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TWO TYPICAL EXAMPLES ON INTEGRABLE
GEOMETRY FLOWS

ZHIWEI WU

1. INTRODUCTION

Let M be a manifold of dimension n, and a group G acts on M. An
evolution equation for curves in a manifold M is called a geometric curve
flow, if the equation can be written as

n
v = o7 + Z &iéi.
i=1

Here (e1,e2, - ,€e,) € G is a moving frame along - under the group action
G on M. And all §;’s are smooth functions of the invariants (or curvatures)
under the action of G on . A specific case is the Frenet frame, it is corre-
sponding to the transitive action of SO(3) on R3. Under the SO(3) action,
a generic curve can be determined up to a constant element in SO(3) by
two functions k and 7, which are called the curvature and torsion of v re-
spectively. Let (e, e, e3) denote the Frenet frame of 7, then a geometric
curve flow in this case can be written as

3
ve=Eolk, )y + Y &k, e
i=1
Different group actions usually leads to different type of moving frames.
Let v : R — R?\{0} be a parameterized curve such that A = det(y,7z)
never vanishes, set ez = 12, then g = (7, e2) € SL(2,R) is a moving frame
for v under the affine action. Moreover, the structure equation of g is

It can be proved that g, form a set of differential invariants for v € R?\{0}
under SL(2,R) action. Here there exist two invariants because we do not
specify the parameter. Consider a third ordered differential equation for +:

1 1
% =—4(gr - qr2)v - Z(qu2 — T2z) Yz

From the previous setting, this is a geometric curve flow. Its solvability
condition is equivalent to a couple PDE system in affine curvatures:

@t = 5(zez — 647qs),



This is the third flow in a soliton hierarchy-the AKNS hierarchy [1].

Fixing the parameter such that det(y,~;) = 1, then there is a natural
moving frame (v, ,) with only one invariant ¢ such that ;. = ¢v. Pinkall
consider the following geometric curve flow [15]:

1 1
. 1.1
T = 707~ 597 (1.1)

It is solvable if and only if q is a solution of the KdV equation:

1
gt = Z(Qza:w - GQQJ:)’ (12)

This article is based on the talk I gave in RIMS workshop on “Develop-
ment of group actions and submanifold theory” (06/25/2014- 06/27/2014).
In this article, we will focus on two examples connecting integrable systems
and geometric curve flows. One of the equation is the nonlinear Schrédinger
equation (NLS), and the other one is the KdV equation. They are two
classical equations in the soliton theory literature.

2. NONLINEAR SCHRODINGER EQUATION AND VORTEX FILAMENT
EQUATION

Let vy(x,t) : R? — R3 be a family of curves, and {e1(-,t), e2(-, 1), e3(, 1)}
the Frenet frame of ~(-,t). Let k(-,t) and 7(-,t) be the corresponding cur-
vature and torsion. We say an evolution equation for v(z,t) is a geometric
flow if it can be written as

3
Tt = FO(kaT)’Y_}'ZFi(kaT)eia (21)
=1
where {F; | 0 < i < 3} are differential polynomials in k¥ and 7 with respect
to arc-length parameter.

Remark 2.1. Given any curve v : R — R3 such that ||y;|| > 0 for Vz € R.
The Frenet frame and k,7 are rational functions of «, 0y, Ozzy. {k,7} is
also called a differential invariants for the curve. Therefore, (2.1) is a partial
differential equation for curves in R3.

Da Rios modeled the movement of a thin tube in viscous fluid as an
evolution equation for curve in R3:

M= Yz X Yzz- (2.2)

This equation is called Vortex Filament equation (VFE).

One of the important properties of VFE is that it is arc-length preserving.
That is, if v(x,t) is a solution of VFE and «(-,0) is parameterized by arc-
length, so is (-, t) for all £. Therefore, (2.2) can be rewritten in terms of
the Frenet frame {e;(-,t), ea(-,t),e3(-, 1) }:

Yt = Yz X Yoz = €1 X keg = keg.
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In other words, the curve evolves along the bi-normal direction eg with
curvature k as the speed. If we consider the initial value problem for (2.2)
such that v(z, 0) is a circle, then under the flow it will evolve as a smoke ring.
That is why sometime this equation is also called the smoke ring equation.
In 1972, Hasimoto pointed out the connection between the VFE and the

NLS:

Theorem 2.2. ([11]) If y(x,t) is a solution to VFE (2.2) with curvature
k(z,t) and torsion 7(z,t), then there exists a function c(t) of t such that

q(x,t) = k(z, t)ei(fom 7(s,t)ds+c(t))

is a solution of the nonlinear Schrodinger equation:
, 1
@t = 1(qez + '2'IQ|2Q)'

Remark 2.3. The formula q(z,t) = k(z,t)eilJo T(s)ds+e(®) is called the
Hasimoto transformation.

Hasimoto transformation provides a explicit formula from solutions of
VFE to NLS. But on the other hand, given a solution of the NLS, it is not
clear from the formula that how to construct a curve flow solution for the
VFE. Therefore, we need to explore more on the NLS.

From integrable system point of view, NLS is equivalent to the following
su(2)-value flat connection 1-from (Lax pair):

6, = (aX + u)dr + Q(u, M\)dt, (2.3)

where a = diag(i, —1), u = <—E)(j g), g € C*°(R,C), and

N’ —4lg*>  gr+ig
))\ = . 2 P = . 247 .
QN = (U L B
Note that if we carry out the computation, the NLS is of the form:
¢t = 1(Qzz + |Q|2Q)' (2'4)

We will see the reason using this equation in the following part of this section.
We call E(z,t,\) € SU(2) an extended frame of q if E(x,t, \) is a parallel
frame of 0). That is, E(x,t, \) satisfies the following equations: '

E(z,t,\)z = E(z,t,\)(aX + u),
E(z,t,\): = E(z,t,\)Q(u, A).

Associate su(2) with the following inner product: (X,Y) = —%TT(XY),
and consider the isomorphism from su(2) to R3: let

(i) o3 (8D
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Then under the inner product, (a,b,c) forms an ordered orthonormal basis
for su(2). Moreover, we note that

la,b] =2¢, [b,c]=2a, [c,a]=2b.
Hence we can make the following identification between R3 and su(2):
e1=(1,0,0)" = a, ,ex=(0,1,0)'—b, e3=(0,01) ¢,

and )
T XY — -2—[X, Y], z,y€eR® X,Y e su(2).

Pohlmeyer-Sym construction (cf. [14], [17]) presents a converse version of
the Hasimoto transformation:

Theorem 2.4. [Sym’s formula]
Let q be a solution of the NLS equation (2.4) and E(x,t,\) is an extended
frame for q. Then v(x,t) = %E‘l(:c,t, A) [a=0 s a solution of VFE of the

form
1
= 5“/::: X Yrx- (2.5)
Moreover, if F' is another frame for q, then ¥ = %—I/{:F‘l(af,t, A) |a=0 s also
a solution of (2.5). And there exists Ay € O(3), by € R3 constant, such that

v = Apvy + bo.
Proof. This proof is by direct computation. Let g(x,t) = E(x,t,0), then

OF _ 0 0E. OFE _
Ve = (EE Y@, t, \) |a=0): = (E(B_)\)E ) |a=0 *EE 'EE =0
= gug™!
Similarly,

Y = gag—-l’ Yoz = g[ua a]g_1~

Therefore, from the isometric between su(2) and R3, we have

1

1 - -
Yo X Yaz = 59la; [, allg™h = 2gug™" = 2y,

This proves the theorem. O

Note that if v = %%E‘l(:v,t,)\) |x=0, then v, = gag™!, where g =
E(z,t,0) is the value of extended frame at A = 0. It is a unit vector in
R3. Therefore, z is the arc-length parameter. From direct computation,

(Ye)z = 9197 " gz, alg™" = 2Re(q)b + 2Im(q)c

In other words, (gag™?, gbg™1, gcg‘l) is a parallel frame along « with prin-
ciple curvatures k; = 2Re(q) and ks = 2Im(q). Therefore, if v is a solution
of 1 = %—’yx X vzz, and ki, ko its principle curvatures, then ¢ := %(kl + koi)
is a solution of the NLS equation:

a = i(qze + |q%q). (2.6)



3. CENTRAL AFFINE PLANE CURVES AND THE KDV EQUATION

In this section, we discuss the geometric explanation of the KdV equation:

1
a = Z(q:cz:c — 64qz). (3.1)

In this part, we will give a brief scheme of constructing commutative geo-
metric curve flows from the KdV hierarchy. More details can be found in
[15], [20].

As we mentioned before, the moving frame depends on the group action
on the space. On the plane, instead of the rigid motion, we consider the
affine action of SL(2,R) on R?\{0} such that A -y = Ay for A € SL(2,R)
and y € R?\{0}. Then the moving frame g of a curve v € R?\{0} belongs
to SL(2,R), and the invariant set g~ g, € sl(2,R).

Given a smooth curve y(s) in R2\{0}, if det(y, 7s) never vanishes, we can
change the parameter s to z (% = det(v,7s)}) such that det(y,v;) = 1.
Such parameter is called the central affine arc-length parameter for . Take
the derivative of det(y,7;) = 1 with respect to z, then det(y,vzz) = 0.
Hence there exists a unique smooth function ¢ such that

Yex = q7-

This q is called the central affine curvature of v. From the uniqueness of
ordinary differential equations, {g} is a complete set of local invariants of
curves in R?\{0} under the affine action.

Let I = S! or R, denote

Ma(I) = {y:1 - R? | det(y,7) = 1}.
Then the tangent space of My(I) at + is of the form:

T,My(I) = {{ = —%7 + & | € € C°(I,R)}.
An equation on Ma(I) is called a central affine curve flow if
Vo = -%7 + &z

where € is a differential polynomial of g. In [15], Pinkall show that if v €
M3 (R) is a solution of the following equation:

1 1
M= 797~ 59 (3.2)
then its central affine curvature ¢ is a solution of the KdV equation:
1
¢ = 7 (4zzo — 644z). (3:3)

There is a natural S! action on Mz(S!) such that € - y(z) = y(z + 0).
Then this equation is the Hamiltonian for H(q) = % ¢ gdz with respect to
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the following symplectic form on Mo (St)/St:

wr(€,77) = f det(€, 7)dz = — ;4 eande.

Periodic solutions in x-part of (3.2) with finite-gap central affine curvature
is studied in [3]. Higher-order central affine curve flows, conservation law
and bi-Hamiltonian structure are given in [4, 5, 8, 9.

As in the previous section, it is natural to ask whether we can construct
central affine curve flows from the knowledge of KdV equation. In the
soliton theory literature, Lie algebra splitting theory is a powerful method
to generate soliton equations (cf. [1], [7], [12], [16], [19] and etc.)

I. There are several ways to derive the KdV equation. First we take a look
of the construction from certain constrain on the SL(2)-hierarchy (or the
2 x 2 ANKS hierarchy [1]).

Let L(SL(2)) be the group of smooth loops on SL(2) and £(sl(2)) its Lie
algebra. Consider the following splitting of £(sl(2)):

{ﬁ(sz@m = {Ciso AiM' | A; € s1(2)}, (5.0
L(s1(2))- = {300 AN | A; € s1(2)}.

Let a = diag(1, —1), given u = (2 q) set Q(u,2) = 2A+Qo+Q 1271+ -+,

O 2
then we can solve Q(u, z) uniquely from the following condition:
{5;+a§+u,Q(u,z)] =0, (3.5)
= z°.
The j-th flow in the SL(2)-hierarchy is a coupled system for q and 7:
ut = [0y + az + u, (Q(u, 2)27 1) 4] = [0z + u, Q1] (3.6)

For example, the first several terms of Q(u, z) is
—y — 0 ¢ _ 1 (—qr —q.
QO—U—-<T 0>’Q_1_§(T‘m qr 3
Qo= 1 QT — qTs Qoo — 2¢°T
B 4 \Tzz — 2qr2 qrz — QzT )
We write down the first three flows:

qt1 = qz, Tty = Tz,

1 1
qt, = §(Q$$ - 2q2r), Ty, = _5(7':1::8 - 2(]27'),

1 1
qts = Z(waz - GQQ.IT')) Tty = Z(mew - 6(]7'7'1:)-

Proposition 3.1. The third flow admits the constraints r = 1, which gives
the KdV equation.
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Lax pair of the KdV equation is the following sl(2)-value connection 1-
from:

3_1 1 *1 2
92=(z q)d:c+<z 30T 102 02 §q“’z+4q” >dt
1 -z 2% —5q 2>+ 50z — 1022

II. To construct the Backlund transformation, it is more efficient to con-
sider the following splitting which is gauge equivalent to the SL(2)-hierarchy.
Families of both pure soliton and rational solutions for central affine curva-
tures and solution of (3.2) are constructed from this splitting [18], [20].

Detne o) = (1 ). L

L ={A(2) € L(sl(2)) | $(z) ' A(2)¢(2) = d(—2) T A(—2)p(—2)}.
Consider the following splitting of L:
Ly={) A"}, L£_={)_ Air'}.
i>0 i<0

Then the Lax pair is gauge equivalent to

0, = ¢_1(z)ez¢(z)
_ (0 2*+q Ayt O
-1 70 (ot TERE )

ITI. In the end, we consider another algebraic structure of the KdV equation
from the Drifeld-Sokolov construction [7]. From this construction, the curve

flows will rise naturally.
Let B : sl(2,R) — Rejs defined as

a b 0 0
5(( 2))-( o)
Consider the splitting (L4, £_) of £(sl(2)) such that for A()\) = S AN €
L(sl(2)),
A1 =D AN + Ay — B(ALy). (3.7)

>0

Let J = ejaA + €21, given a smooth function ¢ : R — R, let u = <8 g),

there exists unique Q(g, A) = e12A + 3,50 Qi(@)A™ ' such that

[633 + J + u, Q(q, )\)] =0,

0 (3.8)
Q(g, N)* = Al

The (2j + 1)-th flow in the KdV hierarchy is

Uiny iy = (0o + T +u, (Q(g, )7, (3.9)



In fact, set Q;(q) = (éﬂ ]ii ), then the previous recursive formula in-
JoT4

duces:

Cji+1(q) = —((4;(9)z + ¢Cj(a) — B;(q)),
Ajala) = 5((By(@)s — ads(a),

45(0) = ~5(Ci(@)a. (3.10)

Then written in ¢, the 25 + 1-th flow (3.9) is

Gtz = (Bj(@) — Cj+1(@))z — 294,(q).

In particular, the first, third, and fifth flows are:

dty = Qg (311)
1

Qt; = Z(‘hwz - 6qqx), (3'12)
1

Gt = 75020 — 10 q02q — 20(8:q)Bzeq + 30 ¢*0rq). (3.13)

Note that (3.12) is the KdV equation.

Now we can write down Commuting higher order central affine curve flows
for (3.2). Let E(xz,t,\) € SL(2,R) be an extended frame for the 2j + 1-th
flow in the KdV hierarchy, that is

1 0
E(x,t,A) = E(z,t, A)(elz)\jH +---+Q4(9)-

Eg(z,t,A) = E(z,t,A) (0 o q) ’ (3.14)

Let g(z,t) = E(z,t,0), then from the first equation of (3.14), g(z,t) =
(7,72), and v € Ma(I). -

Recall that £(y) = &7 + &9, is a tangent vector field on Ms(T) if and
only if & = —1(&)s. So it follows from (3.10) that A;(q)y + Cj(q)¥z is
tangent to My(I) at v and

Yoy = 4@+ G0 = ~5(C@)er + G (3.19)

is a central affine curve flow on My(I) of order 2j + 1, where Q;(g) =

(éj Eg; _iij(?; )) is the coefficient of A=/ of the solution Q(g, \) of (3.8).
We call this the (27 + 1)-th central affine curve flow on Ma(I).
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For example, the first, third, and fifth central affine curve flow on M (I)
is

Y1 = Y
1 1
T3 = ZQw’Y - §Q’Yz,
1 1,
Yts = l_ﬁ(q.'c:ca: - 6qu)7 + §(3q - Qx:c)’Yz-

Note that the third central affine curve flow is the curve flow (3.2).

The concept of central affine curve can be generalized to higher dimen-

sional case naturally. If v : R —» R™\{0} is a smooth curve such that

det(v,7s, - - - ,'ys(n—l) ) > 0, then there exists a parameter £ = z(s) unique up

to translation such that
det(v, vz, .- -, ;"‘1)) =1.
Take x-derivative of the above equation to see that
det(7, ¥z, - .-, 7 2, 4{M) = 0.
Therefore, 'yg(cn) = w1y + ueyr + -+ + un_yy;n_z), for some smooth func-
tions uj,--- ,up-1. Such parameter z is called the central affine arc-length
parameter, and uy,...,un—1 are the central affine curvatures. The frame

9= Y-, én_l)) is called the central affine moving frame along v (cf.
[4], [21]). Moreover,

n—1 n—1
-1
g gz=b+u, b= E €i+lgy U= Zuiein-
i=1 i=1

Let
Mn(R) = {y € C*®(R,R"\{0}) | det(y,%z,...,7 V) =1}.

Define ¥ : M,(R) = C®(R,V,),V, = EB?z'llRe,,;n, to be the central affine
curvature map by

n—1
U(y) =u= Zuiein,
i=1

where wuj,...,u,—1 are the central affine curvatures of ~.
In [21], we construct a sequence of commuting higher order central affine
curves on Mp,(R) such that the second flow is

2
"t = “'njun—lf)' + Vzz-

These equations are all integrable, in the sense that under the central affine
curvature map U, u = ;:11 u;e;n satisfies equations belonging to the
Gelfand-Dickey (GDy) hierarchy (or the Agll_)l-KdV hierarchy) [6]. From
the Cauchy problems for the GD,-hierarchy with rapidly decaying initial
data and periodic initial data(cf. [2], [10], [13]), we can solve the Cauchy



problem for the central affine curve flows with periodic initial data and with
rapidly decaying initial data (i.e., the central affine curvatures are rapidly
decaying).

Furthermore, these flows are all integrable, we obtain a bi-Hamiltonian
structure and a sequence of Poisson structures {,}7 on My (SY) for the
central affine curve flow hierarchy. We prove that these Poisson structures
arise naturally from the Poisson structures of certain co-adjoint orbits.

Let D be the algebra of pseudo-differential operators Y, f;0%, where f;’s
are smooth functions on R. Consider the following splitting of D:

Dy = {Z fiok}, D_= {Z fi03}.

i>0 i<0

The G D,-hierarchy is generated by n-th order differential operator:

n—1 ’
- Z uia:::‘l,
i=1
and the j-th (j # 0 mod (n)) flow is a PDE system for u;’s:

i
=[L%, L]
For example, the second flow in the GD3-KdV hierarchy is

{(m)t = (ul)xm - %(uQ)me + %uz(lﬂ)za (3.16) |

(u2)t = —(u2)ez + 2(u1)z-
The second flow in the GD4-KdV hierarchy is the following system for
U = ur€i4 + uUgez4 + uzesq:
(w1)e = (w1)ae — 2ul? + Tu3(u3)ze + u2(us)z,
(u2)t = 2(u1)z + (u2)xm — 2(u3)gzz + u3(us)z, (3.17)
(u3)t = u1 + 2(u2)z — 2(u3)zz-
And the third flow is

(u1)e = 2( 2 2u(4) (3)u3 + 2u( Yug — ul? )uz + 2uhug — 2ujuz) + u( )
3 3

(ug)s = Zu:(f) - 2u§3) + 2u§2) + uius + Z(ugu;;)z,
1 (3 3 (2 3

(ug): = Zug ) SU ul )—i—ul + 4U3U3

In [21], we give a systematic method to construct higher ordered com-
muting central affine curve flows on My (I). Here we give some examples.

Example 3.2. [Higher order central affine curve flows]
(1) For n # 3, the third central affine curve flow on M, (R) is the flow:

3 3(n—3 3
T = (——un_g + —(———)(un_l)w) Y — —Un—1Yz + VYzzz- (3.18)
n 2n n
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When n = 2, this is the Pinkall’s central affine curve flow on R?\{0},

1 1
"= ZQw’Y - 5(1%-
So (3.18) is a natural analogue of Pinkall’s flow in n-dimension (n # 3).
When n = 4, (3.18) is
3 3 3
% = (g(ua)e = u2)y = 7Us%e + Yoa-

(2) The fourth and the fifth central affine curve flows on M3(R) are
1 u9

1
"= —5(2Uf‘2’ - 3u’1 - 2“%)7 + :Q;(UIZ - Ul)')’z - '?,—'sza

1 1 1
e = 5 (—uf +urug)y — 5(ug — 3uy +ud) e + 2 (uh ~ 2u1)Vza
9 9 3
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