
ON THE GEOMETRY OF SYMMETRIC $R$-SPACES
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ABSTRACT. In this survey article we report on our recent work [9, 35], partially in collab-
oration with Jost-Hinrich Eschenburg, on geometric properties of symmetric $R$-spaces and

their submanifolds. But this paper also contains a new result, Theorem 12, on the convexity

of certain reflective submanifolds in simply connected irreducible compact symmetric spaces
of Dynkin type $\mathfrak{a}.$

1. INTRODUCTION AND PRELIMINARIES

1.1. Riemannian symmetric spaces. Important isometries of a euclidean space $E$ are re-
flections through affine subspaces. They generate the full isometry group of $E$ . A particular
reflection is the symmetry $s_{p}$ through a point $p\in E$ . It reverses the orientation of oriented
straight lines (geodesics) emanating in $p$ . Analogously, if $S$ is a connected Riemannian man-
ifold and $p$ a point in $S$, an isometry $s_{p}$ of $S$ that fixes $p$ and reverses the orientations of all
geodesics emanating in $p$ is called (geodesic) symmetry of $S$ through $p$ . A generic Riemannian
manifold does, of course, not admit any geodesic symmetry.

$A$ (Riemannian) symmetric space is a connected Riemannian manifold $S$ such that for each
point $p\in S$ the geodesic symmetry $s_{p}$ exists. Locally symmetric spaces are characterized
by the property that their Riemannian curvature tensor is covariantly constant (parallel).
From this point of view symmetric spaces are generalizations of euclidean space. Symmetric
spaces were introduced by \’Elie Cartan in the $1920s$ (see [3, Chap. IV] and [1, \S 6.7-\S 6.9] for
interesting historical accounts). Classical references on symmetric spaces include Sigurdur
Helgason’s monograph [16] and Ottmar Loos’ two volumes [24, 25]. We refer to these books
for further details and proofs.

To a symmetric space $S$ one associates two transitively acting closed subgroups of the full
isometry group $Iso(S)$ : the symmetry group $Sym(S)$ generated by all geodesic symmetries,
and the transvection group Trans(S) generated by compositions of two geodesic symmetries.
If $S$ is compact, the transvection group of $S$ is actually the identity component of $Iso(S)$ .
We choose a base point $0\in S$ and denote by $K$ the identity component of the isotropy
group $\{g\in Iso(S)|g(0)=0\}$ . The group $K$ acts effectively on $T_{o}S$ . This action is called
isotropy representation. A symmetric space is called irreducible, if its isotropy representation
is irreducible. Further we say that a symmetric space is of compact type, if its universal
Riemannian cover is still compact.

An importa $1t$ tool for studying symmetric spaces are flats. $A$ flat $F$ of a symmetric space $S$

is a maximal connected complete totally geodesic submanifold $F\subset S$ of vanishing sectional
curvature. Any two flats of a symmetric space $S$ can be identified by an isometry of $S.$
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Thus the dimension of any two flats of $S$ coincide. This dimension is called the rank of $S,$

rank$(S)=\dim(F)$ .
If a symmetric space $S$ is compact, then any flat of $S$ is a flat torus. The unit lattice of a

compact symmetric space $S$ is the unit lattice of one of its flats. Let $F$ be a flat of $S$ and let
$o\in F$, then the unit lattice of $S$ with respect to $F$ and $0$ is

$\Gamma=\Gamma(T_{o}F) :=\{X\in T_{o}F|Exp_{0}(X)=0\},$

where $Exp_{0}$ : $T_{o}Sarrow S$ denotes the Riemannian exponential map of $S$ with respect to
the point $0$ . We say that $\Gamma$ is rectangular (resp. cubic), if there exists an orthogonal (resp.
orthonormal) basis $\{e_{1}, . . . , e_{r}\}$ of $T_{o}F$ such that

$\Gamma=spann_{\mathbb{Z}}(e_{1}, \ldots, e_{r})=\{\sum_{j=1}^{r}\lambda_{j}e_{j}$ $\lambda_{1}$ , . . . , $\lambda_{r}\in \mathbb{Z}\}.$

1.2. Symmetric $R$-spaces. Symmetric $R$ -spaces were introduced by Tadashi Nagano [31]
and Masaru Takeuchi [39] in 1965 as compact symmetric spaces which are at the same
time $R$-spaces. This means that they also admit a transitive action of a centre-free non-
compact semisimple Lie group and the corresponding stabilizer of a point is a certain maximal
parabolic subgroup. For a geometric interpretation of this non-compact transformation group
of a symmetric $R$-space we refer to [42] and [15]. We call a symmetric $R$-space indecomposable,
if it is not $a$ (global) Riemannian product of two symmetric $R$-spaces. Symmetric $R$-spaces
appear in various geometric contexts.

Shoshichi Kobayashi and Tadashi Nagano classified symmetric $R$-spaces in [18]. It turns
out that every indecomposable symmetric $R$-space $P$ can be obtained as follows: Let $S$ be
a simply connected irreducible compact symmetric space and let $0\in S$ . We take an element
$\xi\in T_{o}S$ such that the linear operator $T_{o}Sarrow T_{o}S,$ $X\mapsto R(\xi, X)\xi$ has precisely spectrum
$\{0, -1\}$ . Those elements $\xi$ are called extrinsically symmetric. The extrinsically symmetric
elements in $T_{o}S$ can be read off from the Satake diagram (see [18, Section 6]) or from the
Dynkin diagram (see e.g. [28, Lemma 2.1]) of $S$ . Every connected component of the set of
all extrinsically symmetric elements in $T_{o}S$ is an orbit of the isotropy representation and an
indecomposable symmetric $R$-space. Vice-versa, every indecomposable symmetric $R$-space is
obtained in this way (see [18, 19] and also [17,40

Using an algebraic description of symmetric $R$-spaces in terms of so called compact Jordan
triple systems, Ottmar Loos characterized symmetric $R$-spaces among all compact symmetric
spaces as those whose metric on irreducible factors can be rescaled in such a way that the
unit lattice gets cubic (see [26, 27

An important subclass of symmetric $R$-spaces are the hermitian symmetric spaces of com-
pact type. A hermitian symmetric space is a symmetric space that also carries a K\"ahler

structure such that all geodesic symmetries are holomorphic. Moreover, Masaru Takeuchi
showed that every real form (that is a totally real totally geodesic submanifold of half di-
mension) of a hermitian symmetric space of compact type is a symmetric $R$-space and that
every symmetric $R$-space can be realized in such a way (see [41] and also [23], [45, proof of
Theorem 4.3] and [36]).

Raoul Bott used symmetric $R$-spaces to prove his famous periodicity theorem for the stable
homotopy of unitary, orthogonal and symplectic groups (see [4] and [30, Sections 23, 24
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There is also a periodicity result for some typical embeddings of symmetric $R$-spaces into
each other (see [29]).

1.3. Extrinsically symmetric spaces. A connected submanifold $P\subset E$ of a euclidean
space $E$ is called an extrinsically symmetric space if for all $p\in P$ the submanifold $P$ is
invariant under the reflections $\rho_{p}\in Iso(E)$ through the affine normal space of $p+N_{p}P$ of $P$

at $p.$

While Riemannian symmetric spaces are locally characterized by the parallelism of their

Riemannian curvature tensors, extrinsic symmetric spaces are characterized by the paral-
lelism of their second fundamental form $\alpha$ (w.r.t. the induced connection on the normal
bundle). Unlike in the case of Riemannian symmetric spaces, the parallelism of the second
fundamental form $\alpha$ of $P\subset E$ characterizes extrinsically symmetric spaces globally, if one
assumes that $P$ is connected and complete, as shown by Wolf Str\"ubing (see [38] and [14]).
Moreover, for compact submanifolds of euclidean space this characterization is stable in the
sense that compact submanifolds of euclidean space with almost parallel second fundamental
form are just small deformations of extrinsically symmetric ones (see [34]).

Dirk Fcrus classified cxtrinsically $sy_{I}$rlmetric spaces by $showi_{Il}g$ that every extrinsically
symmetric space is a product of a compact extrinsically symmetric space and an affine sub-
space. Further, every compact extrinsically symmetric space is a symmetric $R$-space, realized
as a connected component of the set of extrinsically symmetric elements in the tangent space
of some symmetric space of compact type (see [12, 14] and also [7]). Vice-versa, every sym-
metric $R$-space realized in this manner is extrinsically symmetric (see [11, 14

By the very definition of an extrinsically symmetric space $P\subset E$ , any element $f\in Sym(P)$

is the restriction to $P$ of an isometry $\hat{f}$ of $E$ . Recently Jost-Hinrich Eschenburg and the
authors have shown that this holds for any isometry of $P$ :

Theorem 1 ([8,10 Every isometry $f$ of a compact extrinsically symmetric space $P\subset E$

is the restriction of a linearl isometry $\hat{f}$ of $E.$

Unfortunately, in the case of non-hermitian extrinsically symmetric spaces our proof uses
the classification of compact extrinsically symmetric spaces and a case-by-case verification.

A beautiful standard reference for extrinsically symmetric spaces and related topics is [2].

1.4. Intrinsically and extrinsically reflective submanifolds. A reflective submanifold
$M$ in a Riemannian manifold $N$ is a connected component of the fixed point set of $aI1$ invo-
lutive isometry $\sigma$ of $N$. This isometry $\sigma$ will be called reflection of $N$ through $M$. Reflective
submanifolds are automatically totally geodesic. Reflective submanifolds in symmetric spaces
havc bcen studied and clas ified by Dominic S. P. Leung in the series of papers [20, 21, 22, 23].
They include important totally geodesic submanifolds such as polars, meridians (see below)
and centrioles, which were introduced and extensively studied by Bang-Yen Chen and Tadashi
Nagano and their students (see e.g. [5, 6] or [32]).

A totally geodesic submanifold $M\subset N$ of a submanifold $N\subset E$ of a euclidean space $E$

is called extrinsically reflective, if $M$ is a connected component of the intersection of $N$ with
the fixed set of an involutive isometry of $E$ that leaves $N$ invariant.

1We may always assume that the barycentre of $P$ is the origin of $E.$
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Proposition 2 ([9, Theorem 2 An extrinsically reflective submanifold $M\subset P$ of an
extrinsically symmetric space $P\subset E$ is extrinsically symmetric in $E.$

Observation 3. In view of Theorem 1, every reflective submanifold of a compact extrinsically
symmetric space is actually extrinsically reflective, and thus extrinsically symmetric. In other
words, any reflective submanifold of a symmetric $R$ -space is a symmetric $R$ -space. This
generalizes a claim in [43, Lemma 3.1].

1.5. Meridians. Let $S$ be a compact symmetric space. We choose an origin $0\in S$ and a
fixed point $p\in S$ of the geodesic symmetry $s_{o}$ with $p\neq 0$ Then the geodesic symmetries $s_{o}$

and $s_{p}$ commute. The meridian of $S$ corresponding to $0$ and $p$ , often denoted by $S_{-}$ , is the
connected component of the fixed point set of the involutive isometry $s_{o}os_{p}$ that contains $p.$

The terminology (meridian’ was introduced by Bang-Yen Chen and Tadashi Nagano in [5].

Remark. If $p$ is an isolated fixed point of $s_{o}$ , then $s_{p}=s_{o}$ and $s_{o}os_{p}=$ id and the
corresponding meridian $S_{-}$ coincides with $S$ . Unless $p$ is an isolated fixed point of $s_{o}$ we have
$\dim(S_{-})<\dim(S)$ .

Proposition 4 ([5, Lemma 2.3]). The rank of a compact symmetric space $S$ coincides with
the rank of any of its meridians $S_{-}$ , that is rank(S-) $=$ rank(S). In particular, any flat of
$S_{-}$ is also a flat of $S.$

If $S$ is a compact extrinsically symmetric space in $E$ , then the involutive isometry $s_{o}os_{p}$

is the restriction to $S$ of the linear isometry $\rho_{0}\circ\rho_{p}$ . If we assume that $S$ is full in $E$ , then
$\rho_{0}\circ\rho_{p}$ is has order two. With Proposition 2 we conclude:

Observation 5. Any meridian $P_{-}$ of a compact extrinsically symmetric space $P\subset E$ is

itself extrinsically symmetric in $E^{2}$

2. THE UNIT LATTICE OF COMPACT EXTRINSICALLY SYMMETRIC SPACES

In this section we report on our recent work [9] joint with Jost-Hinrich Eschenburg.
Using algebraic techniques Ottmar Loos [26, 27] proved that symmetric $R$-spaces are pre-

cisely the compact symmetric spaces whose unit lattice is cubic, after a suitable rescaling
of the metric on irreducible factors. In [9] Jost-Hinrich Eschenburg and the authors gave a
purely differential geometric proof of the following statement originally due to Ottmar Loos:

Theorem 6 ([26, 27 The unit lattice of a compact extrinsically symmetric space $P\subset E$ is
rectangular.

Although this fact is well known, we think that some methods used in [9] might still be
interesting. A first statement for which we provide a detailed and elementary proof concerns
extrinsically symmetric flat tori:

Theorem 7 ([14, Theorem 3], [9, Theorem 3 A full $d$ -dimensional extrinsically symmetric

flat torus $F\subset E$ is an extrinsic product torus. This means that $F$ is a Riemannian product

$2$

Although this isjust a special case of Observation 3, our proof does not use classification and case-by-case
verification.
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of planar round circles $S^{1}(r_{i})\subset E_{i},$ $i=1$ , . . . , $d$ , of possibly different radii $r_{i}$ in affine 2-
dimensional subspaces of $E_{i}\subset E$ , which are perpendicular to each otheP. In particular, the
unit lattice of $F$ is rectangular.

Proof. This proof is a detailed elaboration of the arguments given [14] and [9].
Let $f$ : $\mathbb{R}^{d}arrow E$ be the isometric immersion given by the universal covering of $F$. By $\partial_{i}$ we

denote the partial derivative operator $\frac{\partial}{\partial x_{l}}$ . Similarly $\partial_{ij}$ and $\partial_{ijk}$ denote the operators $\frac{\partial^{2}f}{\partial x_{i}\partial_{x_{j}}}$

and $\frac{\partial^{3}f}{\partial x_{t}\partial x_{j}\partial x_{k}}$ respectively. Notice that $\{\partial_{\’{i}}f|i=1, . . . , d\}$ is an orthonormal tangent frame

on $F$. Since constant vector fields on $\mathbb{R}^{d}$ are parallel and $f$ is an isometric immersion, the
tangent vectors fields $\partial_{i}f$ on $F$ are parallel, too. Thus $\partial_{ij}f=\alpha(\partial_{i}f, \partial_{j}f)=:\alpha_{ij}$ is a normal
vector field on $F$ for any $i,j\in\{1, . . . , d\}.$

As $F$ is extrinsically symmetric, its second fundamental form $\alpha$ is parallel. By fullness,
the normal space of $F$ is generated by the $\alpha_{ij},$ $i,j\in\{1, . . . , d\}$ . Moreover $\partial_{ijk}f=-A_{\alpha_{lj}}\partial_{k}f$

are tangent vector fields on $F.$

We observe that the linear endomorphisms $A_{\alpha_{ij}}$ are parallel and commute with each other.
Thus there is an orthogonal decomposition $TF=E_{1}\oplus\cdots\oplus E_{r},$ $r\leq d$ , of $TF$ into parallel
common eigendistributions of the $A_{\alpha_{ij}}$ . We may assume that the parallel tangent vector fields
$\partial_{i}f$ are common eigenvectors of the $A_{\alpha_{ij}}$ . Thus we get $\partial_{ijk}f=-A_{\alpha_{tj}}\partial_{k}f=\lambda_{ijk}\partial_{k}f$ . The
eigenvalues $\lambda_{ijk}$ are constant, because the endomorphisms $A_{\alpha_{1j}}$ are parallel. Since the partial
derivatives commute, we see that the eigenvalues $\lambda_{ijk}$ must vanish, if at least two indices $i,$ $j,$ $k$

are distinct. The only possible non-zero eigenvalues are therefore $\lambda_{i}$ $:=\lambda_{iii}$ . We are left with
the differential equations $\partial_{iii}f=\lambda_{i}\partial_{i}f$ for $i=1$ , . . . , $d$ . From $\langle\alpha_{ij},$ $\alpha_{ij}\rangle=\langle A_{\alpha}:j\partial_{i}f,$ $\partial_{j}f\rangle=0$

if $i\neq j$ , we conclude that $\alpha_{ij}=\partial_{ij}f=0$ for $i\neq j$ . In a similar way we observe that $\alpha_{ii}$ is
everywhere perpendicular to $\alpha_{jj}$ for $i\neq j.$

Summing up we get the following system of differential equations

(1) $\partial_{iii}f-\lambda_{i}\partial_{i}f$ $=$ $0$ for $i=1$ , . . . , $d,$

(2) $\partial_{ij}f$ $=$ $0$ for $i\neq j.$

Solving Equation (1) yields

$\partial_{i}f=\{$

$c+c_{l}\cdot x_{i}c_{i1}\exp(\sqrt{\lambda_{i}’}x_{i})+c_{\iota 2}\exp(-\sqrt{\lambda_{i}}x_{i})$

, if $\lambda_{i}>0$

if $\lambda_{i}=0$

$c_{i1}\sin(\sqrt{-\lambda_{i}}x_{i})+c_{i2}\cos(\sqrt{-\lambda_{i}}x_{i})$ , if $\lambda_{i}<0$

where the functions $c_{i1}$ : $\mathbb{R}^{d}arrow E$ and $c_{i2}$ : $\mathbb{R}^{d}arrow E$ do not depend on the i-th variable $x_{i}.$

But, by Equation (2), the functions $\partial_{i}f$ : $\mathbb{R}^{d}arrow E$ only depend on $x_{i}$ . Thus $c_{\iota 1}$ and $c_{i2}$ are
constant functions.

Since $\partial_{i}f$ has everywhere length one, only the following two cases are possible:

$\partial_{i}f=\{\begin{array}{ll}c_{\iota 1}, if \lambda_{i}=0c_{r1}\sin(\sqrt{-\lambda_{i}}x_{i})+c_{\iota 2}\cos(\sqrt{-\lambda_{i}}x_{i}) , if \lambda_{i}<0\end{array}$

$3$

Although the radii of the planar round circles can be distinct, such a torus is sometimes still called a
Clifford torus.
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By integrating $\partial_{i}f$ in the direction of $x_{i}$ we see that only $\lambda_{i}<0$ for all $i\in\{1, . . . , d\}$ can
occur, because $f(\mathbb{R}^{d})=F$ is compact; that is

$\partial_{i}f=c_{i1}\sin(\sqrt{-\lambda_{i}}x_{i})+c_{i2}\cos(\sqrt{-\lambda_{i}}x_{i})$ .

In particular no $\alpha_{ii}$ has zeros. Thus the set $\{\partial_{i}f|i=1, . . . , d\}\cup\{\partial_{ii}f|i=1, . . . , d\}$ is at
each point an orthogonal basis of $E$ . In particular $\dim(E)=2d$ . As $\partial_{i}f$ has constant length
one, $c_{i1}$ and $c_{i2}$ are unit vectors.

Recall that $\partial_{i}f$ is everywhere perpendicular to $\partial_{j}f$ for $i\neq j$ . By taking appropriate values
for $x_{i}$ and $x_{j}$ , we observe that $c_{\tau k}$ is perpendicular to $c_{jl}$ for $i\neq j$ and $k,$ $l\in\{1$ , 2 $\}$ . Moreover,
since $\partial_{i}f$ and

$\partial_{ii}f=c_{i1}\sqrt{-\lambda_{i}}\cos(\sqrt{-\lambda_{i}}x_{i})-c_{i2}\sqrt{-\lambda_{i}}\sin(\sqrt{-\lambda_{i}}x_{i})$

are everywhere perpendicular, we see, if we take $x_{i}=0$ and $x_{i}= \frac{\pi}{2\sqrt{-\lambda_{l}}}$ , that the unit vectors

$c_{i1}$ and $c_{i2}$ are perpendicular. Summing up, $\{c_{i1}|i=1, . . . , d\}\cup\{c_{i2}|i=1, . . . , d\}$ is an
orthonormal basis of $E.$

By integration we get

$f(x_{1}, \ldots, x_{d})=v+\sum_{i=1}^{d}\frac{1}{\sqrt{-\lambda_{i}}}(-\cos(\sqrt{-\lambda_{i}}x_{i})c_{i1}+\sin(\sqrt{-\lambda_{i}}x_{i})c_{i2})$

for some $v\in E$ . This shows that $F=f(\mathbb{R}^{d})$ is an extrinsic product torus. $\square$

Sketch of proof of Theorem 6. We are now able to sketch our proof of Theorem 6. Using
Proposition 4, we lower the dimension of the submanifold while keeping the rank by the
following iteration: Starting with $P\subset E$ , we take a meridian $P_{-}$ of $P$. By Observation 5
$P_{-}$ is again extrinsically symmetric in $E$ . Next we consider a meridian of $P$-and then take
rneridia.ns again and again, until we reach a fixed point of this iteration scheme. $T1_{1}is$ fixed

point must be a compact extrinsically symmetric space all of whose geodesic symmetries
only have isolated fixed points. In other words, we could have assumed right away that the
geodesic symmetries of our compact extrinsically symmetric space $P\subset E$ only have isolated
fixed points,

Considering a compact covering where all euclidean factors split off, we could show:

Proposition 8 ([9, Lemma 7 A compact symmetric space $P$ all of whose geodesic symme-
tries only have isolated fixed points is a Riemannian product of a simply connected symmetric
space $P’$ of compact type and possibly a flat torus $T$, that is $P=P’\cross T.$

If the root system of a simply connected irreducible symmetric space $P’$ of compact type
has not type $\alpha_{1}$ , then there is a closed geodesic $\gamma$ in $P’$ admitting a Jacobi-field $J$ that
vanishes at the starting point $0=\gamma(O)$ of $\gamma$ but not at the antipodal point $p$ of $0$ in the
circle $\gamma.$ $Looki_{Il}g$ at the variation of closed geodesics defined by $J$, we see that the connected
component of Fix$(s_{o})\subset P’$ that contains $p$ has positive dimension. This yields:

Theorem 9 ([9, Theorem 9 The only simply connected irreducible symmetric spaces of
compact type whose geodesic symmetries only have isolated fixed points are round spheres.4

$4_{This}$ was already known before as a consequence of the classification of polars in compact symmetric
spaces (these are connected components of the fixed point set of a geodesic symmetry) due to Bang-Yen
Chen and Tadashi Nagano (see [5, 6, 32 But our proof is purely conceptional.
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At this point we may assume that our compact extrinsically symmetric space $P\subset E$ is
intrinsically a Riemannian product of $k$ round spheres $\mathbb{S}_{1}$ , . . . , $\mathbb{S}_{k}$ and possibly a flat torus $T,$

that is
$P=\mathbb{S}_{1}\cross\cdots\cross \mathbb{S}_{k}\cross T.$

Obviously, a maximal torus of $P$ has the form

$F=C_{1}\cross\cdots\cross C_{k}\cross T,$

where $C_{j}$ is a great circle in $\mathbb{S}_{j}$ for $j=1$ , . . . , $k$ , and it is a reflective submanifold of $P^{5}$

Theorem 6 follows directly from Theorem 7 if $k=0$ . If $P$ contains even-dimensional spheres,
we split them off as follows: Assume w.l. $g$ . that $\mathbb{S}_{1}$ has even dimension and set $P’$ $:=\mathbb{S}_{2}\cross$

. . . $\cross \mathbb{S}_{k}\cross T$ . We choose a point $x_{1}\in \mathbb{S}_{1}$ . The geodesic symmetry $s_{x_{1}}$ of $\mathbb{S}_{1}$ at $x_{1}$ lies in the
transvection group of $\mathbb{S}_{1}$ . Therefore the involution $s_{x_{1}}\cross id_{P’}$ lies in the identity component of
$Iso(P)$ , which is Trans(P) . Thus $s_{x_{1}}\cross id_{P’}$ extends to an extrinsic reflection, and the connected
component $\{x_{1}\}\cross P’\cong P’$ of Fix$(s_{x_{1}}\cross id_{P’})$ is extrinsically symmetric by Proposition 2.
We are left to show that $P’$ has a rectangular unit lattice. Applying the above argument
recursively, we may assume that all sphere factors of $P’$ have odd dimensions.

In other words, we may assume that our extrinsically symmetric space $P\subset E$ is intrinsi-
cally a Riemannian product

$P=\mathbb{S}_{1}\cross\cdots\cross \mathbb{S}_{k}\cross T$

of odd dimensional round spheres $\mathbb{S}_{1}$ , . . . , $\mathbb{S}_{k}$ and perhaps a flat torus $T$. For each $j\in$

$\{1, . . . , k\}$ we now choose a great circle $C_{j}$ in $\mathbb{S}_{j}$ . The reflection $r_{j}$ of $\mathbb{S}_{j}$ through $C_{j}$ is a
transvection of $S_{j}$ , since $\mathbb{S}_{j}$ has odd dimension. Thus the involutive isometry $r_{1}\cross\cdots\cross r_{k}\cross id_{T}$

is a transvection of $P$ and therefore extends to an extrinsic involutive isometry. With Propo-
sition 2 we conclude that the maximal torus $F=C_{1}\cross\cdots\cross C_{k}\cross T$ of $P$ is extrinsically
symmetric and has rectangular unit lattice by Theorem 7.

Question. At RIMS Workshop we were asked by Professor Yoshihiro Ohnita if our method
can be adapted to show that the unit lattice of an indecomposable symmetric $R$-space is
actually cubic. Unfortunately, we cannot answer this question.6

3. CONVEXITY OF REFLECTIVE SUBMANIFOLDS OF SYMMETRIC $R$-SPACES

In this section we give an overview of our work published in [35].
A geodesically complete submanifold $M\subset N$ in a Riemannian manifold $N$ is called

(geodesically) convex, if the Riemannian distance between any two points $m_{1},$ $m_{2}\in M$ mea-
sured within $M$ coincides with the Riemannian distance between $m_{1}$ and $m_{2}$ measured within
$N$ , or, equivalently, if any shortest geodesic arc in $M$ is still shortest in $N$ . One might think
of convexity as a ‘global version’ of being totally geodesic.

Reflective submanifolds certainly form a very important class of totally geodesic subman-
ifolds of compact symmetric spaces. One may therefore wonder whether reflective submani-
folds in compact symmetric spaces are geodesically convex. Already in the fairly easy example

$5If$ one uses Observation 3 (for which we unfortunately only know a proof using classification and which
is therefore not in the spirit of [9]), then Theorem 6 follows directly from Theorem 7.

$6At$ this point we recall that Dirk Ferus has shown in [13] that the shape operator in the direction of the
mean curvature vector field of a compact indecomposable extrinsically symmetric space is a multiple of the
identity.
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of a flat 2-torus $\mathbb{R}^{2}/\Gamma$ , whose unit lattice $\Gamma$ is rhombic and not rectangular, the long diagonal
is an example of a reflective but non-convex submanifold. This is bad news! Indeed, adapting
results of Takashi Sakai [37] on the cut locus of compact symmetric spaces, Hiroyuki Tasaki
showed that convexity is already detected on the level of flats.

Proposition 10 ([46, Lemma 2.2]). Let $M\subset S$ be a reflective submanifold in a compact
symmetric space S. Let $F_{M}$ be a flat of $M$ and $F_{S}$ a flat of $S$ containing $F_{M}$ , that is $F_{M}\subset F_{S}.$

Then $M$ is convex in $S$ if and only if $F_{M}$ is convex in $F_{S}.$

It turns out that the situation described above appears in the symmetric space $S=SU_{3}/\mathbb{Z}_{3},$

whose unit lattice is rhombic. The flat $F_{M}$ of the reflective submanifold $M$ which isomorphic
to $SO_{3}$ in $S=SU_{3}/\mathbb{Z}_{3}$ is the long diagonal in $F_{S}$ (see [35]). This example works in all
dimensions: The reflective submanifold given by the complex conjugation in $S=SU_{n}/\mathbb{Z}_{n}$ is
never convex for $n\geq 3$ . On the other hand, Felix Platzer and the first author have shown

using case-by-case arguments:

Theorem 11 ([33]). Every reflective submanifold in a special unitary group $SU_{n}$ is convex.

As a consequence we get:

Theorem 12. Let $S$ be a simply connected irreducible symmetric space of compact type and

of rank $r\geq 2$ , whose root system is of type $\alpha_{r}.$

$7$

Let $M\subset S$ be a reflective submanifold that

has the following property:

$(*)$ There exists $\xi\in T_{O}F_{M}\subset T_{O}F_{S}$ which is regular $w.r.t$ . the root system of $S^{8}$

Then $M$ is convex in $S.$

Proof. Set $t:=T_{o}F_{S}$ and $\alpha$ $:=T_{O}F_{M}\subset\{$ for short. Choose a maximal abelian subspace $\hat{t}$

of the Lie algebra $\mathfrak{s}u_{r+1}\cong T_{I}SU_{r+1}$ and denote by $F_{\hat{S}}$ the flat of the special unitary group
$\hat{S}$

$:=SU_{r+1}$ satisfying $\hat{t}=T_{I}F_{\hat{S}}$ . Since the symmetric spaces $S$ and $\hat{S}$ both have rank $r$

and root systems of type $\alpha_{r}$ , there exists (for a suitably scaled bi-invariant metric on $\hat{S}$ ) an
orthogonal linear map $\iota_{*}:tarrow\hat{t}$ that identifies the root system of $S$ with the root system of
$\hat{S}$ . Since the unit lattice of a simply connected irreducible symmetric space is generated by
its system of inverse roots (see e.g. [25, pp. 25, 69, 77 which in the case $\mathfrak{a}_{r}$ coincides with
the set of root vectors, $\iota_{*}$ induces an isometry $\iota$ : $F_{S}arrow F_{\hat{S}}$ with $\iota(0)=e.$

The reflection $\sigma$ of $S$ through $M$ leaves $F_{S}$ invariant (see [44, Lemma 3.1], [35, Observation
4 and its differential $\sigma_{*}:tarrow t$ restricted to $t=T_{o}F_{S}$ is an involutive orthogonal map that
leaves the root system of $S$ invariant. Consider

$\hat{\sigma}_{*}:=\iota_{*}\circ\sigma_{*}\circ\iota_{*}^{-1}:\hat{t}arrow\hat{t}.$

This is an involutive orthogonal map that leaves the root system of $\hat{S}$ invariant and $sati_{i\supset}\backslash$fies
$\hat{\alpha}$ $:=Fix(\hat{\sigma}_{*})=\iota_{*}(\alpha)$ . Moreover, by condition $(*)$ , $\hat{\sigma}_{*}$ fixes the regular element $\hat{\xi}$

$:=\iota_{*}(\xi)\in\hat{\alpha}$

and therefore the Weyl chamber $\hat{t}^{+}$ in $\hat{t}$ that contains $\hat{\xi}$ . Thus $\hat{\sigma}_{*}$ leaves the system of positive

7 This means that $S$ is $SU_{r+1}$ or $SU_{r+1}/SO_{r+1}$ or $SU_{2r+2}/Sp_{r+1}$ or $E_{6}/F_{4}$ (see e.g. [16, Chapter X
$8_{Here}$ we use the notation introduced in Proposition 10 with $0\in F_{M}$ . A vector $\xi\in T_{o}F_{S}$ is called regular

w.r. $t$ . the root system of $S$, if $\alpha(\xi)\neq 0$ for all roots $\alpha$ of $S$. For details on root systems of symmetric spaces
we refer to the standard literature such as [25] or [16]. An equivalent formulation of condition $(*)$ is that $F_{S}$

is the unique extension of $F_{M}$ to a flat of $S.$
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simple roots of $\mathfrak{s}u_{r+1}$ defining $\hat{t}^{+}$ invariant. Since $\hat{S}=SU_{r+1}$ is a simply connected simple
compact Lie group, $\hat{\sigma}_{*}$ induces an involutive Lie group automorphism $\hat{\sigma}$ of $\hat{S}=SU_{r+1}$ that
leaves $F_{\hat{S}}$ invariant (see [25, Proposition 3.4, p. 128

Let $\hat{M}\subset\hat{S}$ be the connected component of Fix(a) containing the identity $I$ . We claim

that $F_{\hat{M}}$ $:=\iota(F_{M})\subset F_{\hat{S}}$ is a flat of $\hat{M}$ . Indeed, let $\hat{\mathfrak{a}}’$ be a maximal abelian subspace of
$T_{I}\hat{M}\subset \mathfrak{s}u_{r+1}$ that contains $\hat{\alpha}$ . By condition $(*)$ , $\hat{\xi}:=\iota_{*}(\xi)\in\hat{\mathfrak{a}}$ is a regular element w.r. $t.$

the root system of $\hat{S}$ . Thus $\hat{t}$ is the unique maximal abelian subset of $\mathfrak{s}u_{r+1}$ that contains
$\hat{\xi}$ and therefore also the unique maximal abelian subset of $\mathfrak{s}u_{r+1}$ that contains $\alpha$ But the

intersection of $t$ with $T_{I}\hat{M}$ is $\hat{\mathfrak{a}}$ . Hence $\hat{\mathfrak{a}}’=\hat{\mathfrak{a}}$ and $\iota(F_{M})$ is a flat of $\hat{M}.$

The reflective submanifold $\hat{M}$ is convex in $SU_{r+1}$ by Theorem 11, and thus $F_{\hat{M}}$ is convex
in $F_{\hat{S}}$ . Since $\iota$ is an isometry, $F_{M}$ is also convex in $F_{S}$ . Proposition 10 eventually implies the
claim. $\square$

Now the following question arises:

Question. Can one drop the somewhat technical condition $(*)$ in Theorem 12?

More generally on may ask:

Question. How can one describe the class formed by the compact symmetric spaces all of
whose reflective submanifolds are convex?

The authors have shown that the symmetric $R$-spaces form a subclass of this class:

Theorem 13 ([35]). Every reflective submanifold in a symmetric $R$ -space is convex.

Outline of proof. Let $\sigma$ be an involutive isometry of a symmetric $R$-space $P$ and let $M$ be a
connected $c(Inpon(^{\lrcorner},nt$ of its fixed point set. In view of Proposition 10 we take a flat $F_{M}$ of
$M$ and a flat $F_{S}$ of $S$ with $F_{M}\subset F_{S}$ . Recall that $\sigma$ leaves $F_{S}$ invariant (see [44, Lemma 3.1],
[35, Observation 4 We have to show that $F_{M}$ is convex in $F_{S}$ . For this we choose an origin
$o\in F_{M}$ . Then we have to prove that

$d_{F_{M}}(0, x)=d_{F_{S}}(0, x)$

holds for all $x\in F_{M}$ , where $d_{F_{M}}$ and $d_{F_{S}}$ denote the Riemannian distances in $F_{M}$ and $F_{S}$

respectively.
As a consequence of Theorem 6 one can show that there exists an orthogonal basis $B=$

$\{e_{1}, . . . , e_{r}\}$ of $T_{o}F_{S}$ such that
$\bullet$ the unit lattice $\Gamma$ of $S$ is generated by $B$ , that is

$\Gamma=\{\sum_{j=1}^{r}\lambda_{j}e_{j}$ $\lambda_{j}\in \mathbb{Z},$ $j=1$ , . . . , $r\}$ ;

$\bullet$ there exists $p\in\{1, . . . , r\}$ and $q\in\{2p, . . . , r\}$ such that

$T_{O}F_{M}= \{\sum_{j=1}^{r}\lambda_{j}e_{j}$ $\lambda_{2j-1}=\lambda_{2j}$ for $1\leq j\leq p$ and $\lambda_{q+1}=\cdots=\lambda_{r}=0\}$
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(see [44, Proposition 3.3] for a differential geometric proof and [35, Proposition 5] for an
elementary linear algebraic one).

Given $x\in F_{M}$ we take an element $X\in T_{O}F_{M}$ such that $x=Exp_{0}(X)$ , where $Exp_{0}$ denotes
the Riemannian exponential map of $P$ at $0$ . Then $d_{F_{S}}(0, x)= \min_{Y\in\Gamma}\Vert X+Y$ One easily

constructs an element $Z\in T_{O}F_{M}\cap\Gamma$ such that $\Vert X+Z\Vert=\min_{Y\in\Gamma}\Vert X+Y$ We conclude that

$d_{F_{M}}(0, x)=d_{Fs}(0, x)$ . $\square$
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