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Abstract

We will show that ), oy A;A; > 0 for bounded operators A; > 0
(i=1,2,---,n) if and only if g(}°; Ai) > Y, 9(A;) for every operator
convex function g(t) on [0,00) with g(0) < 0. Let A,B > 0 and A be
invertible. Then we will observe that the Fréchet derivative Dg(sA)(B)
is increasing on 0 < s < oo for every operator convex function g(t) on
(0,00) if and only if AB+ BA > 0.

1 Introduction

Let I be an interval of the real axis and f(t) a real continuous function de-
fined on I. For a bounded Hermitian operator (or matrix) A on a Hilbert
space whose spectrum is in I, f(A) stands for the ordinary functional calcu-
lus. f is called an operator monotone (or operator decreasing) function on I
if f(A) < f(B) (or f(A) > f(B)) whenever A < B. It is evident that if f(t)
is operator monotone in the interior of I and continuous on I, then f(t) is
operator monotone on [ itself. It is an essential fact that f(¢) := -)‘i\_ﬁ is oper-
ator monotone on (—oo, —\) and on (—A\, 00) for each A. It is also well-known
that ¢ (0 < a < 1) is operator monotone on [0,00) and so is logt on (0, 00).
A continuous function g defined on I is called an operator convex function on I
if g(sA+ (1 —s)B) < sg9(A) + (1 — s)g(B) for every 0 < s < 1 and for every
pair of bounded Hermitian operators A and B whose spectra are both in I.
An operator concave function is likewise defined. t* (1 < a < 2) and tlogt
are both operator convex on [0,00). For further details we refer the reader
to[2,8]. It has been well-known that a non-negative continuous function f(t)
on [0, c0) is operator monotone if and only if f(t) is operator concave. One of
the authors [12,15] (cf.[7]) extended this as follows:
A continuous function f(t) defined on an infinite interval (a,c0) is operator
monotone if and only if f(t) is operator concave and f(oo0) > —oc.

Let h(t) be a non-negative concave (not necessarily operator concave) func-
tion on [0, 00). Since h(t) is increasing and h(t)/t is decreasing, h(t) is subad-
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ditive, namely h{a+b) < h(a)+ h(b). Bourin and M. Uchiyama[3] have shown
the following theorems.

Theorem 1.1. Let A, B > 0 and let f : [0,00) — [0,00) be a concave function.
Then, for every unitarily invariant norm || - ||,

If(A+B)|| < ||f(4) + £(B)]|-

Theorem 1.2. Let A,B >0 and let g : [0,00) — [0,00) be a convex function
with g(0) = 0. Then, for every unitarily invariant norm || - ||,

lg(A+ B)|| > ||g(4) + 9(B)]|.
Moslehian and Najafi [9] have shown the following theorem.
Theorem 1.3. For A,B >0, AB+ BA > 0 is equivalent to
f(A+B) < f(A)+ f(B)
for any non-negative operator monotone function f > 0 on [0,00).

We will show that if ), oy A;A; > 0 for bounded self-adjoint operators A;
(i=1,2,---,n), then for every operator monotone function f(¢) > 0 on [0, )

fl(Ar+---+ An) < f(A) +--- + f(An),
and for every operator convex function with g(0) <0
g(Al +e +An) > g(Al) +- +g<An)'

For Theorem 1.1 and Theorem 1.2, we can extend the results to finitely
many operators by using the exactly the same proof. But, as for Theorem 3, we
have to use to different proof to extend the results to finitely many operators.

If h(t) is a C'-function defined on an open interval, then the matrix function
h(X) is Fréchet differentiable and the derivative Dh(A)(B) equals the Gateaux
derivative 4h(A + tB)|s=o. It is known that if f(¢) is operator monotone, the
Fréchet derivative D f(A) is a positive linear mapping (cf.[2]). It is easy to see
g(t) is operator convex if and only if (g(A+t(B — A))z, z) is a convex function
on 0 <t <1forall A, B and for all vectors x .Therefore, if g € C! is operator

convex, then

9(B) = g(A) + Dg(A)(B — A). (1)
Because
(9(A+t(B-A))z,z) = (9((1-t)A+tB)z,z) < ((1-t)9(A)z, )+ (tg(B)z, z).

At ¢t = 0, an equality holds, and the derivative of the right hand side is inde-
pendent of ¢t. Then
d
7 (9(A+ (B — A))z,z)|1=0 < (~g(A)z,2) + (9(B)z, z).
Dg(A)(B — A) < —g(A) + g(B).

Let A, B > 0 and A be invertible. Then we will prove that the Fréchet deriva-
tive Dg(sA)(B) is increasing on 0 < s < oo for all operator convex functions
g(t) on (0,0) if and only if AB + BA > 0.
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2 Subadditivity and superadditivity

We extend Theorem 3 to finitely many operators.

Theorem 2.1. Let A; >0 (i = 1,2,--- ,n). Then the following are equivalent:
() Toups 4idds 2,
(ii) for every operator convez function g(t) on [0, 00) with g(0) <0

g(Ar+---+ An) 2 g(A1) + -+ g(An),
(iii) for every non-negative operator monotone function f(t) on [0, co)
f(Ar+ -+ An) < f(AD) + -+ + f(An).
Proof. We show that (i) implies (ii). We first note that (i) is equivalent to
(A4 -+ Ap)? > A3 + - - + A2, which does not imply (A4; + - - - +An1)? >
A} +---+ A2 . We may assume that the spectra of A; are in (0,00) without
loss of generality. The function g(t)/t is operator monotone on (0, 00) [6]

and hence operator concave, although it is not necessarily non-negative. We
therefore get

() = 4((Za) (2a) (24) )
= 4((Z4)(Z)(z4) )

Since g(t)/t is operator concave on (0, c0) and

(£4) “a(m) s (24) ()
HE) (B9 () )
“HE((54) "aranr(24) ™)

> 5((Sa) st (£a) ")
()
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By combining the above inequalities,we get

(£4)2(24) " (Sow) (£4)

(ii) arises by multiplying (3_, A;)!/? from the both sides.It is evident that (ii)
implies (iii), because — f(t) is operator convex with —f(0) < 0. At last, we
show (i) follows (iii). Since fi(¢) is operator monotone on [0,00) for every

A > 0, in virtue of the decomposition fy(t) =t — /\t—it, we obtain

2 2 2
(A1+ +An) _>_ Al +...+ An .
At+Ai++ 4, T A+ A A+ A,

Multiply the both sides by A and then let A tend to co. This deduces (i). O

-1/2

We note that (ii) directly implies (i) since 2 itself is operator convex.
By considering g(t) — g(0) and f(t) — f(0), we can replace the conditions
(ii) and (iii) of Theorem 2.1 with (ii)’ and (iii)’ given below, respectively.

Corollary 2.2. Suppose A; >0 (i=1,2,---,n) and 21.# A;A; > 0. Then
(ii)" for every operator conver function g(t) on [0, 00)

g(A1+ -+ An) + (n — 1)g(0)] > g(A1) + - + g(Aqn).
(iii)" for every operator monotone function f(t) on [0, 00)
flAr+- -4+ An) + (n = 1) f(O)] < f(A1) + - + f(4An).
Replacing A;, Ay, A3 with 0, B, C in (ii)’ in Corollary 2.2, we obtain
g9(0I + B +C) +29(0)I > g(0)I + g(B) + g(C).

Then
g(0I + B+ C) — g(0I + B) > g(0I + C) — g(0)1.

This is an elementary form in Lemma 3.2 stated later.
Substituting the operator convex function ¢logt on [0, 00) to the Theorem
2.1, we obtain the following example.

Example 2.1. If }°,,.A;A; > 0 for invertible operators 4; > 0 (i =
1,2,---,n), then

(Zi:fh) 1og(2i:A¢) > ‘;AilogAi.

Remark 2.1. We remark that if (i) does not hold, then the set of A such that
(iii) holds for fy(t) is bounded, but it is not necessarily empty. For instance,

let
2 0 8 10
A_3(0 1)’ B_4<10 13)'



Then

16 15
AB + BA =24 (15 13> 20.

However we have

—fi(4) - A+1) +(B+1)1-1

B)+1=
10 33 10 —40
7 7
DECE (o zz) w (% )
1 (38 40

=7 _

5 (d 2)<S0SU+BH)T A4+ B H1
Hence, f1(A+ B) < fi(A) + f1(B).

In [11] it was shown that AB + BA > 0 implies A°B + BA® > 0 for

0 <a<1andhence A°B*+ B%4? >(0for0<a<land0<b<1 We
therefore obtain

Corollary 2.3. Suppose A,B > 0 and AB+ BA > 0. Then for 0 < a <
1,0<b<1

(l) (Aa +Bb)2 Z A2a +B2b'
(ii) for every operator convez function g(t) on [0, c0)

g(A® + B%) + g(0)] > g(A°%) + g(B").
(iii) for every operator monotone function f(t) on [0, 00)

f(A*+ B®) + f(0)I < f(A%) + f(BY).

3 Fréchet derivative

Since an operator convex function g(t) is convex in the usual sense, g(a + b+
c)—g(a+b) > g(a+c)—g(a) for b,c > 0 and ¢'(t) is increasing. In this section
we give analogous result for an operator function g(A). We first give a general
result.

Lemma 3.1. Suppose g(t) is operator convex on an interval. Then for A with
spectrum in the interval

Dg(A + sB)(B)

is increasing with respect to real number s as far as g(A + sB) is well-defined.

Proof. From the inequality (1) it follows that for s’ < s

g(A+sB) > g(A+$B)+ Dg(A+s'B)(sB - s'B)
g(A+s'B)>g(A+sB)+ Dg(A+sB) (s'B — sB).
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These yield
Dg(A + sB)(B) > s—_ls- (g(A+ sB) — g(A+ §'B)) > Dg(A + s'B) (B).

This is the required result. a

From now on we deal with an operator convex function g(t) or an operator
monotone function f(t) defined on (0,00). We note that g(A) is defined not
only for invertible A > 0 but also for A > 0 if g(0+) exists.

Lemma 3.2. Let A,B,C > 0. If
BA+A)IC+CA+A)TB>0 (A>0), (2)
then

(i) f(A+B+C)—-f(A+B) < f(A+C)— f(A) for every operator monotone
function f(t) on (0,00) as far as f(A) is bounded,

(ii) g(A+B+C)—g(A+ B) > g(A+ C) — g(A) for every operator convex
function g(t) on (0,00) as far as g(A) is bounded.

Proof. From (2), we get

(B+C)A+A)Y(B+0) B(A+A)'B+C(A+ A4)7IC

BA+A+C)'B+C(A+ A+ B)'C

v v

One can see that

(B+C)A+A) 7 (B+C)>B\A+A+C)'B+C(\+ A+ B)™'C (3)
= (A+A+B+0O) 7 - (A+A+B) 1> A+ A+C) -0+ AL (1)
Indeed, multiply both sides of (4) by A+ A+ B + C to get (3). We show (4)
yields (i).
Since f has an integral representation

s =ars+ [ (-5 ) du,

A +1 A+t

where a is a real number, 8 > 0 and p is a positive measure on (0, 00) such
> 1
that du(A
a.A 2 ) <o,

f(A+B+C) - f(A+ B)
:30—/wﬂA+A+B+Cr%4A+A+m4}@Q)

gﬂC—AmﬂA+A+OrP-Q+Ar§dMM
= f(A+C) - f(A).



We next show (ii).

First of all, assume g(4+0) < oo. Then by putting g(0) = g(+0), g(t) is
operator convex on [0,00). f(t) := ,ﬂ%ﬂ@ is consequently operator monotone.
By making use of the above representation of f(t), we can obtain (ii). In this
process we need BC + CB > 0. But we can derive it from (2).

We next consider the case where g(+0) does not exist, i.e., g(+0) = oo.
Since g(t + a) is operator convex on [0, c0) for every a > 0, by the above result

g(A+B+C+a)—g(A+B+a)>g(A+C+a)—g(A+a).

That g(A) is bounded implies there is m > 0 so that A > m. Since g(t + a)
uniformly converges to g(t) on [m, ||Af|], |lg(A+a)—g(A)|| = 0 as a — 0. We
therefore arrive at (ii). 0O

Remark 3.1. We note that each of the following is a sufficient condition
for (2).

CB+BC > 0, AB=BA, AC =CA, (5)
CB+BC > 0, AC'B+BC'4>0, (6)
CB+BC > 0, AB'C+CB'A>0, (7)

where C and B are respectively assumed to be invertible in (6) and (7). Indeed,
(5) is trivial; from (6) it follows that

(A+A)C'B+BCY{(A+A4)>0
for every A > 0, and hence
C'BA+A) 7 +(A+A)BC >0

for every A > 0; this gives (2). The same argument yields from (7) to (2).

We now give the main theorem of this paper.

Theorem 3.3. Let A,B > 0 and A be invertible. Then the following are
equivalent to each other:

(i) AB+ BA>0.
(i) Df(sA)(B) is decreasing with respect to s > 0 for every operator mono-
tone function f(t) on (0, 00).
(ili) Dg(sA)(B) is increasing with respect to s > 0 for every operator convez
function g(t) on (0,00).

Proof. We first show (i) implies that D f(aA+bA)(B) < Df(aA)(B) for a,b >
0. Replace A, B,C in (7) with aA, bA,¢B with ¢ > 0, respectively. Then (7) is
satisfied. By Lemma 3.2 we obtain

f(aA+bA+tB) — f(aA+bA) < f(aA+tB) — f(aA).
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By dividing both side by ¢ and taking the limits, we gain
Df(aA +bA)(B) < Df(aA)(B).

(iii) similarly follows (i). We show (ii) implies (i). From the assumption, for
any A, s > 0, we have

(A+sA+ N IB(A+sA+ )7}

1 1
= 2 DHA+ sA)(B) < Xng,\(A)(B) =(A+NT'B(A+N)
since fi(t) := :\% =A- ;\’% is operator monotone. From this it follows that

for every b > 0
(A+sA+ N B+b)(A+sA+ X< (A+ N (B+b)A+N
By taking inverses of the both sides,we obtain
0< sAB+b)"HA+ N+ (A+X)(B+b)'sA+sA(B+b) 54,
and taking the limits s — 0, we get
0< AB+b) A+ )N+ (A+N)(B+b) A

Divide the both sides by A and take the limits to get 0 < A(B +b)~!' + (B +
b)~1A. This entails 0 < AB + BA. Assume (iii). Since g(t) = t* is operator
convex and Dg(A)(B) = AB + BA, s(AB + BA) is increasing on 0 < s < 00.
This implies AB + BA > 0. a

We now combine the above theorem with Lemma 3.1.

Corollary 3.4. Let A,B > 0 and A be invertible. Then the following are
equivalent to each other:

(i) AB+ BA > 0.

(ii) Df(sA+ s'B)(B) is decreasing with respect to both s > 0 and s’ > 0 for
every operator monotone function f(t) on (0,00).

(iii) Dg(sA + s'B)(B) is increasing with respect to both s > 0 and s’ > 0 for
every operator convex function g(t) on (0, 00).

Proof. We show that (i) implies (ii). To do so, we first see D f(sA+ s'B)(B) is
decreasing with respect to s > 0 for each fixed s'. For a,b > 0 replace A, B,C
in (7) with aA + s'B,bA,tB with ¢ > 0, respectively. Then (7) is satisfied.
Because of Lemma 3.2 we can get

Df (aA+bA+sB)(B) < Df(aA+ s'B)(B).

This is the desired result. As we mentioned in Introduction f(t) is operator
concave. —f(t) is therefore operator convex. By Lemma 3.1, for each s,
Df(sA + s'B)(B) is decreasing with respect to s’ > 0. We consequently get
(ii). The same argument leads from (i) to (iii). The rest has been already
shown in Theorem 3.3. a
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Corollary 3.5. Let A > 0 be invertible. Then we have

(i) A commutes to B > 0 if and only if Dg(sA)(B™) is increasing on 0 <
s < oo for every natural number n and for every operator convex function
g(t) on (0,00).

(i) A is constant if and only if Dg(sA)(B) is increasing on 0 < s < 0o for
every B > 0 and for every operator convex function g(t) on (0, 00).

Proof. By Theorem 3.3, Dg(sA)(B") is increasing with respect to s > 0 if and
only if B"A+ AB™ > 0 for every n. That is equivalent to A commutes with B

(see [10]).
(ii) is obvious by using (i). O

On Corollary 3.5, if we replace operator convex function with operator
monotone function, we get similar result.

We finally extend Theorem 3.3.

Theorem 3.6. Let A,B,C > 0 and A be invertible. Then the following are
equivalent:

(i) AC+CA>0, BA'C+CA'B>0.

(i) Df(sA+ B)(C) is decreasing on 0 < s < oo for every operator monotone
function f(t) on (0,00).

(ili) Dg(sA + B)(C) is increasing on 0 < s < oo for every operator conver
function g(t) on (0,00).

Proof. Assume (i). Then for a,b > 0 replace A, B, C in (7) with aA+ B, bA, tC
with ¢t > 0, respectively. Then (7) is satisfied. By (i) of Lemma 3.2, we have

f(aA+ B+ bA+tC) — f(aA+ B+ bA) < f(aA+ B +tC) — f(aA + B)
for every operator monotone function f(¢) on (0,00). We therefore obtain
Df(aA+bA+ B)(C) < Df(aA+ B)(C).

This means (ii). (iii) can be similarly derived from (i). We next show (ii)
implies (i). From the assumption, for any 0 < s’ < s and A > 0, we have

(sA+B+XN'C(sA+B+\)!
_ %D fr(sA+ B)(C) < %D fr($A+B)(C)

=(§A+B+))"'C(A+B+ N7,
where fy(t) = X/\ﬁ == A’\—jt By letting s’ — 0, we have

(SA+ B+ A)'C(sA+B+N)1<(B+NC(B+ N7,
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Multiply the both sides by sA + B + ),
0<sAB+N7IC+sC(B+ ) TA+s2A(B+)\)'C(B+ ) tA.

This gives
0<AB+N)'C+C(B+N A
Since A > 0 is arbitrary, one can easily derive (i) from this. To show that (iii)
implies (i), consider the operator convex functions
At?
A+t

g(t) = = At — Afa(t)

for A > 0. Since
Dg,(sA+ B)(C) = AC — ADf\(sA + B)(C),

Dfx(sA + B)(C) is decreasing on 0 < s < oo. The above argument leads us
to (i). O

We note that the case of B = 0 in this theorem is the same as Theorem
3.3.

Corollary 3.7. Let A,B,C > 0 and A, B be invertible. Then the following
are equivalent:

(i) AC+CA>0, BC+CB >0 and BA'C + CA~'B > 0.

(i) Df(sA+ s'B)(C) is decreasing on 0 < s < 00 and 0 < s’ < oo for every
operator monotone function f(t) on (0,00).

(ili) Dg(sA+ s'B)(C) is increasing on 0 < s < 00 and 0 < s’ < 0o for every
operator convez function g(t) on (0, 00).

Proof. Assume (i). Since BA™'C + CA~!B > 0 is equivalent to AB~!C +
CB~'A > 0, by Theorem 3.6, we get (ii) and (iii). The converse statements
have been also shown there. a

As C = B in Corollary 3.7 , the condition (i) reduces to AB + BA > 0.
This says that Corollary 3.7 is an extension of Corollary3.4.
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