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Pair correlation of zeros of quadratic
L-functions near the real axis

Keiju Sono (REF HH)

Abstract

In this article, we investigate the non-trivial zeros of quadratic L-
functions near the real axis. Assuming the Generalized Riemann Hy-
pothesis, we give an asymptotic formula for the weighted pair correlation
function of quadratic L-functions. From this formula, we prove that there
exists a number of “close low lying zeros " .

1 Introduction

About forty years ago, H. L. Montgomery [9] published his famous paper titled
“ The pair correlation of zeros of the zeta function ” . Under the assumption of
the Riemann Hypothesis (RH), he investigated the function

T -1 ; / ’
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77 <

where w(u) = 4/(4 + u?) and v, 4 run over the set of the imaginary parts
of the non-trivial zeros of the Riemann zeta-function {(s) in 0 < Im(s) < T.

(Note that the number of non-trivial zeros of {(s) in this domain is asymptotic

to (1/27)T logT.) He obtained some asymptotic formula for F(o,T) (0 < o <

1 —¢€), and using this formula, he obtained several results on the distances of

the non-trivial zeros. For example, under the assumption of the RH, he proved

that at least 67% of the non-trivial zeros are simple , and that

lim inf (’Yn+1 - 7'n) log yn

n—o00 i

<A1

holds for specific A\, where 7, denotes the imaginary part of the n-th non-trivial
zero of {(s) in the upper half plane.

Later, Montgomery’s idea was extended to many types of L-functions or
other situations. For example, Ozliik [10] investigated the non-trivial zeros of
the Dirichlet L-functions near the real axis. Assuming the Generalized Riemann
Hypothesis (GRH), he proved that at least 86% of such zeros are simple in some
sense. One of the other interesting generalizations is the work of Hejhal [5].



From his explicit formula of the Riemann zeta-function, he constructed certain
asymptotic formula for the function involving the pairs of three distinct zeros of
¢(s). Further, the result of Hejhal was generalized by Rudnick and Sarnak [14],
and the n-level correlation of the zeros of principal L-functions was obtained.
In particular, their results agree with the prediction for the Gaussian unitary
ensemble of random matrix theory. Today there are several papers considering
such kind of problem (n-level density). For example, see [1], [2], [3], [6], [7], [8],
12], [13].

Our aim in this paper is to investigate the pair correlation of the zeros of the
quadratic L-functions near the real axis. As a prior research, Ozliik and Snyder
[11] investigated such zeros. Under the assumption of GRH, they studied the
asymptotic behavior of the function

2

Gxle, D)= (%K (%) D) —126—% > K(pD*
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as D — oo for |a| < 2, where p = 1/2 + i~y runs over the set of all non-trivial
zeros of L(s,xq), the quadratic L-function associated to the Kronecker symbol
Xd = (d/-), and K(s) is some weight function. From their asymptotic formula,
they proved that assuming the GRH, not more than 6.25% of all integers d
have the property that L(s,x4) vanishes at the central point s = 1/2. Subse-
quently Soundararajan [16] unconditionally proved that L(1/2,x4) # O for at
least 87.5% of all fundamental discriminants d.

In this paper, assuming the GRH (including RH), we investigate the function
Fk(a, D) defined as follows. Let K(s) be analytic in —1 < Re(s) < 2 and satisfy
K(1/2 —it) = K(1/2 +it) for any t € R. Moreover, we assume that its Mellin
inverse transform )

. 1 c+200 y 11

a(z) = o ) K(s)x™°ds (1.1)

converges absolutely for any —1 < ¢ < 2, z > 0, and that a(z) is real, non-

negative, belongs to C! class, and has a support in [A4, B] for some 0 < A <
B < 00. Then, K(s) is given by the Mellin transform of a(z):

K(s) = /0 ~ () L. (1.2)

For d € Z, let xq = (d/-) be the Kronecker symbol and L(s,xq) be the L-
function associated to x4. We denote the set of non-trivial zeros of L(s, x4) by
Zq. For x > 0, D > 0, we put
wd2 [ _—
fx@D)=3 e Y K(p)K(p2)a" 7,
d
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and for o € R, we define the correlation function Fk(a, D) by

1
zDlog D
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Fg(a,D) = [ fx(z,D) L:Da

(1.3)

where p; = 1/2 + é7; for j = 1,2. Then, the main theorem is stated as follows:

Theorem 1.1. Assuming the Generalized Riemann Hypothesis, for any small
d > 0, we have
Fx(o,D) = L(1)a + o(D~*)2D*log D + a(D™%) - O(aD~ % log D)
+a(D™%)2.0(D™%) + O(min{1, aD~*log? D}) (1.4)
+ O(min{D*(log D), o2D~*log® D}) + o(1)

uniformly for0 < a <1 -6 as D — oo, where
L) = / o(z)%dz.
0

The implied constants depend only on K(s) and § > 0.

In the next section, we introduce the outline of the proof. The author rec-
ommends the reader to see the preprint [15] to check the detailed computations.
Several results on the average gaps of the non-trivial zeros can be obtained.
Among others, in Section 3, we prove that there are quite a few pairs of ze-
ros (1/2 + im1,1/2 + i) of L(s,xq) (d € Z\{0}) near the real axis satisfying
0 < |v1 — 2] < (2w)\)/log D, if X is large to a certain extent.

2 The proof of Theorem 1.1 (outline)

We start from Ozliik’s explicit formula

> Ko = K)Bxa)e - 3a (2) ) (£)

pEZg n=1
1 | .
+a - log — )t O(min{z, log|d|logz}) (z >1),
introduced in [11]. Here, E(x) = 1 if x is a principal character, and otherwise

E(x) = 0. The error term is interpreted as O(1) if x = 1. Since the main terms
of the right hand side are real, we have
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= KO BO@’s" + Z o(5)e(F) a0 (7) ()

m

+a(x) log? (l !> 2.K'(1)E(x,,l)a:i1 (n) A(n)<d)
+ 2k B Gza (L) o (L) ~20 (1) 10g (fi)g (%) 2 (%)
<o (mx{mtci Se (B0 (£) o (2) s ()

s
x O (min{z, log|d|logz})
+ O (min{z?, log?|d|log® z}) .

rd2
By multiplying both sides by e~ B7 and taking the sum over d, we have

6 4
fx(z,D)=> M;+) 0 (2.1)
i=1 i=1

where

= K(1)%a? Ed: E(xa)%™ ¥,
= 5 o(5)e (P ammon e # (7) (7).
_ (%)Zze—%;logz(%),
M= 2K ()5 30 (2) A0 e 20 (3).
M, = 2K(1)wa< )Ze B B(xa )log(' ')
o= —10(3) S G or e (1) ().

n ™
d
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01 = O (min {011, 012}) y 02 =0 (min {021, 022}),
O3 = O (min {O31, O32}), O4 = (min{O41, Og}),
with

L 2 . 2
Ou=K(1)2?Y e B E(xa), On2=K(l)zlogzy e 37 E(xa)logd],
d d

021 = xia (g) A(n)ge_%ﬁz (g) ,

n=1

022=logxga($) n)Ze 37( )logld!
v T ()
032=a( )log ; -5 log |d| log ( >

nd? nd?
Oy = z? Ze"fd"', Oy = log2 zZe_‘EdT 1082 |d|.
d d

First, by a standard technique, we find that the error terms O;, O3, O3, O4 are

evaluated by
0, < min{z?D'/2,zD'/?log zlog D},

Oz < min{z?D, zD log x log D, %2 log® z log D},
Os < min{zD log D, D log zlog® D},
04 < min{z2D, Dlog? zlog® D}.

Next, by using partial summation and prime number theorem, the main terms
except for M> are obtained as follows:

M1 = IK(1)2$2D1/2 - %K(l)za’j + O(x2D_1/2),

M;=a ( ) {Dlog? D + O(Dlog D)},
M, = —2IK(1)2D'%2? + O(D*/?2*/? log? z) + O(min{z?, z3D~1/?}),

M; < za ( ) DY?10g D,

Mg < a ( > {z®/%log xlog D + Dz'/?log z log D},



where I = 417~ 1/41( 1/4). These are obtained by some computations similar
to those in the paper of Ozliik and Snyder [11], hence we omit the detail. Finally,
we compute

M - k; pp o(Z) e (L) togriioea ¥ () (7):

where P denotes the set of all prime numbers. It will be convenient to keep in
mind that only k,! satisfying k,! <« logz contribute to the sum above, since
a(x) has a support in such range. First, we evaluate the contribution of the part
p =2 to M;. The contribution of the part p=¢q =2 is

< Z (k) (QZ)Ze DT & Dlog?z. (2.2)

k=1

The contribution of the part p=2,¢>3,1> 2 is

“SEEH(E)s(Gomop e

k 1>2qeP (2.3)

< Dz? log? z.

Since (-/2*q) is a non-principal character whose conductor is at most 2q, by
combining partial summation and Pdélya-Vinogradov inequality for the sum in-
volving quadratic characters, we find that

rd2
2 () () <oboss

for primes ¢ > 3. Therefore, the contribution of the part p=2,¢>3,l{=1is

q . xd2 d d
> 5 a(2)a(%) mentosa T #F () ()
W gePes ( ) (:c) y 2 q
< (logz) Y a (%) (logg) - g% logq (24)
qeEP
< z? log2 x,
where P>3 denotes the set of all prime numbers greater than 2. By (2.2), (2 3)
and (2. 4) the contribution of the part p = 2 to Mj is at most O(Dxz!/?log® z +
z3/2 log x). The contribution of the part ¢ = 2 is the same. Hence

£ 5 () (Ouemnor# () (9)

k,l=1p,qeP>3

+O(Dz? log’ z + 27 log® 7) (2.5)

o0
=: Z Mz(k’l) +O(Dz? log® z + 27 log? ),
k,i=1
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say. Moreover, by prime number theorem and partial summation, we have

k l 2
-0 7\, (¢ s
My <) a ( - ) a (x) (logp)(logq) Y e B
P,q d
< kiDz*+1

uniformly for each k,l. Hence the contribution of the part & > 3,l > 2 or
k> 2,1 > 3 is at most O(Dz5/%log* z). Therefore,

M; = Mél’l) + M2(2’2) +2 Z Mél’l) +O(Dz3 log* z + z2 log? z). (2.6)
1>2

By the computation above, M2(2’2) is evaluated by
MP? « Dz (2.7)

Next, we compute Mz(l’l) forl > 1.
A) First, we consider the case that [ is odd. We decompose

M= Y + ) a(%)a(%) (logp)(logq) 3" e~ 57 (s) (g)

pq€P>3 p,g€P>3 d
p=q P#q

1,0 1,1
w20+ .
, (2.8)
Easily, we find that

M2(’11,1) = L(1)Dzlogz + O(Dz + zlog x),

Mz(,ll’l) < IDzY gz (1> 2).

Next, we compute Mé,lz’l).
a) If £ = o(D'/2), by prime number theorem and Pélya-Vinogradov inequality,

we obtain
Mz(,lz’l) < 12320410 1662 7.

b) If D1/?~% « £ « D'~% (§ > 0), by the translation formula of twisted theta
function, we find that

l 252
p q 1 m _xm*D
M{5"=D>"Ya(= a(—) (logp)(logq)——Z(—)e oie?
i (a:) T VPq — \Pq
9#p

We decompose this by

MD = M&D - M3 - MGD 4 MY 4 B, (2.9)
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where
l
MM = DZZ“ ¢ (C?IE) (logp)(logq)— Z e
p>3 q>3
q#p
l
p q 1rm
M9 DT T ) (£) turtonn
p234¢23
g#p plm
1 1 _1\'m2D2
M} =DY 3 a(2)a (q_) (logp)(logq)—= > e »™
( )
p23¢=>3 (x) v 'Vﬁamzc
q#p atm
ql 2D2
M) = DZZ“( )a’ <_) (logp)(10g ) Ze o
a#p pﬂnz
and

E=DY" Y a (g)a( )(logp )(log q) —— Z (pq) il

p>3¢>3 m#D
q#p

Here, OJ denotes the square of natural numbers. Using partial summation and
prime number theorem, we obtain

MOD = ID1/2Z—1K(1)K(1/l)a:1+1/l—|—O(l_1D1/2a:1+1/2l log? w)+O(Da:1/2+1/2l),
Mz(Jl,l) & IDV2g1 /1 4 Dgl/2+1/2
Mél’l) < I"'DY2glog ¢ + Dzl/2+1/2
M}g;,l) & Dg'/2+1/2

and after slightly complicated computations (we use the assumption of the GRH
to evaluate the sum involving quadratic symbols), the error term FE is evaluated
by
E <« Dzt 4 g1t ogh .
Hence we obtain
1

M) = IDAITK (1)K (7> g+t £ O(1" D! log? o) + O(Dai )

+O(z'+ 1 log? z)
(2.10)
for odd ! and DY/27% « 1 « D'~¢. Therefore we have

M = IDHIK (VK G) 2+t + 07 D32+ ¥ log? 7) + O(IDa? log )

+ O(Da:%“LﬁlT) + O(xl"'% log* )
(2.11)
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for odd ! and D'/?~% « g <« D'7%. If =1, DY/?7% « £ < D'~°, we have
MY = L(1)Dzlogz+IK(1)2D% 22 +0(Dz+D? 2 log? z+22 log* z). (2.12)
On the other hand, for odd I > 3 and z = o(D'/?), we have
MM « 1Dzt logz + 123+ Jog? 1, (2.13)
and for | = 1, z = o(D'/?), we have
M"Y = L(1)Dzlogz + O(Dz + 23 log® z). (2.14)

B) Next, we consider the case that [ is even. In this case, we have

M;" =3 (5) a (q;l) (log p)(log g) Zd: (g) B
-Ya(E)a ( ) (logp)(log g) ) | < ) %,

qld

(2.15)

Since

d __1rd2
>, (;) e” o7 K 4/plogp,

d
the first term of the right hand side of (2.15) is

Z“(z) ( )(logp) logq)Z() -3

p,q d
<<E (2) vplog® pz (q—) logg (2.16)

< z? logz - Izt
< g1 logz.
The second term of the right hand side of (2.15) is

Sa(h)e o (L) toepiog 3 ()

qld

(e () o)
<<2p: ()(logp)z ( )logq ;(g)e‘ﬂg—?

Now, since ¢ satisfies ¢ < (Bz)'/! « D*~% « D, we have D/q > 1. Therefore,
by using Pdlya-Vinogradov inequality, we have

Z (g) e_ﬂg;— < /plogp. (2.18)

d

~~

2.17)




Therefore,

>a(2)e <q;l) (logp)(logq) ) (g) e B

<Y a (g) JBlog?p Y a (q;) log q (2.19)

< lz3t1 logz.
By combining (2.16) and (2.19), we obtain

MM < izitiloga (2.20)

for even I. Now, we have computed or evaluated M for all I. If z = o(D'/?),
by (2.13) and (2.20), we have

Z Mz(l’l) & Dz3 logz + 22 log? . (2.21)
1>2

By inserting (2.7), (2.14), (2.21) into (2.6), we obtain
M, = L(1)Dzlogz + O(Dz + z3 log® z).
If DY/?7% « ¢ < D79, by (2.11),

Z Mél’” & D?z% + Dz? + 23 log . (2.22)
>3, odd

(Notice that K(1/l) <« I.) On the other hand, by (2.20),

Z Mz(l’l) < z° log . (2.23)

1>2, even

By inserting (2.7), (2.12), (2.22), (2.23) into (2.6), we obtain
M, = L(1)Dzlogz + IK(1)2D2g?
+O(Dz + D3z} log? z + 22 log* z)

for D1/2=% « £ < D%,

Now, we have computed or evaluated all the terms appearing in (2.1), hence
we obtain the asymptotic formula for fx(z, D). By dividing this by zDlog D
and putting £ = D* (o > 0), we obtain the asymptotic formula in Theorem 1.1.

3 The pairs of close zeros near the real axis

The asymptotic formula (1.4) of Theorem 1.1 is useful to investigate the distri-
bution of low lying zeros of quadratic L-functions. As a corollary, we prove that
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assuming the GRH and simple zero conjecture for each relevant L-functions,
there exists a number of *close zeros” near the real axis. First, we mention to
the L-functions associated to Kronecker symbols. If d # 3 (mod 4), x4 = (d/-)
becomes a Dirichlet character modulo 4|d| or |d|. In this case, we denote the
conductor of xg by d*. If d = 3 (mod 4), the L-function associated to x4 is
expressed by

1 1
L(s,xq) = 1— (%) 9—s };Ia 1— na(p) (s)p_s,

where 74 is the non-principal character of modulo 4. In this case, we denote the
conductor of n4(-)(-/d) by d*. We define the constants A%, A* by

wd?

1 nd?
A* =liminf E e~ 7 logd®, Al =limsup 1 E e~ b7 logd*.
D—-oo
d d

D—oo Dlog D DlogD
(3.1)
Notice that since logd* < logd + O(1), we have A% < 1.

Corollary 3.1. Assume the Generalized Riemann Hypothesis and that all non-
trivial zeros of L(s,xq) are simple. Then, for 0 < A < 1, we have

- Ze_%’z' Y. K(p)K(p2)
d

Dlog D o1z,
0<|m-721< 255 (3.2)
2 2., cos2wA  sin27wA N
> 2y 222 -
232N~ 6 Ty Bt ol)
as D — oo, where B} = A% /3 and
1 1 2
€73 — e °t3
K(s) = .
(s) ( 25 — 1 )
In particular, if A > Ao = 0.6073, we have
nd?
Y eTor Y K(p1)K(pz) > Dlog D (3.3)

d P1,p2€Z4
0<|v1—12l< Z=%

as D — oo.

Proof. We use Selberg’s minorant function

sintu\? 1
h(u) = ' .
(w) ( T ) 1—u?
This function is bounded and satisfies h(u) < 1, h(u) < 0 if |u| > 1. The Fourier
transform of h(u) is given by

o 1—lal+ 82l () < 1)
"(“)‘{0 T (el > 1)



(for example, see [4]). For 0 < A < 1, we give lower and upper bounds for the
integral

/oo Fx (o, D) - \h(Aa)do..

First, since the integrant is non-negative and 1/ > 1, by (1.4), we have

/00 Fy(a, D) - Ah(Aa)da

—00

1
> / Fx(a, D) - \b(\)dex

-1

= AL(1) [.11 o {1 — |\ + S—‘%’?lf‘—'} da (3:4)

1 .
+)\logD/ a(D~1eh2p-lel {1— |Aa|+§9—%ﬂ}da+o(1)
—1 .

2 cos27A  sin2wA

- 1).
9 6rz T Tamix T o)
In the computation above, we used

L(1) = /Ooo a(v)?dv = -;—’,

5 -
_5)\_

00 1 1 1
—a\2 -« _ 2 — .
/_oo a(D™*)*D™%da = gD /0 a(v)“dv 6log D

On the other hand,

/ ” Fx(a, D) - Ah(Aa)do:

1 —zd? (71 — 72)log D
- BT
Dlog D ;e ° Z K(p1)K(p2)h ( 27\ '

P1,p2€2Z4

(3.5)

Now, since h((y1 — 72) log D/(27))) is negative if |y; — v2| > (27A)/log D, by
(3.5), we have

/ Fy (o, D) - Ah(\a)do
—00

1 _xd? (v1 —72)log D
< DT
< g 2 F X KK (T

P1,p2€Z4
I —72l< 2255

2

1 _=md
~ DlogD > 7P Y mpK(p)?
d

PEZq
1 _ md? (71 —¥2)log D
D2
+ Dlog D Z €’ Z K(p1)K(p2)h ( 27
d P1,p2€Z4

0<|v1—2|< 25
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1 1\'d2
<B} + Z e b7 Z K(p1)K (p2) + o(1),
DlOgD d P1,p2€2Z4

0<|‘Y1—72|$1§—;’1\5

where m, is the multiplicity of the zero of L(s,xq4) at s = p, and by our
assumption, this equals 1. By combining (3.4) and above, we obtain (3.2).
Since B} = A% /3 < 1/3, the right hand side of (3.2) becomes positive if
A > Ao = 0.6073. Therefore, we obtain (3.3). O
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