
行列の群の間の写像

MAPS BETWEEN GROUPS OF MATRICES

羽鳥 理

OSAMU HATORI

ABSTRACT. We give a structure theorem for isometries on the special unitary group. Apply-
ing a non-commutative Mazur-Ulam theorem we show that they are extended to $a$ (complex or
conjugate)$-$linear algebra isomorphism (or anti-isomorphism) between the full matrix-algebra
followed by a multiplication by a unitary matrix whose determinant is 1. This is an anouncement
of the forthcoming paper [6].

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

The most prominent results on the study ofisometries on normed spaces are the Banach-Stone
theorem, its non-commutative generalization by Kadison [13, 14], and the celebrated Mazur-
Ulam theorem. On the other hand, systematic studies of isometries of groups of operators
and matrices have just begun and include the general linear groups [11] and unitary groups
[8, 9, 5] ofunital $C^{*}$ -algebras, the (special) orthogonal groups [1]. Recent work ofMoln\’ar and
\v{S}emrl [17] and Moln\’ar [15] describes the surjective isometries of the unitary group with the
metrics induced by the unitarily invariant norms as well as other metrics. On the other hand the
isometries on the special unitary group seem not to be described yet. The aim of this paper is
to anounce the main result in the forthcoming paper on the isometries on special unitary group.
We emphasise that in this paper an isometry merely means a distance preserving transformation,
we do not assume that it respects any algebraic operation.

The celebrated Mazur-Ulam theorem states that a $su\dot{\eta}$ecitve isometry between real normed
spaces preserves the algebraic midpoint; therefore it is a real linear isometry followed by a
translation. The author, Hirasawa, Miura and Molna’r [7] generalised it to a non-commutative
version. It states that isometries between certain subsets of groups with metrics preserve the
inverted Jordan triple product locally. It plays an important role in the study of isometries on
groups. Applying it Moln\’ar and the author [9] proved that isometries on the unitary group of a
von Neumann algebra preserve the inverted Jordan triple product. Then they employed a one-
parameter-group argument to replace the investigation on the unitary groups to that on the space
of all self-adjoint elements. Applying Kadison’s structure theorem for isometries on the space
of all self-adjoint elements [14], the forms ofthe original isometries on the unitary groups are
given in [9]. In this paper we also apply the non-commutative Mazur-Ulam theorem and the
one-parameter-group argument to prove the main result.

For a positive integer $n$ let $M_{n}(\mathbb{C})$ be the complex algebra of all $n\cross n$ matrices of complex
entries. In this paper the unit matrix is denoted by $E$ . The eigenvalue of $X\in M_{n}(\mathbb{C})$ is
denoted by $\sigma(X)$ . For $X\in M_{n}(\mathbb{C})$ we denote the trace of $X$ by Tr(X). The unitary group,
which consists of all unitary matrices is denoted by $U(n)$ . The special unitary group, which
consists of all unitary matrices whose determinants are 1 is denoted by $SU(n)$ . The space of
all Hermitian matrices is denoted by $H(n)$ . Note that $\sigma(X)\subset \mathbb{R}$ for every $X\in H(n)$ , where
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$\mathbb{R}$ is the set of all real numbers. The subspace $\{X : X\in H(n), H(X)=0\}$ of $H(n)$ which
consists ofHermitian matrices whose traces are $0$ is denoted by $H^{0}(n)$ . For every $X\in H^{0}(n)$ ,

denote
$K_{X}=\{\pm\alpha:\alpha\in\sigma(X)\}, K_{X}^{0}=K_{X}\cup\{O\}$

and
$s(X)=\{|\alpha|:\alpha\in\sigma(X)\}.$

Recall that the singular value of the Hermitian matrix coincides with the absolute value of the
eigenvalue. Hence $s(X)$ is the set of all singular values of $X$ for every $X\in H(n)$ . It is well
known that the Lie algebra of the Lie group $SU(n)$ is $iH^{0}(n)$ , and $SU(n)=\exp(iH^{0}(n))$ .
In this paper the norm $\Vert\cdot\Vert$ on $M_{n}(\mathbb{C})$ is the usual spectral norm; $\Vert X\Vert=\max\{\Vert Xv\Vert$ : $v\in$

$\mathbb{C}^{n},$ $\Vert v\Vert\leq 1\}$ , hence $1X \Vert=\max\{|\lambda| : \lambda\in\sigma(X)\}$ for every $X\in H(n)$ . For $A\in M_{n}(\mathbb{C})$ ,
$A^{*}$ denotes the adjoint of $A;A^{tr}$ denotes the transpose of $A;\overline{A}$ denotes the matrix whose $(k, l)-$

entry is the complex-conjugate ofthe $(k, l)$ -entry of $A$ for every $1\leq k,$ $l\leq n$ . The main result
of the paper is the following.

Theorem 1.1. Let $\phi$ be a map from $SU(n)$ into $SU(n)$ . Then the following (i) and (ii) are
equivalent.

(i) $\phi$ is an isometry with respect to the metric induced by $\Vert.$ $\Vert\phi(A)-\phi(B)\Vert=\Vert A-B\Vert$

for everypair $A,$ $B\in SU(n)$ .

(ii) There exists $U\in U(n)$ such that $\phi$ has ofone ofthefollowingforms:
(a) $\phi(A)=\phi(E)UAU^{*}for$ every $A\in SU(n)$ ,

(b) $\phi(A)=\phi(E)UA^{tr}U^{*}for$ every $A\in SU(n)$ ,

(c) $\phi(A)=\phi(E)UA^{*}U^{*}for$ every $A\in SU(n)$ ,

(d) $\phi(A)=\phi(E)U\overline{A}U^{*}for$ every $A\in SU(n)$ .
In these cases $\phi$ is automatically surjective.

If a map from $SU(n)$ into $SU(n)$ has one ofthe forms of (a), (b), (c) or (d) of (ii), then by a
simple calculation $\phi$ is a su1jective isometry from $SU(n)$ onto itself.

To prove the converse implication we employ so to say the CDA. The crucial point for the
CDA to work with is that we need to prove that the given map admit propriate algebraic struc-
ture; $T$ preserves the inverted Jordan product. Here we need a non-commutatvie Mazur-Ulam
theorem.

2. THE COMMUTATIVE DIAGRAM ARGUMENT; CDA

We exhibit the commutative diagram argument in a general situation. Let $L_{j}$ be a normed
linear space for $j=1$ , 2 with which $\exp L_{j}$ is well defined. Suppose that $T:\exp L_{1}arrow\exp L_{2}$

is a surjective isometry. The picture is as follows. Given $T:\exp L_{1}arrow\exp L_{2}$ , find $f$ : $L_{1}arrow$

$L_{2}$ such that the following diagram commute;

$\exp L_{1}arrow^{T_{0}}\exp L_{2}$

$\exp\uparrow \uparrow exp.$

$L_{1} arrow^{f} L_{2}$

$T_{0}(\exp x)=\exp f(x) x\in L_{1},$

where $T_{0}$ is the normalization of $T$, that is, $T_{0}(1)=1$ by applying a suitable transformations on
$T$ . The one-parameter-group argument is not new; the argument is applied in several situations.
The point here is that we do not assume any algebraic property on the given isometry. Prior to
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apply the one-parameter-group argument we need to prove that the given isometry does preserve
a propriate algebraic structure.

$\bullet$ (1) Applying the non-commutative Mazur-Ulam theorem to ensure that $T$ preserves the
inverted Jordan product;

$T(\exp x\exp(-y)\exp x)=T(\exp x)(T(\exp y))^{-1}T(\exp x) , x, y\in L_{1}$ ;

This part is crucial for the following parts to work. Onece this part is establised the
following arguments are usual ones.

$\bullet$ (2) Applying the above to prove that

$\mathbb{R}\ni r\mapsto T_{0}(\exp(rx))$

is a continuous one-parameter-group for every $x\in L_{1}$ , where $T_{0}$ is the normalization of
$T$ ;

$\bullet$ (3) By a representation theorem for the one-parameter-group to get the bijection $f$ :
$L_{1}arrow L_{2}$ with $T_{0}(\exp x)=\exp f(x)$ for every $x\in L_{1}$ ;

$\bullet$ (4) Prove that $f$ is a suujective isometry and applying the celebrated Mazur-Ulam theo-
rem to show that $f$ is a surjective real linear isometry;

$\bullet$ (5) Ifthe form of $f$ is known, then applying it to describe the form of $T_{0}$ and $T.$

The crucial point for the CDA to work with is that we need to prove that the given map admits
a propriate algebraic structure; $T$ is expected to preserves the inverted Jordan product, at least
locally. Here we need a non-commutatvie Mazur-Ulam theorem to prove it. By CDA we have
described the form of isometries between the unitary groups in a von Neumann algebras in
[9, Theorem 1] and a unital $C^{*}$ -algebra [5] (cf.[15]). Note that the similar argument works
for not only for unitary groups but for the space of all positive invertible elements in a unital
$C^{*}$ -algebras [9, Theorem 9] (cf. [12, 18, 16 maps between the exponentials of Lipschitz
algebras [10, Theorem 8], and maps between the exponentials of uniform algebras [19]. We
also described by the CDA the forms of isometries on the special orthogonal group in [1].

To prove the converse implication ofTheorem 1.1 we also apply the CDA; the non-commutative
Mazur-Ulam theorem (cf. [8, Theorem 6]) and the one-parameter-group argument (see [9, 1, 5])
to infer that there exists a surjective real-linear isometry $f$ : $H^{0}(n)arrow H^{0}(n)$ . Although the
structure theorem for a $su\dot{\eta}$ective isometry from $H(n)$ onto $H(n)$ is already known by [14,
Theorem 2], the author does not know the structure theorem for a $su\dot{\eta}$ective isometry on $H^{0}(n)$ .
Here comes a difficulty.

3. PREPARATION OF THE PROOF THAT (i) IMPLIES (ii)

To prove Theorem 1.1 by applying the CDA, put $L_{j}=iH^{0}(n)$ and $\exp iH^{0}(n)=SU(n)$ .
In the following Lemmas 3.1 to 3.10, $\phi$ : $SU(n)arrow SU(n)$ is an isometry and $\phi_{0}$ $=$

$\phi(E)^{-1}\phi(\cdot)$ . We omit a proofs of Lemmas. Precise proofs are given in [6].

Lemma 3.1. The map $\phi_{0}$ is a surjective isometryfrom $SU(n)$ onto itself There exists a real-
linear isometry ffiom $H^{0}(n)$ onto itselfsuch that

$\phi_{0}(\exp(itx))=\exp(itf(x)) , t\in \mathbb{R}, x\in H^{0}(n)$ .

Throughout this section $f$ is the isometry given in Lemma 3.1. The structure ofa $su\dot{\eta}$ective
isometry (with respect to the spectral norm) between $H(n)$ is described by the theorem of
Kadison [14, Theorem 2]. On the other hand the sturctue theorem for a suujective isometry
from $H^{0}(n)$ onto itself seems to be missing. We will prove that either $f$ or $-f$ preserves the
spectrum (Lemma3.10). Note that with respect to the following lemma a similar statements for
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$f^{-1}$ in the place of $f$ are also satisfied since $f^{-1}$ : $H^{0}(n)arrow H^{0}(n)$ is a surjective isometry
such that $\phi_{0}^{-1}(\exp(ity))=\exp(itf^{-1}(y))$ for every $t\in \mathbb{R}$ and $y\in H^{0}(n)$ .

Lemma 3.2. For every $x\in H^{0}(n)s(x)\backslash \{O\}=s(f(x))\backslash \{O\}.$

Recall that the Hausdorff distance $\triangle(F_{1}, F_{2})$ between two non-empty compact sets $F_{1}$ and
$F_{2}$ of $\mathbb{C}$ is

$\triangle(F_{1}, F_{2})=\max\{\sup_{z\in F_{2}}d(z, F_{1}) , \sup_{w\in F_{1}}d(w, F_{2}$

where $d(v, F)= \inf_{w\in F}|v-w|$ for $v\in \mathbb{C}$ and a non-empty compact set $F$ of $\mathbb{C}$ . Due to Bhatia
[2, Corollary VI.3.4] we have the inequality

(3.1) $d(\lambda, \sigma(y))\leq\triangle(\sigma(x), \sigma(y))\leq\Vert x-y x, y\in H(n)$

for any $\lambda\in\sigma(x)$ . Since $\sigma(y)$ is a finite set we have the following by (3.1).

Lemma 3.3. Let $\epsilon>0$ andx, $y\in H^{0}(n)$ . Suppose that $\Vert x-y\Vert\leq\epsilon$ . Thenforevery $\lambda\in\sigma(x)$ ,

there exists $\lambda’\in\sigma(y)$ with $|\lambda-\lambda’|\leq\epsilon.$

Lemma 3.4. For every $x\in H^{0}(n)$ , $0\in\sigma(x)$ ifandonly $if0\in\sigma(f(x))$ . Hence $s(x)=s(f(x))$,

$K_{x}=K_{f(x)}$ and $K_{x}^{0}=K_{f(x)}^{0}$ for every $x\in H^{0}(n)$ .

Lemma 3.5. Let $x,$ $y\in H^{0}(n)$ and let $\epsilon$ be such that

$0<3 \epsilon<\min\{|u-v| : u, v\in K_{x}^{0}, u\neq v\}.$

Suppose that $\Vert x-y\Vert\leq\epsilon,$ $\lambda\in\sigma(x)$ , $and-\lambda\not\in\sigma(x)$ . If $\mu\in\sigma(y)$ satisfies $|\lambda-\mu|\leq\epsilon$ then
$-\mu\not\in\sigma(y)$ .

Lemma 3.6. Suppose that $x\in H^{0}(n)$ and $\sigma(x)=\{\alpha_{1}, . . . , \alpha_{l}, \beta_{1}, . . . , \beta_{k}\}$ , where $\alpha_{1}$ , . . . , $\alpha_{l},$
$\beta_{1}$ , . . . , $\beta_{k}$

are all different. Suppose that

$\{\pm\alpha_{1}, \cdots, \pm\alpha_{l}\}\cap\{\pm\beta_{1}, . .., \pm\beta_{k}\}=\emptyset.$

Let $\epsilon$ be apositive real number which satisfies that

$3 \epsilon<\min\{|u-v| : u, v\in K_{x}^{0}, u\neq v\}.$

Suppose that $y\in H^{0}(n)$ satisfies that $\Vert x-y\Vert\leq\epsilon$ and

$\{\beta_{1}, . . . , \beta_{k}\}\subset\sigma(y)\subset\{\alpha_{1}\pm\epsilon,. . . , \alpha_{l}\pm\epsilon, \beta_{1}, . . . , \beta_{k}\}.$

Then
$\sigma(f(x))\backslash \{\pm\alpha_{1}, . . . , \pm\alpha_{l}\}=\sigma(f(y))\backslash \{\pm(\alpha_{1}\pm\epsilon)$ , . . .

$,$

$\pm(\alpha_{l}\pm\epsilon$

Lemma 3.7. For every $x\in H^{0}(n),$ $\pm\lambda\in\sigma(x)$ ifand only $if\pm\lambda\in\sigma(f(x))$ .

Lemma 3.8. Let $x\in H^{0}(n)$ . Suppose that there exists a $\lambda\in\sigma(x)$ which satisfies $that-\lambda\not\in$

$\sigma(x)$ and $\lambda\in\sigma(f(x))$ $($resp. $-\lambda\in\sigma(f(x)))$ . Then $\mu\in\sigma(f(x))$ $($resp. $-\mu\in\sigma(f(x)))$ holds

for every $\mu\in\sigma(x)$ .

Lemma 3.9. For every $x\in H^{0}(n)$ , $\sigma(f(x))=\sigma(x)$ or $\sigma(f(x))=-\sigma(x)$ .

Lemma 3.10. The isometry $f$ preserves the spectrum $(i.e., \sigma(f(x))=\sigma(x)$ for every $x\in$

$H^{0}(n))or-f$preserves the spectrum $(i.e., \sigma(f(x))=-\sigma(x)$ for every $x\in H^{0}(n))$ .
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4. COMPLETION OF THE PROOF OF THEOREM 1. 1

In this section we complete the proofthat (i) ofTheorem 1.1 implies (ii) ofTheorem 1.1.
Suppose that (i) ofTheorem 1.1 holds; $\phi$ : $SU(n)arrow SU(n)$ is an isometry. By Lemma 3.1

there exists a surjective real-linear isometry $f$ from $H^{0}(n)$ onto itself such that

$\phi_{0}(\exp(itx))=\exp(itf(x)) , t\in \mathbb{R}, x\in H^{0}(n)$ ,

where $\phi_{0}$ $=\phi(E)^{-1}\phi(\cdot)$ . Then by Lemma 3.10 the isomet1y $f$ itself or $-f$ preserve the
spectrum.

We consider in two cases: $f$ preserves the spectrum; $-f$ preserves the spectrum. The argu-
ment is similar in both cases we only consider the case where $f$ preserves the spectrum. Let
$\tilde{f}:H(n)arrow H(n)$ be defined by

$x \mapsto f(x-\frac{Tr(x)}{n}E)+\frac{Tr(x)}{n}E$

for $x\in H(n)$ . It is easy to check that $\tilde{f}$ is a surjective real-linear map and preserves the
spectrum. Since $\Vert x\Vert=\max\{IA| : \lambda\in\sigma(x)\}$ for every $x\in H(n)$ , $\tilde{f}$ is a real-linear isometry
and by definition $\tilde{f}(E)=E$ . According to the structure theorem ofKadison [14, Theorem 2] on
surjective isometries on the real linear space of all self-adjoint elements in a unital $C^{*}$ -algebra
there exists a Jordan *-isomorphism $J$ ffom $M_{n}(\mathbb{C})$ onto itself such that $\tilde{f}=J$ on $H(n)$ , hence
$f=J$ on $H^{0}(n)$ . The structure of $J$ is already known that there is a unitary matrix $U$ such that
$J(X)=UXU^{*}$ for every $X\in M_{n}(\mathbb{C})$ or $J(X)=UX^{tr}U^{*}$ for every $X\in M_{n}(\mathbb{C})$ , where $X^{tr}$

denotes the transpose of $X$ . Thus we have

$\phi_{0}(\exp(ix))=\exp(iUxU^{*})=U\exp(ix)U^{*}, x\in H^{0}(n)$

or

$\phi_{0}(\exp(ix))=\exp(iUx^{tr}U)=U\exp(ix^{tr})U^{*}$

$=U(\exp(ix))^{tr}U^{*}, x\in H^{0}(n)$ .

As $SU(n)=\exp(iH^{0}(n)))$ we get

$\phi(A)=\phi(E)UAU^{*}, A\in SU(n)$

or
$\phi(A)=\phi(E)UA^{tr}U^{*}, A\in SU(n)$ .

In the case when $-f$ preserves the spectrum, applying the same argument for $-f$ in the place
of $f$ we obtain a unitary matrix $U$ such that

$\phi_{0}(\exp(ix))=\exp(-iUxU^{*})=U\exp(-ix)U^{*}$

$=U(\exp(ix))^{*}U^{*}, x\in H^{0}(n)$

or

$\phi_{0}(\exp(ix))=\exp(-iUx^{tr}U)=U\exp(-ix^{tr})U^{*}$

$=U\overline{\exp(ix)}U^{*}, x\in H^{0}(n)$ .

Thus we have
$\phi(A)=\phi(E)UA^{*}U^{*}, A\in SU(n)$

or
$\phi(A)=\phi(E)U\overline{A}U^{*}, A\in SU(n)$ .
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5. PROBLEM

Ifthe following problem is solved, the proofofTheorem 1.1 can be much simpler.

Problem 5.1. Describe the form of a surjective isometry from $H^{0}(n)$ onto itself.

REFERENCES

[1] T. Abe, S. Akiyama and O. Hatori, Isometries of the special orthogonal group, Linear Algebra Appl., 439
(2013), 174-188

[2] R. Bhatia, Matrix analysis, Graduate Texts in Mathematics, 169. Springer-Verlag, New York, 1997
[3] M. Brin and G. Stuck, Introduction to dynamical systems, Cambridge Univ. Press, 2002
[4] J. B. Conway, A Course in FunctionalAnalysis, Springer-Verlag, 1990.
[5] O. Hatori, Isometries ofthe unitary groups in $C^{*}$ -algebras, Studia Math., 221(2014), 61-86
[6] O. Hatori, Isometries on the special unitary group, to appear, Contemp. Math., American Mathematical

Society
[7] O. Hatori, G. Hirasawa, T. Miura and L. Moln\’ar, Isometries andmaps compatible with invertedJordan triple

products on groups, Tokyo J. Math., 35 (2012), 385-410.
[8] O. Hatori and L. Moln\’ar, Isometries ofthe unitary group, Proc. Amer. Math. Soc., 140 (2012), 2141-2154.
[9] O. Haton and L. Moln\’ar, Isometries ofthe unitary groups and Thompson isometries ofthe spaces ofinvertible

positive elements in $C^{*}$ -algebras, J. Math. Anal. Appl., 409 (2014) 158-167.
[10] O. Hatori, A. Jim\’enex-Vargas and M. Villegas-Vallecillos, Maps which preserve norms ofnon-symmetrical

quotients between groups ofexponentials ofLipschitzfunctions, J. Math. Anal. Appl., 415 (2014), 825-845
[11] O. Hatori and K. Watanabe, Isometries between groups ofinvertible elements in $C^{*}$ -algebras, Studia Math.,

209 (2012), 103-106.
[12] S. Honma and T. Nogawa, Isometries ofthe geodesic distancesfor the space ofinvertiblepositive operators

andmatrices, Linear Algebra Appl., 444 (2014), 152-164
[13] R. V Kadison, Isometries ofoperator algebras, Ann. Math. 54 (1951), 325-338.
[14] R. V Kadison, A generalizedSchwarz inequality andalgebraic invariantsfor operator algebras, Ann. Math.,

56 (1952), 494-503.
[15] L. Moln\’ar, Jordan triple endomorphisms and isometries ofunitary groups, Linear Algebra Appl. 439 (2013),

3518-3531
[16] L. Moln\’ar, Jordan triple endomorphisms and isometries ofspaces ofpositivve definite matrices, Linear Mult-

linear Algebra (2014),
$http://dx$ .doi.ory] 0. 1080/03081087.2013.844231, in press

[17] L. Moln\’ar and P. \v{S}emrl, Transformations ofthe unitary group on a Hilbert space, J. Math. Anal. Appl., 388
(2012), 1205-1217.

[18] L. Moln\’ar and P. Szokol, Transformations n positive definite matrices preserving generalizeddistance mea-
sures, J. Math. Anal. Appl., 466 (2015), 141-159

[19] T. Nogawa, Maps which preserve a certain norm condition between the exponential groups ofuniform alge-
bras, preprint

DEPARTMENT 0F MATHEMATICS, FACULTY OF SCIENCE, NIIGATA UNIVERSITY, NIIGATA 950-2181 JAPAN
$E$-mail address: hatori@math. sc.niigata-u.ac. jp

35


