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Abstract

For a certain type singularities, the defining equations are polynomials with parameter coe cients
and indeterminate exponents. The forms of Gr\"obner bases of ideal generated by such polynomials
depend on the values of parameters, and those calculations are not easy. In calculation process,
we need to classify the conditions of coe cient parameters for the leading term. We are trying to
calculate the Grobner basis for defining equations of simple $K3$ singularities precisely.

1 Simple $K3$ singularities

We de ne the simple $K3$ singularities. The notion of a simple $K3$ singularity was de ned by Ishii and

Watanabe [2] as a three-dimensional Gorenstein purely elliptic singularity of $(0,2)$-type, whereas a simple

elliptic singularity is two-dimensional purely elliptic singularity of $(0,1)$-type.

De nition 1.1 ([3]) Let (X, x) be a normal isolated singularity. For any positive integer $m,$

$\delta_{m}(X, x)=\frac{dim_{c}\Gamma(X-\{x\},\theta(mK))}{L^{2/m}(X-\{x\})},$

where $K$ is the canonical line bundle on $X-\{x\}$ , and $L^{2/m}(X-\{x\})$ is the set of all $L^{2/m}$ -integrable

(at x) holomorphic $m$ -tuple $n$ -forms on $X-\{x\}.$

Then $\delta_{\mathfrak{m}}$ is nite and does not depend on the choice of a Stein neighborhood on $X.$

De nition 1.2 ([3]) A singularity (X, x) is said to be purely elliptic if $\delta_{m}=1$ for every positive

integer $m.$
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When $X$ is a two-dimensional analytic space, purely elliptic singularities are quasi-Gorenstein singu-

larities, i.e., there exists a non-vanishing holomorphic 2-form on $X-\{x\}.$

De nition-Proposition 1.3 ([2]) A three-dimensional singularity (X, x) is a simple $K3$ singularity

if the fohowing two equivalent conditions are satisfied
(1) (X, x) is Gorenstein purely elliptic of $(0,2)$ -type.

(2) (X, x) is quasi-Gorenstein and the exceptional divisor $E$ is a normal $K3$ surface for any minimal

resolution $\pi$ : $(\tilde{X}, E)arrow$ $(X, x)$ .

Simple elliptic singularities and cusp singularities are characterized as two-dimensional purely elliptic

singularities of $(0,1)$-type and of $(0,0)$-type, respectively. The notion of a simple $K3$ singularity is

de ned as a three-dimensional isolated Gorenstein purely elliptic singularity of $(0,2)$-type. Let $f$ $\in$

$C[z_{0}, z_{1}, z_{2}, z_{3}]$ be a polynomial which is nondegenerate with respect to its Newton boundary $\Gamma(f)$ in

the sense of $[$?$]$ , and whose zero locus $X$ $=$ $\{f =0\}$ in $C^{4}$ has an isolated singularity at the origin
$0$ $\in$

$C^{4}$ . Then the condition for (X, O) to be a simple $K3$ singularity is given by a property of the

Newton boundary $\Gamma(f)$ of $f$ . Next we consider the case where (X, x) is a hypersurface singularity de ned

by a nondegenerate polynomial $f= \sum a_{\nu}z^{\nu}$ $\in$ $C[z_{0}, z_{1}, , z_{n}]$ , and $x=0\in C^{n+1}$ . We denote

by Ro the set of all nonnegative real numbers. Recall that the Newton boundary $\Gamma(f)$ of $f$ is the union

of the compact faces of $\Gamma_{+}(f)$ , where $\Gamma_{+}(f)$ is the convex hull of $\bigcup_{a_{\nu}\neq 0}(\nu+R_{o}^{n+1})$ in $R^{n+1}$ . For any

face $\Delta$ of $\Gamma_{+}(f)$ , set $f_{\Delta}$

$:= \sum_{\nu\in\Delta}a_{\nu}z^{\nu}$
. We say $f$ to be nondegenerate, if

$\frac{\partial f_{\Delta}}{\partial z_{0}}=\frac{\partial f_{\Delta}}{\partialz_{1}}= =\frac{\partial f_{\Delta}}{\partial z_{n}}=0$

has no solution in $(C)^{n+1}$ for any face $\Delta$ . When $f$ is nondegenerate, the condition for (X, x) to be a

purely elliptic singularity is given as follows:

Theorem 1.4 ([4])

Let $f$ be a nondegenerate polynomial and suppose $X$ has an isolated singularity at $x=0\in C^{n+1}.$

(1) (X, x) is purely elliptic if and only if $(1, 1, , 1)$ $\in\Gamma(f)$ .
(2) Let $n=3$ and let $\Delta_{0}$ be the face of $\Gamma(f)$ containing $(1, 1, 1, 1)$ in the relative interior of $\Delta_{0}.$

Then (X, x) is a simple $K3$ singularity if and only if $dim_{R}\Delta_{0}=3.$

Thus if $f$ is nondegenerate and de nes a simple $K3$ singularity, then $f_{\Delta_{0}}$ is a quasi-homogeneous

polynomial with a uniquely determined weights $\alpha$ , which called the weights of $f$ and denoted $\alpha(f)$ . We

denote by $Q_{+}$ the set of all positive rational numbers. Then $\alpha=(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4})\in Q_{+}^{4}$ and $deg_{\alpha}(\nu)$ $:=$

$\sum_{i=1}^{4}\alpha_{i}\nu_{i}=1$ for any $\nu\in\Delta_{0}$ . In particular, $\sum_{i=1}^{4}\alpha_{i}=1$ , since $(1, 1, 1, 1)$ is always contained in $\Delta_{0}.$

2 Application of Gr\"obner Bases

In the elimination theory, one of basic strategy is Elimination Theorem. The calculation of Grobner

basis([l]) for such polynomials is not easy. In calculation process, we need to classify conditions of

parameters for the leading term. By a study of Comprehensive Grobner bases([5]), the calculation
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algorithm for a certain type is obtained. The following theorem holds.

Theorem 2.1 ([1]) Let $I\subset k[x_{1}, x_{n}]$ be an ideal and let $G$ be a Gr\"obner basis of I with respect

to $lex$ order where $x_{1}>x_{2}>$ $>x_{n}$ . Then, for evew $0\leq l\leq n$ , the set $G_{l}=G\cap k[x_{l+1}, , x_{n}]$ is a

Gr\"obner basis of the $lth$ elimination ideal $I_{l}.$

Let $f$ be a de ning equation, $I$ $:=<f,$ $\frac{\partial f}{\partial x_{1}},$ $\frac{\partial f}{\partial x_{2}}$ , $\cdots$ , $\frac{\partial f}{\partial x_{n}}>$ . And let $G$ be a Grobner basis of $I$ with

respect to $lex$ order where $x_{1}>x_{2}>$ $>x_{n}$ . Then, for every $0\leq l\leq n$ , the set

$G_{l}=G\cap k[x_{l+1}, , x_{n}]$

is a Grobner basis of the lth elimination ideal $I_{l}$ . We can obtain the non-degeneracy condition of singu-

larity at the origin from the Grobner basis of the lth elimination ideal $I_{l}$ . (The degeneracy condition of

singularity at the origin means the singularity is non-isolated singularity at the origin.) In the process,

we need to classify the conditions of parameters for the leading term. We consider the ideal

$I=\{f_{i}(t_{1}, \ldots, t_{m}, x_{1}, \ldots, x_{n}):1\leq i\leq s\}$

in $k(t_{1}, \ldots, t_{m})[x_{1}, x_{n}]$ and $x$ a monomial order. We thought of $t_{1}$ , , $t_{m}$ as symbolic parameters

appearing in the coeffcients of $f_{1}$ , , $f_{s}$ . By dividing each $f_{i}$ by its leading coefficient which lies in

$k(t_{1}, , t_{m})$ , we assumed that the leading coefficients of the $f_{i}$ are all equal to 1. Then let $g_{1}$ , , $g_{s}$ be

a reduced Grobner basis for $I$ . Thus the leading coeficients of the $g_{i}$ were also 1.

3 Calculation

We are trying to calculate the Grobner basis of the following de ning equation.

$x^{2}+y^{3}+z^{7}+\lambda z^{6}w^{6}+\mu w^{42}+w^{42+k}+xyzw=0$

The Groebner basis algorithm can really be applied to input polynomials that contain indeterminates

like ‘k’ in the exponents.
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