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Abstract

The parity of the length of paths and cycles is a classical and well-studied topic in
graph theory and theoretical computer science. A basic problem concerned with parity is
to find an odd or even $s-t$ path in an undirected graph. It can be solved in polynomial time
easily, whereas its directed version is NP-hard. In this paper, as a generalization of this
problem, we focus on the problem of finding an $s-t$ path in a group-labeled graph, which
is a directed graph with a group label on each arc. It is not difficult to see that finding
an odd or even path in an undirected graph can be formulated as finding a zero path in a
$\mathbb{Z}_{2}$-labeled graph.

For group-labeled graphs, efficient algorithms for finding non-zero paths or cycles with
some conditions have been devised recently. On the other hand, the difficulty of finding a
zero path is heavily dependent on the group, e.g., it is NP-complete to determine whether
there exists an $s-t$ path of label zero (or another specified label) in a $\mathbb{Z}-$-labeled graph, but
quite easy in a $\mathbb{Z}_{2}$-labeled graph. It is in fact known that a zero path in a $\Gamma$-labeled graph
can be found in polynomial time for any constant-size abelian group $\Gamma$ by getting help of
the graph minor theory.

In this paper, we present a solution to finding an $\mathcal{S}-t$ path in a group-labeled graph
with two labels forbidden. This also leads to an elementary solution to finding a zero path
in a $\mathbb{Z}_{3}$-labeled graph, which is the first nontrivial case of finding a zero path. This case
generalizes the 2-disjoint paths problem in undirected graphs, which also motivates us to
consider that setting. More precisely, we provide an elementary polynomial-time algorithm
for testing whether there are at most two possible labels of $s-t$ paths in a group-labeled
graph or not, and finding $s-t$ paths attaining at least three distinct labels if exist. We
also give a necessary and sufficient condition for a group-labeled graph to have exactly two
possible labels of $s-t$ paths, and our algorithm is based on this characterization.

1 Introduction

1.1 Background

The parity of the length of paths and cycles in a graph is a classical and well-studied
topic in graph theory and theoretical computer science. As the simplest example, one can
easily check the bipartiteness of a given undirected graph, i.e., we can determine whether
it contains a cycle of odd length or not. This can be done in polynomial time also in the
directed case by using the ear decomposition. It is also an important problem to test
whether a given directed graph contains a directed cycle of even length or not, which is
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known to be equivalent to P\’olya’s permanent problem [13] (see, e.g., [12]). A polynomial
time algorithm for this problem was devised by Robertson, Seymour, and Thomas [14].

In this paper, we focus on paths connecting two specified vertices $s$ and $t$ . It is easy
to test whether a given undirected graph contains an $s-t$ path of odd (or even) length or
not, whereas the same problem is NP-complete in the directed case [11] (follows from [5]).
A natural generalization of this problem is to consider paths of length $p$ modulo $q$ . One
can easily see that, when $q=2$ , both of the following problems generalize the problem
of finding an odd (or even) $s-t$ path in an undirected graph:

$\bullet$ Finding an $s-t$ path of length $p$ modulo $q$ in an undirected graph.
$\bullet$ Finding an $s-t$ path whose length is NOT $p$ modulo $q$ in an undirected graph, which

is equivalent to determining whether all $s-t$ paths are of length $p$ modulo $q$ or not.

Although these two generalizations are similar to each other, they are essentially different
in the case of $q\geq 3$ . In fact, a linear time algorithm for the second generalization was
given by Arkin, Papadimitriou, and Yannakakis [1] for any $q$ , whereas not so much has
been known about the first generalization.

Recently, as another generalization of the parity constraints, paths and cycles in a
group-labeled graph have been investigated, where a group-labeled graph is a directed
graph with each arc labeled by a group element. In a group-labeled graph, the label of a
walk is defined as the sum (or the ordered product if the underlying group is non-abelian)
of the labels on traversed arcs, where each arc can be traversed in the converse direction
and then the label is inversed (see Section 2 for the precise definition). In a similar way
to paths of length $p$ modulo $q$ , it is natural to consider the following two problems:

(I) Finding an $s-t$ path of label $\alpha$ in a group-labeled graph for a given element $\alpha.$

$(\Pi$ $)$ Finding an $s-t$ path whose label is NOT $\alpha$ in a group-labeled graph, which is
equivalent to determining whether all $s-t$ paths are of label $\alpha$ or not.

Note that, when we consider Problem (I) or (II), by changing uniformly the labels of the
arcs incident to $s$ if necessary, we may assume that $\alpha$ is the identity of the underlying
group. Hence, each problem is equivalent to finding a zero path or a non-zero path in a
group-labeled graph.

If the underlying group is $\mathbb{Z}_{2}=\mathbb{Z}/2\mathbb{Z}=(\{0,1\}, +)$ and the label of each arc is 1, then
the label of a path corresponds to the parity of its length because $-1=1$ in $\mathbb{Z}_{2}$ . This
shows that both of these two problems generalize the problem of finding an odd (or even)
$s-t$ path in an undirected graph. We note that, in a $\mathbb{Z}_{2}$-labeled graph, finding an $s-t$

path of label $\alpha\in \mathbb{Z}_{2}$ is equivalent to finding an $s-t$ path whose label is not $\alpha+1\in \mathbb{Z}_{2},$

but such equivalence cannot hold for any other nontrivial group.
Problem ($I[$ ) can be reduced to testing whether the group-labeled graph (precisely,

the graph obtained from the original input by adding an arc from $s$ to $t$ with label $\alpha$

and by removing vertices that are not contained in any $s-t$ path) contains a non-zero
cycle, whose label is not the identity. With this observation, Problem $(\Pi$ $)$ can be easily
solved in polynomial time for any underlying group (see, e.g., [18] and Proposition 6).
We note that there are several results for packing non-zero paths [2,3, 18,20] and non-zero
cycles [9, 19] with some conditions.

On the other hand, the difficulty of Problem (I) is heavily dependent on the underlying
group. When the underlying group is isomorphic to $\mathbb{Z}_{2}$ , since Problems (I) and (II) are
equivalent as discussed above, it can be easily solved in polynomial time. When the
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underlying group is $\mathbb{Z}$ , Problem (I) is NP-complete since the undirected Hamiltonian
path problem reduces to this problem by replacing each edge with a pair of two arcs of

opposite directions with label 1 and letting $\alpha$ $:=n-1$ , where $n$ denotes the number
of vertices. Huynh [8] showed the polynomial-time solvability of Problem (I) for any

constant-size abelian group, which is deeply dependent on the graph minor theory.

To investigate the gap between Problems (I) and (I), we make a new approach to

these problems by generalizing Problem (II) so that multiple labels are forbidden. In this
paper, we provide a solution to the case that two labels are forbidden. Our result also
leads to an elementary solution to the first nontrivial case of Problem (I), i.e., when the
underlying group is isomorphic to $\mathbb{Z}_{3}=\mathbb{Z}/3\mathbb{Z}=(\{0, \pm 1\}, +)$ .

1.2 Our contribution

Let $\Gamma$ be an arbitrary group. For a $\Gamma$-labeled graph $G$ and two distinct vertices $s$ and
$t$ , let $l(G;s, t)$ be the set of all possible labels of $s-t$ paths in $G$ . Our first contribution
is to give a characterization of $\Gamma$-labeled graphs $G$ with two specified vertices $s,$

$t$ such
that $l(G;s, t)=\{\alpha, \beta\}$ , where $\alpha$ and $\beta$ are distinct elements in $\Gamma$ . Roughly speaking, we
show that $l(G;s, t)=\{\alpha, \beta\}$ if and only if $G$ is obtained from planar graphs with some
condition by “gluing them together (see Section 3.2). It is interesting that the planarity,
which is a topological condition, appears in the characterization.

Note that there exists an easy characterization of triplets $(G, s, t)$ with $l(G;s, t)=\{\alpha\},$

which is used to solve Problem (I1) (see Section 2.2 for details). Hence, our characteriza-
tion leads to the first nontrivial classification of $\Gamma$-labeled graphs in terms of the possible
labels of $s-t$ paths, and the classification is complete when $\Gamma\simeq \mathbb{Z}_{3}.$

We also show an algorithmic result, which is our second contribution. Based on the
fact that our characterization can be tested in polynomial time, we present a polynomial-
time algorithm for testing whether $|l(G;s, t)|\leq 2$ or not and finding at least three $s-t$

paths whose labels are distinct if exist (see Theorem 11). In particular, our algorithm
leads to an elementary solution to Problem (I) when $\Gamma\simeq \mathbb{Z}_{3}$ , i.e., we can test whether
$\alpha\in l(G;s, t)$ or not, and find an $s-t$ path of label $\alpha\in\Gamma$ if exists.

Note again that our results do not depend on $\Gamma$ , which can be non-abelian or infinite.

1.3 2-disjoint paths problem

Problem (I) in a $\mathbb{Z}_{3}$-labeled graph in fact generalizes the 2-disjoint paths problem, which
also motivates us to consider the situation when two labels are forbidden. The 2-disjoint
paths problem is to determine whether there exist two vertex-disjoint paths such that
one connects $s_{1}$ and $t_{1}$ and the other connects $s_{2}$ and $t_{2}$ for distinct vertices $s_{1},$ $s_{2},$ $t_{1},$ $t_{2}$

in a given undirected graph. We can reduce the 2-disjoint paths problem to Problem (I)
in a $\mathbb{Z}_{3}$-labeled graph as follows: let $s:=s_{1}$ and $t:=t_{2}$ , replace every edge in the given
graph with an arc with label $0$ , add one arc from $t_{1}$ to $s_{2}$ with label 1, and ask whether
there exists an $s-t$ path of label 1 or not. If the answer is YES, then there exist desired
two vertex-disjoint paths, and otherwise there do not.

The 2-disjoint paths problem can be solved in polynomial time [15-17], and the fol-
lowing theorem characterizes the existence of two disjoint paths.

Theorem 1 (Seymour [16]). Let $G=(V, E)$ be an undirected graph and $s_{1},$ $t_{1},$ $s_{2},$ $t_{2}\in V$

distinct vertices. Then, there exist two vertex-disjoint paths $P_{i}$ connecting $s_{i}$ to $t_{i}(i=$
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1, 2) if and only if there is no family of disjoint vertex sets $X_{1}$ , . . . , $X_{k}\subseteq V\backslash \{s_{1}, t_{1}, s_{2}, t_{2}\}$

such that

1. $N(X_{i})\cap X_{j}=\emptyset$ for distinct $i,$ $j\in\{1, . . . , k\},$

2. $|N(X_{i})|\leq 3$ for $i=1$ , . . . , $k$ , and

3. if $G’$ is the graph obtained from $G$ by deleting $X_{i}$ and adding new edges joining
every pair of distinct vertices in $N(X_{i})$ for every $i$ , then $G’$ can be embedded on a
plane so that $s_{1},$ $s_{2},$ $t_{1},$ $t_{2}$ are on the outer boundary of $G’$ in this order.

Our characterization (Theorem 14) for triplets $(G, s, t)$ with $l(G;s, t)=\{\alpha, \beta\}$ is
inspired by Theorem 1, and we use this theorem in our proof.

2 Preliminaries

2.1 Terms and notations

Throughout this paper, let $\Gamma$ be a group (which can be non-abelian or infinite), for
which we usually use multiplicative notation with denoting the identity by $1_{\Gamma}$ (also we
sometimes use additive notation with denoting the identity by $0$ , e.g., for $\Gamma\simeq \mathbb{Z}_{3}$ ). We
assume that the following operations can be done in constant time for any $\alpha,$ $\beta\in\Gamma$ :
getting the inverse element $\alpha^{-1}\in\Gamma$ , computing the product $\alpha\beta\in\Gamma$ , and testing the
identification $\alpha=\beta$ . A directed graph $G=(V, E)$ with a mapping $\psi_{G}$ : $Earrow\Gamma$ (called a
label function) is called a $\Gamma$ -labeled graph.

2.1.1 Graphs

Let $G=(V, E)$ be a directed graph. A sequence $W=(v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, e_{l}, v_{l})$ is called
a walk in $G$ if $v_{0},$ $v_{1}$ , . . . , $v_{l}$ are vertices, $e_{1}$ , . . . , $e_{l}$ are arcs, and either $e_{i}=v_{i-1}v_{i}\in E$ or
$e_{i}=v_{i}v_{i-1}\in E$ for each $i=1$ , . . . , $l$ . A walk $W$ is called a path (or, in particular, a $v_{0}arrow u_{l}$

path) if $v_{0}$ , . . . , $v_{l}$ are distinct, and a cycle if $v_{0}$ , . . . , $v_{l-1}$ are distinct and $v_{0}=v_{l}$ . We call
$v_{0}$ and $v_{l}$ (which may coincide) the end vertices of $W$ . Let $\overline{W}$ denote the reversed walk
of $W$ , i.e., $\overline{W}=(v_{l}, e_{l}, \ldots, v_{1}, e_{1}, v_{0})$ .

Let $X\subseteq V$ be a vertex set. We denote by $\delta_{G}(X)$ the set of arcs incident to $X$ in $G$

and by $N_{G}(X)$ the neighbor of $X$ in $G$ , i.e., $\delta_{G}(X)$ $:=\{e=xy\in E||\{x, y\}\cap X|=1\}$

and $N_{G}(X)$ $:=\{y\in V\backslash X|\delta_{G}(X)\cap\delta_{G}(\{y\})\neq\emptyset\}$ . We often omit the subscript $G$ and
denote a singleton $\{x\}$ by its element $x$ if there is no confusion.

Let $G[X]$ $:=(X, E(X))$ denote the subgraph of $G$ induced by $X$ , where $E(X)$ $:=\{e=$

$uv\in E|\{u, v\}\subseteq X\}$ . We denote by $G-X$ the subgraph of $G$ obtained by removing all
vertices in $X$ , i.e., $G-X=G[V\backslash X]$ . For an arc set $F\subseteq E$ , we also denote by $G-F$
the subgraph of $G$ obtained by removing all arcs in $F$ , i.e., $G-F=(V, E\backslash F)$ .

A directed graph $H=(U, F)$ is called 2-connected if $H-u$ is connected for every
$u\in U.$ A 2-connected component of $G$ is a maxima12-connected induced subgraph $G[X]$

$(X\subseteq V$ with $|X|\geq 2)$ of $G$ . It can be efficiently computed (see, e.g., [6]).
Suppose that $G$ is embedded on a plane. We call a unique unbounded face of $G$ the

outer face of $G$ , and another face an inner face. For a face $F$ of $G$ , let $bd(F)$ denote the
cycle obtained by walking the boundary of $F$ in an arbitrary direction from an arbitrary
vertex.
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2.1.2 Labels

Let $G=(V, E)$ be a $\Gamma$-labeled graph with alabel function $\psi_{G}$ , and $W=(v_{0}, e_{1}, v_{1}, \ldots, e_{l}, v_{l})$

a walk in $G$ . The label $\psi_{G}(W)$ of $W$ is defined as the ordered product $\psi_{G}(e_{l}, v_{l})\cdots\psi_{G}(e_{2}, v_{2})$ .
$\psi_{G}(e_{1}, v_{1})$ , where $\psi_{G}(e_{i}, v_{i})$ $:=\psi_{G}(e_{i})$ if $e_{i}=v_{i-1}v_{i}$ and $\psi_{G}(e_{i}, v_{i})$ $:=\psi_{G}(e_{i})^{-1}$ if $e_{i}=$

$v_{i}v_{i-1}$ . Note that, for the reversed walk $\overline{W}$ of $W$ , we have $\psi_{G}(\overline{W})=\psi_{G}(W)^{-1}$ . In
particular, since an arc $uv$ with label $\alpha$ and an arc $vu$ with label $\alpha^{-1}$ are equivalent,
we identify such two arcs. We say that $W$ is balanced (or a zero walk) if $\psi_{G}(W)=1_{\Gamma}$

and unbalanced (or a non-zero walk) otherwise, and also that $G$ is balanced if $G$ con-
tains no unbalanced cycle. Note that whether a cycle $C$ is balanced or not does not
depend on the choices of the direction and the end vertex, since $\psi_{G}(\overline{C})=\psi_{G}(C)^{-1}$ and
$\psi_{G}(C’)=\psi_{G}(e_{1})\cdot\psi_{G}(C)\cdot\psi_{G}(e_{1})^{-1}$ for $C’$ $:=(v_{1}, e_{2}, v_{2}, \ldots, e_{l}, v_{l}=v_{0}, e_{1}, v_{1})$ . For any
cycle, we consider only whether it is balanced or not in this paper, and hence we can
choose the direction and the end vertex arbitrarily.

For two distinct vertices $s,$ $t\in V$ , let $l(G;s, t)$ be the set of all possible labels of $s-t$

paths in $G$ . If $l(G;s, t)=\{\alpha\}$ for some $\alpha\in\Gamma$ , we also denote the element $\alpha$ itself by
$l(G;s, t)$ . Without loss of generality, we may assume that there is no vertex $v\in V$ such
that $v$ is not contained in any $s-t$ path, since such a vertex does not make an effect
on $l(G;s, t)$ . To consider only such graphs, let $\mathcal{D}$ denote the set of all triplets $(G, s, t)$

of a $\Gamma$-labeled graph $G$ with two specified vertices $s,$ $t\in V(G)$ in which every vertex is
contained in some $s-t$ path. The following lemma guarantees that one can efficiently
compute a subgraph $G’$ of $G$ such that $(G’, s, t)\in \mathcal{D}$ and $l(G’;s, t)=l(G;s, t)$ .

Lemma 2. For a connected $\Gamma$ -labeled graph $G=(V, E)$ and distinct vertices $s,$ $t\in V$ , one
can test whether $(G, s, t)\in \mathcal{D}$ or not in polynomial time. Moreover, one can compute, $in$

polynomial time, the set $X$ of vertices which are not contained in any $s-t$ path in $G.$

2.2 Finding a non-zero path

In this section, we show that a non-zero $s-t$ path can be found (i.e., Problem (IF) can
be solved) efficiently by using well-known properties of $\Gamma$-labeled graphs. The following
techniques are often utilized in dealing with $\Gamma$-labeled graphs (see, e.g., [2,3,18

Definition 3 (Shifting). Let $G=(V, E)$ be a $\Gamma$-labeled graph. For a vertex $v\in V$ and
an element $\alpha\in\Gamma$ , shifting (a label function $\psi_{G}$ ) by $\alpha$ at $v$ means the following operation:
update $\psi_{G}$ to $\psi_{G}’$ defined as, for each $e\in E,$

$\{$

$\psi_{G}(e)\cdot\alpha^{-1}$ ( $e\in\delta_{G}(v)$ leaves v)
$\psi_{G}’(e):=$ $\alpha\cdot\psi_{G}(e)$ ( $e\in\delta_{G}(v)$ enters v)

$\psi_{G}(e)$ (otherwise).

Shifting at $v\in V$ does not change the label of any walk whose end vertices are
not $v$ , and neither that of any cycle $C$ whose end vertex is $v$ up to conjugate, i.e.,
$\psi_{G}’(C)=\alpha\cdot\psi_{G}(C)\cdot\alpha^{-1}$ . Furthermore, when we apply shifting multiple times, the order
of applications does not make any effect on the resulting label function. We say that
two $\Gamma$-labeled graphs $G_{1}$ and $G_{2}$ are $(s, t)$ -equivalent if there exists a sequence of labels
$\alpha_{v}\in\Gamma(v\in V\backslash \{s, t\})$ such that $G_{2}$ is obtained from $G_{1}$ by shifting by $\alpha_{v}$ at each
$v\in V\backslash \{s, t\}$ (and then $G_{1}$ is obtained from $G_{2}$ by shifting by $\alpha_{v}^{-1}$ at each $v$ ). Note that
$l(G_{1};s, t)=l(G_{2};s, t)$ if $G_{1}$ and $G_{2}$ are $(s, t)$-equivalent.
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Lemma 4. For a connected and balanced $\Gamma$ -labeled graph $G=(V, E)$ and distinct vertices
$s,$ $t\in V$ , there exists a $\Gamma$ -labeled graph $G’$ which is $(s, t)$ -equivalent to $G$ such that

$\psi_{G’}(e)=\{\begin{array}{ll}\alpha ( e\in\delta_{G}(s) leaves s),\alpha^{-1} ( e\in\delta_{G}(s) enters s),1_{\Gamma} (otherwise),\end{array}$

for every arc $e\in E(G’)=E$ and for some $\alpha\in\Gamma$ (in fact, $\alpha=l(G;s,$ $t$

Lemma 5. For any $(G, s, t)\in \mathcal{D}_{f}|l(G;s, t)|=1$ if and only if $G$ is balanced.

Lemmas 2 and $5$ lead to the following proposition. It should be remarked that $G’$ in
Lemma 4 can be found in $O(|E|)$ time by one breadth first search and $|V|-1$ shiftings.

Proposition 6. Let $G=(V, E)$ be a $\Gamma$ -labeled graph with a label function $\psi_{G}$ and two
specified vertices $s,$ $t\in V$ . Then, for any $\alpha\in\Gamma$ , one can test whether $l(G;s, t)\subseteq\{\alpha\}$ or
not in polynomial time. Furthermore, if $l(G;s, t)\not\subset\{\alpha\}$ , then one can find an $s-t$ path
$P$ with $\psi_{G}(P)\neq\alpha$ in polynomial time.

2.3 New operations

For our characterization of triplets $(G, s, t)\in \mathcal{D}$ with $|l(G;s, t)|=2$ , we introduce several
new operations which do not make any effect on $l(G;s, t)$ . Let $(G=(V, E), s, t)\in \mathcal{D}.$

Definition 7 (3-contraction). For a vertex set $X\subseteq V\backslash \{s, t\}$ such that $|N_{G}(X)|=3$

and $G_{X}$ $:=G[X\cup N_{G}(X)]-E(N_{G}(X))$ is connected and balanced, the 3-contraction of
$X$ is the following operation (see Fig. 1):

$\bullet$ remove all vertices in $X$ , and

$\bullet$ add an arc from $x$ to $y$ with label $l(G_{X};x, y)$ (which consists of a single element by
Lemma 4) for each pair of $x,$ $y\in N_{G}(X)$ if there is no such arc.

The resulting graph is denoted by $G/3X.$

For vertex sets $X,$ $Y,$ $Z\subseteq V$ , we say that $X$ separates $Y$ and $Z$ in $G$ if every two
vertices $y\in Y\backslash X$ and $z\in Z\backslash X$ are in different connected components of $G-X.$

Definition 8 (2-contraction). For a vertex set $X\subseteq V$ with $x\in X$ and $y\in V\backslash X$ such
that

$\bullet$ $G[X]$ is a balanced 2-connected component of $G-y$ $($hence, $|X|\geq 2)$ , and
$\bullet$ $\{x, y\}$ separates $X$ and $\{s, t\},$

the 2-contraction of $X$ is the following operation (see Fig. 2):

$\bullet$ apply shifting by $l(G[X];v, x)$ at each vertex $v\in X-x$ , so that the label of every
arc in $G[X]$ becomes $1_{\Gamma}$ (which can be checked similarly to Lemma 4),

$\bullet$ merge all vertices in $X$ into a single vertex, which we refer also as $x$ , and

$\bullet$ identify the parallel arcs with the same label.

The resulting graph is denoted by $G/2X.$
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Figure 1: 3-contraction. Figure 2: 2-contraction.

Remark. Although the 2-contraction and the 3-contraction are different operations, we
use the same term

$\langle$

contraction” to refer one of these two operations because of the
following correspondence. Let $X\subseteq V\backslash \{s, t\}$ be a vertex set such that $N_{G}(X)=\{x, y\}$

for some distinct vertices $x,$ $y\in V$ and $G_{X}$ $:=G[X\cup N_{G}(X)]-E(N_{G}(X))$ is balanced.
Then, by a sequence of the 2-contractions of some $X’\subseteq X+x$ with $x\in X’$ and $y\not\in X’$ , we
can replace the balanced subgraph $G_{X}$ with a single arc from $x$ to $y$ with label $l(G_{X};x, y)$ .
This sequential operation and the 3-contraction are analogous to the contractions of $X_{i}$

in Theorem 1.
We call a sequence of contractions a contraction sequence. We also say that a vertex

set $X\subseteq V$ is 2-contractible (or 3-contractible) if the 2-contraction (or 3-contraction) of
$X$ can be performed in $G$ . Furthermore, $X$ is said to be contractible if $X$ is 2-contractible
or 3-contractible.

It should be noted that any contraction does not change $l(G;s, t)$ , since each $s-t$

path enters the removed vertex set at most once in both cases (2-contraction and 3-
contraction).

Definition 9 (Replacing). For a triplet $(H, x’, y’)\in \mathcal{D}$ with $V(H)\cap V=\emptyset$ and parallel
arcs $e_{i}\in E(i\in I)$ (possibly $|I|=1$ ) from $x\in V$ to $y\in V$ with $l(H;x’, y’)=\{\psi_{G}(e_{i})|$

$i\in I\}$ , we say that $G’$ is obtained from $G$ by replacing $e_{i}(i\in I)$ with $(H, x’, y’)$ when $G’$

is obtained from the disjoint union of $G$ and $H$ by removing $e_{i}(i\in I)$ and by identifying
$x$ and $y$ with $x’$ and $y’$ , respectively.

The following operation can be regarded as the inverse operation of the replacing.

Definition 10 (Reduction). For a connected induced subgraph $H$ of $G$ with $3\leq|V(H)|<$

$|V|$ such that $\{x, y\}\subsetneq V(H)$ separates $\{s, t\}$ and $V(H)$ , the reduction of $(H, x, y)$ is the
following operation:

$\bullet$ remove all vertices in $V(H)\backslash \{x, y\}$ , and

$\bullet$ add an arc from $x$ to $y$ with label $\alpha$ for each $\alpha\in l(H;x, y)$ if there is no such arc.

The resulting graph is denoted by $G/(H, x, y)$ .

It should be remarked again that $l(G;s, t)=l(G’;s, t)$ for a $\Gamma$-labeled graph $G’$ ob-
tained from $G$ by any operation shown here, since there exists an $s-t$ path in $G$ of label
$\alpha\in\Gamma$ if and only if so does in $G’.$
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3 Main Results

3.1 Algorithmic results

As described in Section 2.2, Problem (II) can be solved efficiently, i.e., one can find a
non-zero $s-t$ path in polynomial time (Proposition 6). The following theorem, one of our
main results, is the first nontrivial extension of this property, which claims that not only
one label but also another can be forbidden simultaneously.

Theorem 11. Let $G=(V, E)$ be a $\Gamma$ -labeled graph with a label function $\psi_{G}$ and two
specified vertices $s,$ $t\in$ V. Then, for any distinct $\alpha,$ $\beta\in\Gamma$ , one can test whether
$l(G;s, t)\subseteq\{\alpha, \beta\}$ or not in polynomial time. Furthermore, if $l(G;s, t)\not\subset\{\alpha, \beta\}$ , then
one can find an $s-t$ path $P$ with $\psi_{G}(P)\not\in\{\alpha, \beta\}$ in polynomial time.

Such an algorithm is constructed based on a characterization of $\Gamma$-labeled graphs with
exactly two possible labels of $s-t$ paths shown in Section 3.2. Our algorithm is presented
later in Section 4. It should be mentioned that this theorem leads to a solution to Problem
(I) for $\Gamma\simeq \mathbb{Z}_{3}.$

Corollary 12. Let $G=(V, E)$ be a $\mathbb{Z}_{3}$ -labeled graph with a label function $\psi_{G}$ and two
specified vertices $s,$ $t\in V.$ Then one can compute $l(G;s, t)$ in polynomial time. Further-
more, for each $\alpha\in l(G;s, t)$ , one can find an $s-t$ path $P$ with $\psi_{G}(P)=\alpha$ in polynomial
time.

3.2 Characterizations

Recall that $\mathcal{D}$ denotes the set of all triplets $(G, s, t)$ such that $G$ is a $\Gamma$-labeled graph
with $s,$ $t\in V(G)$ in which every vertex is contained in some $s-t$ path. In this section, we
provide a complete characterization of triplets $(G, s, t)\in \mathcal{D}$ with $l(G;s, t)=\{\alpha, \beta\}$ for
some distinct $\alpha,$ $\beta\in\Gamma$ . We consider two cases separately: when $\alpha\beta^{-1}=\beta\alpha^{-1}$ and when
$\alpha\beta^{-1}\neq\beta\alpha^{-1}.$

First, we give a characterization in the easier case: when $\alpha\beta^{-1}=\beta\alpha^{-1}$ . Note that
this case does not appear when $\Gamma\simeq \mathbb{Z}_{3}$ . The following proposition holds analogously to
Lemmas 4 and 5, which characterize triplets $(G, s, t)\in \mathcal{D}$ with $|l(G;s, t)|=1.$

Proposition 13. Let $\alpha$ and $\beta$ be distinct elements in $\Gamma$ with $\alpha\beta^{-1}=\beta\alpha^{-1}$ . For any
$(G, s, t)\in \mathcal{D},$ $l(G;s, t)=\{\alpha, \beta\}$ if and only if $G$ is not balanced and there exists a
$\Gamma$ -labeled graph $G’$ which is $(s, t)$ -equivalent to $G$ such that

$\{$

$\alpha$ or $\beta$ ( $e\in\delta_{G}(s)$ leaves $s$ ),
$\psi_{G’}(e)=$ $\alpha^{-1}$ or $\beta^{-1}$ ( $e\in\delta_{G}(s)$ enters $s$ ),

$1_{\Gamma}$ or $\alpha\beta^{-1}$ (otherwise),

for every arc $e\in E(G’)=E(G)$ .

We next consider the much more difficult case: when $\alpha\beta^{-1}\neq\beta\alpha^{-1}$ . The following
theorem, one of our main results, completes a characterization of triplets $(G, s, t)\in \mathcal{D}$

with $l(G;s, t)=\{\alpha, \beta\}$ for some distinct $\alpha,$ $\beta\in\Gamma$ . The definition of the set $\mathcal{D}_{\alpha,\beta}\subseteq \mathcal{D},$

which appears in the theorem, is shown later through Definitions 15-17 in Section 3.3.
In short, $(G, s, t)\in \mathcal{D}_{\alpha,\beta}$ if one can obtain, from $G$ by a contraction sequence, a $\Gamma-$

labeled graph constructed by “gluing” together planar $\Gamma$-labeled graphs with some simple
conditions.
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Theorem 14. Let $a$ and $\beta$ be distinct elements in $\Gamma$ with $\alpha\beta^{-1}\neq\beta\alpha^{-1}$ . For any
$(G, s, t)\in \mathcal{D},$ $l(G;s, t)=\{\alpha, \beta\}$ if and only if $(G, s, t)\in \mathcal{D}_{\alpha,\beta}.$

Recall that $|l(G;s, t)|=1$ if and only if $G$ is balanced by Lemma 5, which can be
easily tested. Hence, these characterizations lead to the first nontrivial classification of $\Gamma-$

labeled graphs in terms of the number of possible labels of $s-t$ paths, and the classification
is also complete when $\Gamma\simeq \mathbb{Z}_{3}.$

3.3 Definition of $\mathcal{D}_{\alpha,\beta}$

Fix distinct elements $\alpha,$ $\beta\in\Gamma$ with $\alpha\beta^{-1}\neq\beta\alpha^{-1}$ . In order to characterize triplets
$(G, s, t)\in \mathcal{D}$ with $l(G;s, t)=\{\alpha, \beta\}$ , let us define several sets of triplets $(G, s, t)\in \mathcal{D}$

for which it is easy to see that $l(G;s, t)=\{\alpha, \beta\}$ . Theorem 14 claims that any triplet
$(G, s, t)\in \mathcal{D}$ with $l(G;s, t)=\{\alpha, \beta\}$ is in fact contained in one of them.

Definition 15. For distinct $\alpha,$ $\beta\in\Gamma$ , let $\mathcal{D}_{\alpha,\beta}^{0}$ be the set of all triplets $(G, s, t)\in \mathcal{D}$ such
that

$\bullet$ there is no contractible vertex set $X\subseteq V(G)$ (well-contracted), and
$\bullet$ $G$ can be embedded on a plane with the face set $\mathcal{F}$ satisfying the following proper-

ties:

-both $s$ and $t$ are on the boundary of the outer face $F_{0}\in \mathcal{F},$

-one $s-t$ path along the boundary of $F_{0}$ is of label $\alpha$ and the other is of $\beta$ , and
- there exists a unique inner face $F_{1}$ whose boundary is unbalanced, i.e., $\psi_{G}(bd(F))=$

$1_{\Gamma}$ for any $F\in \mathcal{F}\backslash \{F_{0}, F_{1}\}.$

Figure 3: $(G, s, t)\in \mathcal{D}_{\alpha,\beta}^{0}.$

It is not difficult to see that $l(G;s, t)=\{\alpha, \beta\}$ for any triplet $(G, s, t)\in \mathcal{D}_{\alpha,\beta}^{0}$ (see
Fig. 3).

Definition 16. For distinct $\alpha,$ $\beta\in\Gamma$ , we define $\mathcal{D}_{\alpha,\beta}^{1}$ as the minimal set of triplets
$(G, s, t)\in \mathcal{D}$ satisfying the following conditions:

$\bullet \mathcal{D}_{\alpha,\beta}^{0}\subseteq \mathcal{D}_{\alpha,\beta}^{1},$ and

$\bullet$ if $(G/(H, x, y), s, t)\in \mathcal{D}_{\alpha,\beta}^{1}$ $($recall that $G/(H, x, y)$ denotes the $\Gamma$-labeled graph
obtained from $G$ by the reduction of $(H, x, y)$ ) for some triplet $(H, x, y)$ $\in \mathcal{D}_{\alpha,\beta}^{0},$

with distinct $\alpha’,$ $\beta’\in\Gamma$ , then $(G, s, t)\in \mathcal{D}_{\alpha,\beta}^{1}.$

We are now ready to define $\mathcal{D}_{\alpha,\beta}.$
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Definition 17. For distinct $\alpha,$ $\beta\in\Gamma$ , let $\mathcal{D}_{\alpha,\beta}$ be the set of all triplets $(G, s, t)\in \mathcal{D}$ with
the following property: there exists a $\Gamma$-labeled graph $\tilde{G}$ obtained from $G$ by a contraction
sequence such that $(\tilde{G}, s, t)\in \mathcal{D}_{\alpha,\beta}^{1}.$

It is also easy to see that $l(G;s, t)=\{\alpha, \beta\}$ for any triplet $(G, s, t)\in \mathcal{D}_{\alpha,\beta}$ since
contractions and reductions do not change $l(G;s, t)$ . A proof sketch of the non-trivial
direction $($

(only if”’ part of Theorem 14) is presented later in Section 5.

4 Algorithm

In this section, we present an algorithm to test whether $l(G;s, t)\subseteq\{\alpha, \beta\}$ or not for given
distinct $\alpha,$ $\beta\in\Gamma$ and to find an $s-t$ path of label $\gamma\in\Gamma\backslash \{\alpha, \beta\}$ if $l(G;s, t)\subseteq\{\alpha, \beta\}$ , in
a given $\mathbb{Z}_{3}$-labeled graph $G=(V, E)$ with $s,$ $t\in V$ . It should be mentioned that, when
$\Gamma\simeq \mathbb{Z}_{3}$ , such an algorithm can compute $l(G;s, t)$ itself and find an $s-t$ path of label $\alpha$ for
each $\alpha\in l(G;s, t)$ . Without loss of generality, we assume that $G$ does not have parallel
arcs with the same label.

For the simple description, we separate our algorithm into two parts: to test whether
$|l(G;s, t)|\leq 2$ or not and return at most two $s-t$ paths which attain all labels in $l(G;s, t)$

when $|l(G;s, t)|\leq 2$ , and to find three $s-t$ paths whose labels are distinct when it has
turned out that $|l(G;s, t)|\geq 3$ (note that it is easy to find two $s-t$ paths whose labels are
distinct when $|l(G;s, t)|\geq 2$).

We first present an algorithm to test whether $|l(G;s, t)|\leq 2$ or not and return at
most two $s-t$ paths which attain all labels in $l(G;s, t)$ when $|l(G;s, t)|\leq 2$ . It should be
noted again that this algorithm can compute $l(G;s, t)$ itself when $\Gamma\simeq \mathbb{Z}_{3}$ . Throughout
this algorithm, let $G’=(V’, E’)$ denote a temporary graph currently considered.

TESTTWoLABELS$(G, s, t)$

Input A $\Gamma$-labeled graph $G=(V, E)$ and distinct vertices $s,$ $t\in V.$

Output The set $l(G;s, t)$ of all possible labels of $s-t$ paths in $G$ with those which attain
the labels if $|l(G;s, t)|\leq 2$ , and $|l(G;s, t)|\geq 3$ otherwise.

Step O. Compute the set $X$ of vertices which are not contained in any $s-t$ path by
Lemma 2. If $X=V$, then halt with returning $\emptyset$ since there is no $s-t$ path in $G.$

Otherwise, set $G’arrow G-X$ . Note that $(G’, s, t)\in \mathcal{D}$ and $l(G’;s, t)=l(G;s, t)$ .

Step 1. Test whether $G’$ is balanced or not by Lemma 4 (takeing an arbitrary spanning
tree, and apply shifting along it). If $G’$ is balanced, then halt with returning
the label of an arbitrary $s-t$ path in $G$ with the path. Otherwise, by using an
unbalanced cycle, obtain two $s-t$ paths in $G$ whose labels are distinct, say $\alpha,$ $\beta\in\Gamma.$

In the following steps, we check whether $l(G’;s, t)=\{\alpha, \beta\}$ or not. To make $G’$

2-connected, add to $G’$ an arc from $s$ to $t$ with label $\alpha$ if there is no such arc.

Step 2. While $G’$ is not 3-connected $($and $|V’|\geq 3)$ , do the following procedure. Let
$x,$ $y\in V’$ be distinct vertices such that $G’-\{x, y\}$ is not connected. Let $X$ be the
vertex set of a connected component of $G’-\{x, y\}$ that contains none of $s$ and $t$ (such
$X$ exists, since $s$ and $t$ are adjacent in $G$ and $Y$ $:=X\cup\{x, y\}\subsetneq V$ . Test whether
$|l(G’[Y];x, y)|\leq 2$ or not recursively by TESTTWoLABELS $(G’[Y], x, y)$ . Update
$G’arrow G’/(G’[Y], x, y)$ (reduction) if $|l(G’[Y];x, y)|\leq 2$ , and return $|l(G;s, t)|\geq 3$

otherwise.
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Step 3. While there exists a 3-contractible vertex set $X\subseteq V’\backslash \{s, t\}$ , update $G’arrow$

$G’/3X$ (3-contraction).

Step 4. Test whether $(G’, s, t)\in \mathcal{D}_{\alpha,\beta}^{0}$ or not, which can be done in polynomial time by
testing the planarity of $G’$ (e.g., by [7]) and checking the embedding conditions1
in Definition 15. Return $\{\alpha, \beta\}$ with the $s-t$ paths in $G$ whose labels are $\alpha$ and $\beta$

which have been obtained in Step 1 if $(G’, s, t)\in \mathcal{D}_{\alpha,\beta}^{0}$ , and $|l(G;s, t)|\geq 3$ otherwise.

Next, we show an algorithm to find three $s-t$ paths whose labels are distinct when
it has turned out that $|l(G;s, t)|\geq 3$ . Also it should be noted again that this algorithm
finds three $s-t$ paths which attain all labels when $\Gamma\simeq \mathbb{Z}_{3}.$

FINDTHREEPATHS$(G, s, t)$

Input A $\Gamma$-labeled graph $G=(V, E)$ and distinct vertices $s,$ $t\in V$ with $|l(G;s, t)|\geq 3.$

Output Three $s-t$ paths in $G$ whose labels are distinct.

Step O. If $V=\{s, t\}$ , then halt with returning three $s-t$ paths each of which consists
of a single arc $st\in E$ . Note that $E$ consists of at least three parallel arcs $st$ with
distinct labels.

Step 1. For each $s’\in N_{G}(s)-t$ , by TESTTWoLABELS$(G-s, s’, t)$ , test whether $|l(G-$

$s;s’,$ $t)|\leq 2$ or not.

Step 2. If $|l(G-s;s’, t)|\leq 2$ for all $s’\in N_{G}(s)-t$ , then we have already obtained $s’-t$

paths which attain all labels in $l(G-s;s’, t)$ . Choose three $s-t$ paths whose labels
are distinct among the $s-t$ paths obtained by extending such $s’-t$ paths using an
arc (possibly parallel arcs) $ss’\in E$ for each $s’\in N_{G}(s)-t$ and the $s-t$ paths each
of which consists of a single arc $st\in E$ , and halt with returning them.

Step 3. 0therwise, for at least one $\tilde{s}\in N_{G}(s)-t$ , we obtained $|l(G-s;\tilde{s}, t)|\geq 3$ . Then,
find three $\tilde{s}-t$ paths whose labels are distinct by FINDTHREEPATHS $(G-s,\tilde{s}, t)$ .
Extend the three $\tilde{s}-t$ paths using an arc $s\tilde{s}\in E$ , and return the extended $s-t$ paths.

5 Proof Sketch of Necessity of Theorem 14

In this section, we describe an outline of our proof of the necessity of Theorem 14.
To derive a contradiction, assume that there exist distinct $\alpha,$ $\beta\in\Gamma$ and a triplet

$(G, s, t)\in \mathcal{D}$ such that $l(G;s, t)=\{\alpha, \beta\}$ and $(G, s, t)\not\in \mathcal{D}_{\alpha,\beta}$ . We choose such $\alpha,$ $\beta\in\Gamma$

and $(G, s, t)\in \mathcal{D}$ so that $G$ is as small as possible.
Fix an arbitrary arc $e_{0}$ in $G$ leaving $s$ , and consider the graph $G’$ $:=G-e_{0}$ . By using

the minimality of $G$ , we can show that $(G’, s, t)\in \mathcal{D}_{\alpha,\beta}$ . Furthermore, we can see that
a triplet $(\tilde{G}, s, t)\in \mathcal{D}_{\alpha,\beta}^{0}$ is obtained from $(G’, s, t)\in \mathcal{D}_{\alpha,\beta}$ by applying a contraction at
most once.

By the definition of $\mathcal{D}_{\alpha,\beta}^{0},\tilde{G}$ can be embedded on a plane satisfying the conditions in
Definition 15. By using the fact that $G$ is obtained from $\tilde{G}$ by expanding a vertex set
and adding $e_{0}$ , we try to extend the planar embedding of $\tilde{G}$ to $G$ . Then, we have one of
the following cases.

$\bullet$ Such an extension is possible, i.e., $G$ can be embedded on a plane satisfying the
conditions in Definition 15. This contradicts that $(G, s, t)\not\in \mathcal{D}_{\alpha,\beta}.$

1The face set is almost unique due to the 3-connectivity (see, e.g., [4, Chapter 4])
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$\bullet$

$\tilde{G}$ contains a contractible vertex set, which contradicts that $(\tilde{G}, s, t)\in \mathcal{D}_{\alpha,\beta}^{0}.$

$\bullet$ $G$ contains a contractible vertex set or a 2-cut $\{x, y\}\subsetneq V$ (i.e., $G-\{x, y\}$ is
not connected for some distinct vertices $x,$ $y\in V$), which contradicts that $G$ is a
minimal counterexample.

$\bullet$ We can construct an $s-t$ path of label $\gamma\in\Gamma\backslash \{\alpha, \beta\}$ in $G$ by using $e_{0}$ and some
arcs in $G’$ , which contradicts that $l(G;s, t)=\{\alpha, \beta\}.$

In each case, we have a contradiction, which completes the proof of the necessity of
Theorem 14. We note that Theorem 1 plays an important role in this case analysis.
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