) - \alpha b + 1 \right) - b_{2}^{2}(\lambda+1)^{2}.$$
(3)

Furthermore, the roots of $T_2(\lambda)$ are

$$\beta - \alpha - 1, -1, -b - 1, \alpha b \frac{b^{D-1} - 1}{b-1} - 1.$$

Note that the bilinear forms graph $Bil_q(d \times n)$, $n \ge d$, has classical parameters $(D, b, \alpha, \beta) = (d, q, q-1, q^n - 1)$. In particular, if Γ is a distance-regular graph with the same intersection array as $Bil_q(d \times d)$, $d \ge 3$, then, for any vertex $x \in V(\Gamma)$ and any non-principal eigenvalue η of the local graph of x, one has:

$$\eta \in [-q-1, -1] \text{ or } \eta = q^n - q - 1,$$
 (4)

3 Main result

In this section, we suppose that Γ is a distance-regular graph with the same intersection array as $Bil_2(d \times d), d \ge 3$.

Proposition 3.1 The local graph of any vertex x of Γ is the $(2^d - 3) \times (2^d - 3)$ -grid.

Proof: By (4), for q = 2, a local non-principal eigenvalue η at any vertex $x \in \Gamma$ satisfies:

$$\eta \in [-3, -1]$$
 or $\eta = 2^d - 3$.

Claim 3.2 $\Gamma_1(x)$ has only integral eigenvalues, i.e., -3, -2, -1, or $2^d - 3$.

Proof: Recall that the eigenvalues of a graph are algebraic integers, and their product is an integer. Let η_1, \ldots, η_s be all *irrational* eigenvalues of $\Gamma_1(x)$. Then $\eta_i \in (-3, -1)$ and $\prod_{i=1}^s \eta_i$ is an integer, and thus $\prod_{i=1}^s (\eta_i + 2)$ is an integer. Now $\eta_i \in (-3, -1) \Rightarrow |\eta_i + 2| < 1 \Rightarrow \prod_{i=1}^s (\eta_i + 2) = 0$. The claim is proved.

Claim 3.3 $\Gamma_1(x)$ has spectrum $2(2^n-2)^1$, $(2^n-3)^{2(2^n-2)}$, $(-2)^{(2^n-1)^2}$.

Proof: Recall the following basic fact from algebraic graph theory. Let $\theta_0^{m_0}, \theta_1^{m_1}, \ldots, \theta_s^{m_s}$ be the spectrum of a regular (with valency k) graph on v vertices, and A be its adjacency matrix. Then:

$$\sum_{i=0}^{s} m_i = v, \quad tr(A) = \sum_{i=0}^{s} m_i \theta_i = 0, \quad tr(A^2) = \sum_{i=0}^{s} m_i \theta_i^2 = vk, \tag{5}$$

where we may put $\theta_0 = k$ and, moreover, $m_0 = 1$ if the graph is connected.

Apply this fact to $\Gamma_1(x)$. In our notation:

$$b_0 = v = (2^n - 1)^2, \quad \theta_0 = k = a_1 = 2(2^n - 2),$$

$$\theta_1 = 2^n - 3, \quad \theta_2 = -1, \quad \theta_3 = -2, \quad \theta_4 = -3,$$

and m_1, m_2, m_3, m_4 are unknown multiplicities of $\theta_1, \theta_2, \theta_3, \theta_4$, respectively, while $m_0 = 1$ (as $\Gamma_1(x)$ is connected).

Then (5) gives a system of (three) linear equations with respect to (four) unknowns m_1, \ldots, m_4 . One can show that this system has the only non-negative integral solution:

$$m_1 = 2(2^n - 2), \quad m_2 = 0, \quad m_3 = (2^n - 1)^2, \quad m_4 = 0,$$

which shows the claim.

We now see that $\Gamma_1(x)$ is a regular graph with exactly 3 distinct eigenvalues. This yields that $\Gamma_1(x)$ is a strongly regular graph with smallest eigenvalue -2. It now easily follows from Seidel's classification of strongly regular graphs with smallest eigenvalue -2, see [9], that $\Gamma_1(x)$ is a $(2^d - 3) \times (2^d - 3)$ -grid.

Lemma 3.4 For every pair of vertices $x, y \in \Gamma$ with d(x, y) = 2, the induced subgraph $\Gamma(x) \cap \Gamma(y)$ is a 6-gon.

Proof: The lemma easily follows from Proposition 3.1 and the fact that $c_2 = 6$.

We now see that Γ has the same local graphs as $Bil_2(d \times d)$.

Let \mathcal{H} denote the bilinear forms graph $Bil_2(d \times d)$. For vertices $\mathbf{x} \in \mathcal{H}, x \in \Gamma$, an isomorphism $\varphi : \mathbf{x}^{\perp} \to x^{\perp}$ is called *extendable* if there is a bijection $\varphi' : \mathbf{x}^{\perp} \cup \mathcal{H}_2(\mathbf{x}) \to x^{\perp} \cup \Gamma_2(x)$, mapping edges to edges, such that $\varphi'|_{\mathbf{x}^{\perp}} = \varphi$ (in this case φ' is called the extension of φ). We say that Γ has distinct μ -graphs if $\Gamma(x, y) = \Gamma(x, z)$ for $y, z \in \Gamma_2(x)$ implies y = z. This property yields that the extension φ' above is unique.

A graph Δ is called *triangulable* if every cycle in it can be decomposed into a product of triangles (see [6, Section 6]).

For the following result, see [6, Theorem 7.1].

Result 3.5 Assume:

(1) Γ has distinct μ -graphs.

(2) There exist a vertex \mathbf{x} of \mathcal{H} and a vertex x of Γ , and an extendable isomorphism $\varphi : \mathbf{x}^{\perp} \to x^{\perp}$.

(3) If \mathbf{x}, x are vertices of \mathcal{H}, Γ , respectively, $\varphi : \mathbf{x}^{\perp} \to x^{\perp}$ is an extendable isomorphism, φ' is its extension, and $\mathbf{w} \in \mathcal{H}(\mathbf{x})$, then $\varphi'|_{\mathbf{w}^{\perp}} : \mathbf{w}^{\perp} \to \varphi(\mathbf{w})^{\perp}$ is extendable.

(4) \mathcal{H} is triangulable.

Then Γ is covered by \mathcal{H} .

Indeed, since Γ and \mathcal{H} have the same intersection arrays, Result 3.5 implies that $\Gamma \cong \mathcal{H}$.

It is not difficult to see that Γ satisfies Conditions (1) and (4) of Result 3.5.

Let $\Gamma(x) := \{w_{ij}\}_{i,j}$, and, as usually, for distinct pairs (i, j) and (i', j'), $w_{ij} \sim w_{i'j'}$ holds if and only if i = i' or j = j'. Denote by L_i the maximal clique of $\Gamma(x)$ that contains the vertices w_{ij} for all j, and by L_j^{\top} the maximal clique of $\Gamma(x)$ that contains the vertices w_{ij} for all i. For a vertex $x \in \Gamma$, x^{\perp} denotes $\{x\} \cup \Gamma(x)$.

Without loss of generality, we may assume that there is a vertex $z \in \Gamma_2(x)$ such that $\Gamma(x, z) \subset L_1 \cup L_2 \cup L_3$. Define a subgraph Σ induced in Γ by the vertex subset

 $\{x\} \cup L_1 \cup L_2 \cup L_3 \cup \{z' \in \Gamma_2(x) \mid \Gamma(x, z') \subset L_1 \cup L_2 \cup L_3\},\$

so that $\Sigma(x) = L_1 \cup L_2 \cup L_3$.

In order to show that Γ satisfies Conditions (2) and (3) of Result 3.5, one has to show the following.

Lemma 3.6 Σ is isomorphic to $Bil_2(2, d)$.

The main result of this work is the following theorem.

Theorem 3.7 The bilinear forms graphs $Bil_2(d, d)$, $d \ge 3$, are uniquely determined by their intersection arrays.

Acknowledgements. Part of this work was done while the first author was visiting Tohoku University as a JSPS Postdoctoral Fellow.

References

- Bannai E., Ito T. Algebraic combinatorics. I. Association schemes. The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984. xxiv+425 pp.
- [2] Brouwer A.E., Cohen A.M., Neumaier A. Distance-regular graphs. Ergebnisse der Mathematik und ihrer Grenzgebiete, (3), 18. Springer-Verlag, Berlin, 1989. xviii+495 pp.
- [3] Van Dam E., Koolen J.H., Tanaka H. Distance-regular graphs. Preprint, August 2013 version.
- [4] A.L. Gavrilyuk, J.H. Koolen, The Terwilliger polynomial of a Q-polynomial distance-regular graph and its application to the pseudo-partition graphs // arXiv:1403.4027.
- [5] Metsch K. On a characterization of bilinear forms graphs. European J. Combin., 20(4):293–306, 1999.
- [6] A. Munemasa, S.V. Shpectorov, "A local characterization of the graphs of alternating forms", Finite geometry and combinatorics, 1993. P. 289-302
- [7] Terwilliger P. Lecture note on Terwilliger algebra (edited by H. Suzuki), 1993.
- [8] Terwilliger P. The subconstituent algebra of an association scheme, I. J. Algebraic Combin., 1(4):363-388, 1992.
- [9] Seidel J.J. Strongly regular graphs with (-1, 1, 0) adjacency matrix having eigenvalue 3. Lin. Alg. Appl., 1:281-298, 1968.

ALG:

Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, JAPAN and

N.N. Krasovsky Institute of Mathematics and Mechanics UB RAS,

Kovalevskaya str., 16, Ekaterinburg 620990, RUSSIA

E-mail address: alexander.gavriliouk@gmail.com

JHK:

School of Mathematical Sciences University of Science and Technology of China, Hefei, 230026, Anhui, PR CHINA E-mail address: koolen@ustc.edu.cn