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Spherical functions on the space of p-adic unitary
hermitian matrices, the case of odd size

by
Yumiko Hironaka and Yasushi Komori

80 Introduction

We have been interested in the harmonic analysis on p-adic homogeneous spaces based on
spherical functions. We have considered the space of p-adic unitary hermitian matrices of
even size in [HK], and in the present article we will report that of odd size. For details,
please see the full version [HK2]. The results can be formulated in parallel, though the
groups acting the spaces have different root structures, C,, for even and BC,, for odd. The
spaces have a natural close relation to the theory of automorphic functions and classical
theory of sesquilinear forms (e.g. [H3], [HS]).

We fix an unramified quadratic extension k'/k of p-adic field k such that 2 ¢ p,
and consider hermitian and unitary matrices with respect to k'/k, and denote by a* the
conjugate transpose of a € M,,(k’). Let 7 be a prime element of k and ¢ the cardinality
of the residue class field O/(7) and we normalize the absolute value on k by || = ¢

Denote by jm, € GLy,(k) the matrix whose all anti-diagonal entries are 1 and others
are 0. Set

G=U(jm)={9 € GLn(K") | gjmg" = jm}, K =G(Ov)
X={zeX|z" =1, 0,(t) = 2;.(t)},
g-z=gzg*, (9€G, z€X),

where ®,(t) is the characteristic polynomial of matrix y. We note that X is a single
G(k)-orbit over the algebraic closure k of k. Set
_[m

n= 3]
According to the parity of m, G has the root structure of type C, for even m and type
BC, for odd m. It is known in general that the spherical functions on various p-adic
groups I can be expressed in terms of the specialization of Hall-Littlewood polynomials
of the corresponding root structure of I' (cf. [M2, §10], also [Car, Theorem 4.4]). For
the present space X, the main term of spherical functions can be written by using Hall-
Littlewood polynomials of type C, with different specialization according to the parity of
m (cf. Theorem 3 below).

A full version of this report will be appear elsewhere. This research has been partially supported by
Grant-in-Aid for Scientific Research (C): 24540045, 25400026.



Let us note the results of even size in [HK] and odd size simultaneously, so that one
can compare the results.

Theorem 1 (1) A set of complete representatives of K\X can be taken as

{zr| e Al (0.1)
where
_ [ Diag(z*,...,ot o2 o r7M) if m=2n
X7 Diag(a™, ... ot Lo ™) if m=2n+1,

AT ={XeZ'| M 2X>- 22 >0},
(2) There are precisely two G-orbits in X represented by xo = 2o = 1, and 1 = (1 0,..0)-

The proof of Cartan decomposition for odd size needs a more delicate calculation than
that for even size. If k has even residual characteristic, there are some K-orbits without
any diagonal matrix besides the above types, independent of the parity of the size.

A spherical function on X is a K-invariant function on X which is a common eigen-
function with respect to the convolutive action of the Hecke algebra H(G, K), and a
typical one is constructed by Poisson transform from relative invariants of a parabolic
subgroup. We take the Borel subgroup B consisting of upper triangular matrices in G.
For z € X and s € C*, we consider the following integral

w(z;8) = /K [T etk - )1 k. (0.2)

where d;(y) is the determinant of the lower right ¢ by i block of y, 1 <7 < n. Then the
right hand side of (0.2) is absolutely convergent for Re(s;) > 0, 1 < i < n, and continued
to a rational function of ¢*1,...,¢°*. Since d;(z)’s are relative B-invariants on X such
that

di(p- z) = Yi(p)di(z), i(p) = Npp(di(p)) (PEB, z€X,1<i<n),
we see w(x; s) is a spherical function on X which satisfies
frw(z;s) = A(fw(z;s), fe€ NG K)
s = 1 o 4] )
)= [0 Lo s

where dp is the left invariant measure on B with modulus character §. We introduce the
new variable z € C" related to s by

m/—1

si=_2i+zi+1_1+ logq’ 1SZSTL—1

1 /=1 _
. —zn — 5+ Togs if m=2n (0.3)
"l ;a1 el m=2n+1,
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and denote w(z; 2) = w(z; s) and A, = A,.

The Weyl group W of G relative to B acts on rational characters of B, hence on z and
s also. The group W is generated by S, which acts on z by permutation of indices and
by 7 such that 7(21,...,2,) = (21,..., 2n-1, —2n). We will give the functional equation of
w(z; z) with respect to W. To describe the results we prepare some notation. We set

Tt=%ruyf,
Si={ei+e,e—e|1<i<j<n}, Ef={2,|1<i<n},

where e; € Z" is the i-th unit vector, and define a pairing

(,):Z'xC*—C, Za,z,

Theorem 2 (1) For any o € W, one has

1 — q(a»z)_l
wiz;z) =] PR p— -w(z;0(2)),

a

where o runs over the set {a € £f | — o(a) € 1} form =2n and {a € Tt | — o(a) € T}
form=2n+1.
(2) The function G(z)-w(z; 2) is holomorphic and W -invariant, hence belongs to C[g*™, ..., ¢=* ]V,

where
1+ q(a ,2)
H 1-— q(a z)—1’
and a runs over the set &} for m =2n and ¥t for m =2n+ 1.
As for the explicit formula of w(z; z) it suffices to give for each z, by Theorem 1 (1).
Theorem 3 (Ezplicit formula) For each A € A}, one has

w(zy;2) = % - gh Q) (z),

where G(z) is given in Theorem 2, 2 is the value in z-variable corresponding to s = 0,

(1_':‘1__2)_" ifm=2n m
_ ) wn(=¢7Y) = -t
Cn (1 +¢ {1 -g2)m fme2mt1 Wi (1) E(l t'),
'wm( q_l) ,
-\ 2) L= taq("" i
N ST | =
W a€ert

P > ifa € B} P ! ifm=2n
*T 1t faexf, =79 MT 42 ifm=2n+1.



We see Q,(z;t) belongs to R = Clg*™*,...,¢**]" by Theorem 2. It is known that
Qx(z;t) = Wy(t)Pi(2;t) with Hall-Littlewood polynomial Py(z;t) and Poincaré polyno-
mial W,(t) and the set { Px(2;t) | A € A} forms an orthogonal C-basis for R for each
ta € R,|ta] < 1 (cf. [HK, Appendix C]). As is written as above, we need the different
specialization for Q,(z;t) according to the parity of m, and G(z) is different also.

In particular, we have

1 — o Nw (—aNewor (—a=1
w(xo;z) — ( q ) ;U:L((_(.;_l))wm( q ) . G(z)_l, ml — ["_n_étl] (04)

and we may modify the spherical function w(z; z) as

w(z; 2)

S i)

eR. (0.5)
We define the spherical Fourier transform on the Schwartz space S(K\X) as follows

~LS(E\X) — R, 9 — §2) = /X () U(z; 2)dz

where dz is a G-invariant measure on X.

Theorem 4 (1) The above spherical transform is an H(G, K)-module isomorphism and
S(K\X) is a free H(G, K)-module of rank 2.

(2) All the spherical Fourier functions on X are parametrized by z € (C/ 2_7r_¢__—1)" /W

log g
through )., and the set {\Il(z; z+u) ‘ ue {0 "‘/__1}"} forms a C-basis of spherical func-

' loggq

tions corresponding to z. .
(3) (Plancherel formula) Set a measure du(z) on a* = {\/—1 (R / I%;’(;Z)} by
1 wa(=g Dwm(=¢"") 1 ’
du(z) = . y . dz, m' = [mtl
M( ) Mnnl (1 + q—l)m |c(z; t)l2 z [ :'

2

where dz is the Haar measure on a*. By an explicitly given normalization of dx depending
on the parity of m, one has

/ o(2)P@)dz = / PER)dulz) (o9 € S(K\X)).
X a*

(4) (Inversion formula) For any ¢ € S(K\X), one has

o@) = [ 3w du(a), ze X
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§1 The Space X of unitary hermitian matrices

Let k¥’ be an unramified quadratic extension of a p-adic field & of odd residual characteristic

and consider hermitian and unitary matrices with respect to k'/k, and denote by a* the

conjugate transpose of a € M,,,(k’). Let 7 be a prime element of k and g the cardinality

of the residue class field Ok/(7) and we normalize the absolute value on k by |7 = ¢!

and denote by v.( ) the additive value on k. We fix a unit e € O for which ¥’ = k(/e).
We consider the unitary group

0 1
G=Gn={9 € GLyn1(K)| 9"J20419 = Jont1},  Jons1 = € Many1,
1 0
and the space X of unitary hermitian matrices in G
X=X,={z€G|z* =2, Opj,,(t) = -1)"(t-1)}, (1.1)

where &,(t) is the characteristic polynomial of the matrix y. It should be noted that
(L.1) implies det z = 1. We note that X is a single G(k)-orbit containing 13,41 over the
algebraic closure k of £ ([HK, Appendix A]). The group G acts on X by

9-Z = 9g2g" = gTjont19 Jon+1, 9EG, zEX.
We fix a maximal compact subgroup K of G by
K = K, =GN Msnp1(Op),

(cf. [Sa, §9]), and take a Borel subgroup B of G, which consists of all the upper triangular
matrices in G and is given by

B g u " f /?:. A€ B, B € (K) u€ Oy, C e M(kK)
= - ]ﬂ * . . *
jnA*—ljn ]-n »Bﬁ + C.]n + ]TEC - 0"' ( )
1.2
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where B,, is the set of all the upper triangular matrices in GLn(K'), Op = {u € O} | N(u) = 1}.

Here and hereafter empty entries in matrices should be understood as 0 and N as the
norm map Ny k. The group G satisfies the Iwasawa decomposition G = BK = KB.

In this section, we give the K-orbit decomposition and the G-orbit decomposition of
the space X.

Theorem 1.1 The K-orbit decomposition of X,, is given as follows:
Xo= || K2, (1.3)
AeAd
where
Af={X€eZ"| > =), >0},

zy = Diag(m™,... 7, 1,77 .. 772,



We recall the case of unramified hermitian matrices. The group GL,,(k') acts on the
set Hm(k') = {z € GL,(K')| z* =z} by g = = grg*, and it is known (cf. [Ja])

Hn(k) = || GLn(Op)-7* (1.4)

AEAM
where
Ap={peZ™| y>>pun}, ==Diag(n*,. .. 7¥m).

Hence, we see that K -2y N K -z, = 0 if A # p in A, Moreover, since N(Oy) = O;, we
see that any diagonal z € X is reduced to some z,, A € A} by the action of K.

The strategy of the proof of Theorem 1.1 is the same as in the even case [HK]; general
n cases are reduced to the case n = 1. However the case n = 1, the size of matrices is 3,
is more complicated and technical than the even case.

Remark 1.2 If k has even residual characteristic, then there are some K -orbits without
any diagonal matriz. In fact, the following matrices are contained in X,, and can not be
diagonalized by the action of K, formn=r+3s, s> 0:

1, 1,
Js+1 (if 2] s), — s (if2 fs).
1, 1,

Before giving the G-orbit decomposition of X,,, we recall the case of unramified her-
mitian matrices. It is known that there are precisely two GL,,(k')-orbits in H,, (k") for
m > 1:

Hn(K) = GLp(K) 1y UGLp(K) - 7100,
- (LJ petn GLm(Or) - Wu) U (U pehm GLm(Ow) '77“) ; (1.5)

|1 is even |1| s odd

where || = Y7, i

Theorem 1.3 There are precisely two G-orbits in X, :

G'CL'(): L_l K'l‘,\, G-:L'l‘—“ U K'JL’)\.

AeAd XeAL
JA] is even | Al is odd

where |\ =30 Ni, Zo = lop41 and z; = Diag(n, 1,...,1,771).
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§2 Spherical function w(z;s) on X

We introduce a spherical function w(z;s) on X by Poisson transform from relative B-
invariants. For a matrix g € G, denote by d;(g) the determinant of lower right i by ¢
block of g. Then d;(z), 1 € i < n are relative B-invariants on X associated with rational
characters v; of B, where

di(p- z) = ¥i(p)di(z), %i(p) = Nwk(di(p)), (z€ X, p€ B). (2.1)
We set
XP?={zeX|dz)#0,1<i<n}. (2.2)

then X (k) is a Zariski open B(k)-orbit, where k is the algebraic closure of k. For z € X
and s € C*, we consider the integral

w(z; 5) =/K (k- z)"dk, |d(y)[’ =H ()™, (2.3)

where dk is the normalized Haar measure on K, and k runs over theset {k € K | k- z € X}.

The right hand side of (2.3) is absolutely convergent if Re(s;) > 0, 1 < 7 < n, and con-
tinued to a rational function of ¢*, ..., ¢°, and we use the notation w(z; s) in such sense.
We call w(z;s) a spherical function on X, since it becomes an H(G, K)-common eigen-
function on X (cf. [H1, §1], or [H2, §1]). Indeed, H(G, K) is a commutative C-algebra
spanned by all the characteristic functions of double cosets KgK,g € G by definition,
and we see

(f *w(;9)() / F(g)wlg™ - 23 8)dg)
= MN(flw(z;8), (f € H(G,K)), (2.4)

where dg is the Haar measure on G normalized by [, xd9 = 1, and ), is the C-algebra
homomorphism defined by

At H(G, K) — C(¢™,...,q"),
= [ 101 st
Here [(p)|™° = [T, |%i(p)| ™™, dp is the left-invariant measure on P such that [, . dp =
1 and §(p) is the modulus character of dp (d(pq) = 6(q)~'dp).

We introduce a new variable z which is related to s by

/=1
logq

8 =—2+ 241 — 1+ (1S1$n_1)a Sn=—zm — 1+ (25)

and write w(z; z) = w(z; s). We see

[(p)[° = (=1)= @) T | Nesw(ps)|* 63 (p), € B, (26)

=1
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where p; is the i-the diagonal entry of p, 1 < i < n. The Weyl group W of G with
respect to the maximal k-split torus in B acts on rational characters of B as usual (i.e.,
o(¥)(b) = ¥(n;'bn,) by taking a representative n, of o), so W acts on z € C* and on
s € C™ as well. We will determine the functional equations of w(z; s) with respect to this
Weyl group action. The group W is isomorphic to S, x C§, S, acts on z by permutation of
indices, and W is generated by S, and 7 : (21,...,2,) —> (21, ., 2n—1, —2n). Keeping the
relation (2.5), we also write A,(f) = As(f). Then the C-algebra map ), is an isomorphism
(the Satake isomorphism)

A, ¢ H(G K) =5 Clgt?™, ..., ¢, (2.7)

where the ring of the right hand side is the invariant subring of the Laurent polynomial
ring C[¢®,q7%,...,¢%", ¢ %] by W.

By the embedding
- jh* 1
Koy=GL,(Op) — K, h+— h= 1 ,
h

we obtain
w(ais) = [ €Dk 5)dk
K
where D(y) is a spherical function on the space H, (k') defined by

(W (y;s) = / d(h-y)[ dh,  (h-y = hyh"),

Ko

and we see G1(z2) - ({")(y;s) is holomorphic for z € C and S,-invariant(cf. [H1, §2]).
Thus we obtain the following.

Theorem 2.1 The function G1(2)-w(x; s) is invariant under the action of S, on z, where

Gi(z) = H Rl (2.8)

1 — g#—%-1"
1<i<j<n q

As for 7 € W, first we calculate explicitly the spherical function w®(z;s) of n = 1
and read

_}j_qfi..w(l)(x.z)ec[z+ -2, w®(z; )_ﬂ. M (z;7(2)). (2.9)
== ; ¢ +q77], W (z;2) = r—— Wz (2)). (2.
Then, for n > 2, by using the embedding
-~ 1n;1
K1=U(j3)(OkI)L+K=Kn, h— h= h R
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we show the identity

n-2
w(z;s) = / IT 1di(k - @)% - ldns(k - 2)*F°" - w(Dy (k - 7); 8,)dk, (2.10)
i=1
where, D;(y) € X, for y € X°? and D;(y) = Diag(yn, ¥, y, ') if y is diagonal with diagonal
n-th entry y, and (n + 1)-entry yo. By (2.9) and (2.10), we obtain the following.

Theorem 2.2 For general size n, the spherical function satisfies the functional equation

1 _ q—1+22n

w(z;z) = w(z; 7(2)),

q2z,1 _ q—l

where 7(2) = (21, ..., Zn-1, —2n)-

We prepare some notation. Set
E={:‘:6,'Zt6j, :1:261|].S'L,]S’n,27é]}, E+=Z:—U2+,
Lh={eite,e—¢|1<i<j<n}, Zf={2]1<i<n},

where e; is the i-th unit vector in Z", 1 <14 < n. We note here that ZU{=xe; | 1 <i < n}
is the set of roots of G. We consider the pairing

(t,2) =Y tizi, (t,2) €Z"xC",
i=1

which satisfies
(a, 2) =(o(a), 0(2)), (c€X, 2eC", ceW).
Then the following two theorems are proved in the same way as in the even case, based

on Theorem 2.1 and Theorem 2.2.

Theorem 2.3 The spherical function w(z;z) satisfies the following functional equation

w(z; 2) = Tp(2) - w(z; 0(2)), (2.11)
where
1-g®! + + +
FO-(Z)= H m, ) (U)={CX€E | -U(Q)EE }

aeZt (o)

Theorem 2.4 The function G(z) - w(z;z) is holomorphic on C* and W -invariant. In
particular it is an element in Clg*™, ... ¢** W, where

1 _+. q(ayz>
G(Z) = H 1-— q(a,z)—l'

aext



§3 The explicit formula for w(z; 2)

In order to determine the explicit formula of w(z; z), it suffices to give the explicit formula
for each representative of K-orbits, hence for z), A € A} by Theorem 1.1.

Theorem 3.1 For A € A}, one has the explicit formula

L+a)A-g?) 1
Wont1(—q 1) G(z)

where G(z2) is given in Theorem 2.4, zy € C" is the value in z-variable corresponding to
0 € C" in s-variable,

w(zyyz) = g% Qa(2),

zo,i=—(n—i+l)+(n—z'+§) Togg " <i<mn, (3.1)
W () = ﬁ(l - ti)a
=1
() =Q(zx—a7 =02, Q) =Y o(r™e(z,1),
geW
(5 =[] % to = { i:::g: Zigég (3.2)

aext

We prove Theorem 3.1 by using a general expression formula of spherical functions
given in [H2, §2] based on the functional equations of spherical functions and data of the
group G under certain condition. After checking the condition, which is rather trouble-
some, we use the results in §2, and formulate the formula.

Remark 3.2 We see the main part Q,(2) of w(x; 2) is contained in R = C[¢g*=, ..., ¢** W
by Theorem 2.4, and

1
Py(zts,t) = —— - byt 3.3
72585, te) Wittt (2315, te) (3.3)
is a specialization of Hall-Littlewood polynomial of type C,, where W)(ts,t,) is the
Poincaré polynomial of the stabilizer subgroup Wy of W at A, and

-1
Wi(— -1 _ =2y _ U),\(_q ) 3.4
)\( q 7 q ) (1+q_1)n+1) ( )
Wy t) - Wy, t) ifmg>0
mm={ era®) Lo tm(®) e >0 4o =ty
HfZl Wim,(N) (t) if mo = 0,

Using P\(z) = Py(z; —q¢7 !, —¢~%) we have

l-g¢') 1

want1(—g7Y) G(2) ~wx(=g ) - g™ Pa(z), (A e Af). (3.5)

w(zy; 2) =
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It is known (cf. [M2], [HK, Appendix B]) that the set { P\(2;ts,t¢) | A € A} forms an
orthogonal C-basis for R, in particular Po(z) = 1 (cf. (4.4) and (4.6)). In the present
case, the root system of the group G = U(jans1) is of type BC,, but we can write
the explicit formula for w(z;z) as above by using Py(z;ts,t¢) of type C,. We need a
different specialization from the case of unitary hermitian forms of even size, which is a
homogeneous space of the group U(j2,) of type C,, and (ts,t,) = (—g~%,¢7?) (cf. [HK]).

We have the following immediately from (3.5).

Corollary 3.3 For zo = 13,41, one has

oy (=g wn(=g HDwa(-¢H) 1
Wllansr;2) = Wont1(—q 1) - G(z)

Remark 3.4 We give an interpretation of the constant zy. For v € Z", let
ght®) — H {12 H el (3.6)
pest pez}

where 8Y = 23/(8,8). Then for v = o € %, this coincides with the generalization of the
heights of roots [M1]. On the other hand, (3.6) can be rewritten as

tht('v) — q(v,zo),
where zj is given by (3.1). Thus zy can be regarded as a generalization of the dual Weyl

vector.
From this viewpoint, the constant 2y in the even case is calculated as

1 VA
zo,i=—(n—i+§)+(n—z’)7rlogq , 1<i<n,
which corresponds to the change of variables
1
Sp = —2p — 5 (37)

in (0.3) with the same s; (1 < i < n—1) as before. This modification causes only the sign
changes of w(zy; 2), that is, w(xy; z) with (3.7) is the multiple by (—1)™ of the original
w(z;2). In other words, on G - zy the both coincide and on G - z; the difference is the
multiple by —1.
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84 Spherical Fourier transform and Plancherel for-
mula on S(K\X)
We modify the spherical function by
(5 2) = (o 2) fwllani 2) € R = Clg™™, ..., =Y, (41)
and define the spherical Fourier transform on the Schwartz space
S(K\X) = {¢:X — C| left K-invariant, compactly supported},
by

F: S(K\X) — R
@ — F()(2) = [y (2)¥(z; 2)dz,
where dz is a G-invariant measure on X. The existence of a G-invariant measure is assured

by the fact X is a union of two G-orbits and G is reductive, and we fix the normalization
afterwards. Then, for each characteristic function chy of K - z), A € A}, we have

(4.2)

Flehy)(z) = q<*»zo>-j§~g§+j:% (K - 2)PA(2), (43)

where wy(—g¢7!) is defined in Remark 3.2, and v(K - z,) is the volume of K -z, with
respect to dr. On the other hand, we regard R as an H(G, K)-module through the
Satake isomorphism A, (cf. (2.7)). Then we have the following.

Theorem 4.1 The spherical Fourier transform F gives an H(G, K)-module isomorphism
S(K\X) = Clg*™,...,¢*" (= R),

where R is regarded as H(G, K)-module via )\,. Especially, S(K\X) is a free H(G, K)-
module of rank 2™.

Corollary 4.2 /ill the spherical functions on X are parametrized by eigenvalues
ze (C/Q—’LEZ) JW through H(G, K) — C, f — A\,(f). The set

logg
{W(z;2+u) | we{0,7v/=1/logq}"} forms a basis of the space of spherical functions
on X corresponding to z.

We introduce an inner product ( , ) on R by

(P. Qe = [ PEAGME), PQER (4.4)
Here

a*={\/—_1(R 2n Z)}", =L Wa(=g Nwana(=¢7H) 1 dr (45)

@_q T nl2n (1+g-1)ntt {c(z)|2
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where dz is the Haar measure on a* with [, dz = 1 and ¢(z) = c(z; —¢™*, —¢™?) is defined
in Theorem 3.1. Then, it is known

_ . wo(—=q7") +
<P/\’ > < P/\)R = 5&# 7.’5;(—(]_1)’ ()‘nu' € An) (4'6)

On the other hand, one has

(K- z))  @EHow,(—q")
v(K-z,)  g*ouwy(—g 1)’

(A w € A%, 1A = [l (mod2)). (4.7)

Theorem 4.3 (Plancherel formula on S(K\X)) Let du be the measure defined by
(4.5). By the normalization of G-invariant measure dz such that

_ -1
o(K - xy) = q-2<*’20>% €A, (4.8)
one has for any ¢, ¢ € S(K\X)

| ot@it@iiz = [ P FOE ), (4.9

Outline of a proof. We recall the G-orbit decomposition (Theorem 1.3) and normalize
dx on each G-orbit as

1 for A =0,
v(K - 13) = g i G=Ca AT ™) o 5 (1,0, ,0),

then the identity (4.8) follows from this and (4.7). Then, for any \, p € A}, we see by
(4.3), (4.6), and (4.8)

[ er(@)@is = 61,0770 LD — [ () (o) T, TN ),
x wx(—q7")
Since {chy | A € A} spans S(K\X), we conclude the identity (4.9). ]

The next corollary is an easy consequence of Theorem 4.3.

Corollary 4.4 (Inversion formula) For any ¢ € S(K\X),

o(z) = / Fo)(2)¥(z; )du(z), z € X.

116



References

[Car] P. Cartier: Representations of p-adic groups — A survey, Proc. Symp. Pure Math.
33-1(1979), 111-155.

[H1] Y. Hironaka: Spherical functions and local densities on hermitian forms, J. Math.
Soc. Japan 51(1999), 553 — 581.

[H2] Y. Hironaka: Spherical functions on p-adic homogeneous spaces, “Algebraic and An-
alytic Aspects of Zeta Functions and L-functions” — Lectures at the French-Japanese
Winter School (Miura, 2008)—, MSJ Memoirs 21(2010), 50 — 72.

(H3] Y. Hironaka: Spherical functions on U(2n)/(U(n) x U(n)) and hermitian Siegel
series, “Geometry and Analysis of Automorphic Forms of Several Variables”, Series
on Number Theory and Its Applications 7, World Scientific, 2011, 120 — 159.

[HK] Y. Hironaka and Y. Komori: Spherical functions on the space of p-adic unitary her-
mitian matrices, Int. J. Number Theory, 10(2014), 513 — 558; Math arXiv:1207.6189

[HK2] Y. Hironaka and Y. Komori: Spherical functions on the space of p-adic unitary
hermitian matrices II, the case of odd size; Math arXiv:1403.3748

[HS] Y. Hironaka and F. Sato: The Siegel series and spherical functions on O(2n)/(0(n) x
O(n)), “Automorphic forms and zeta functions” — Proceedings of the conference in
memory of Tsuneo Arakawa —, World Scientific, 2006, 150 — 169.

[Ja] R. Jacobowitz: Hermitian forms over local fields, Amer. J. Math. 84(1962), 441 -
465.

[M1] I. G. Macdonald: The Poincaré series of a Coxeter group, Math. Ann. 199(1972),
161 - 174. ;

[M2] I. G. Macdonald: Orthogonal polynomials associated with root systems, Séminaire
Lotharingien de Combinatoire 45(2000), Article B45a.

[Sa] I Satake, Theory of spherical functions on reductive algebraic groups ovr p-adic
fields, Publ. Math. I.H.E.S. 18(1963), 5 — 69.

[Se] J. P. Serre: Galois cohomology, Springer-Verlag, 1997, (English translation of “Co-
homologie Galoisienne”, 1964).

Yumiko Hironaka Yasushi Komori

Department of Mathematics, Department of Mathematics,
Fac. Education and Int. Sciences, Faculty of Science,

Waseda University Rikkyo University

Nishi-Waseda, Tokyo, 169-8050, Japan, Nishi-Ikebukuro, Tokyo, 171-8501, Japan
hironaka@waseda.jp komori@rikkyo.ac.jp

117



