
Non-hyperbolic automatic groups and groups acting
on CAT(O) cube complexes

Yasushi Yamashita1

Department of Information and Computer Sciences,
Nara Women’s University

1. INTRODUCTION

This note is a brief summary of my talk that I gave at RIMS workshop “Complex
Analysis and Topology of Discrete Groups and Hyperbolic Spaces See [4] for detail.

If a group $G$ has a finite $K(G, 1)$ and does not contain any Baumslag-Solitar groups, is
$G$ hyperbolic? (See [1].) This is one of the most famous questions on hyperbolic groups.
Probably, many people expect that the answer is negative, and it would be better to
restrict our attention to some good class of groups. In this talk, we consider automatic
groups. If an automatic group $G$ does not contain any $\mathbb{Z}+\mathbb{Z}$ subgroups, is $G$ hyperbolic?
Our problem is listed in [5] and attributed to Gersten. Note that, if the group is the
fundamental group of a closed 3-manifold, our question corresponds to the so-called (weak

hyperbolization”’ of 3-manifolds.
In this talk, we define the notion of $n$-tracks of length $n$ which suggests a clue of the

existence of $\mathbb{Z}+\mathbb{Z}$ subgroup, and show its existence in every non-hyperbolic automatic
groups with mild conditions. As an application, we show that if a group acts freely,
cellularly, properly discontinuously and cocompactly on a CAT(O) cube complex and its
quotient is “weakly special then the above question is answered affirmatively. See [4] for
detail.

2. AUTOMATIC GROUP

Let $G$ be a finitely generated group with a set of generators $A$ . Let $w$ be a word over
$A$ . We denote by $w(t)$ the prefix of $w$ with length $t$ . The image of $w$ in $G$ by the natural
projection is denoted by $\overline{w}$ . We denote by $w(t_{1}, t_{2})$ the subpath of the image of $w$ in the
Cayley graph $\Gamma(G, A)$ from the vertex $\overline{w(t_{1})}$ to the vertex $\overline{w(t_{2})}.$

Now, we recall the concept of automatic structure. See [2] for detail. We denote by $\epsilon$

the identity element of $G$ . A special letter $ $\not\in$ A is used to define the automatic structure
of the group. A finite state automaton $M$ over an alphabet $A$ is a machine that determines
“accept” or “reject” for a given word over $A$ . The language given by all the accepted words
of a finite state automaton $M$ is denoted by $L(M)$ .

Definition 2.1. An automatic structure on $G$ consists of a finite state automaton $W$ over
$A$ and finite state automata $M_{x}$ over $(A\cup\{{\}\})\cross(A\cup\{{\}\})$ , for $x\in A\cup\{\epsilon\}$ , satisfying
the following conditions:

(1) The natural projection from $L(W)$ to $G$ is surjective.
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(2) For $x\in A\cup\{\epsilon\}$ , we have $(w, w’)\in L(M_{x})$ if and only if $\overline{wx}=\overline{w’}$ and both $w$ and
$w’$ are elements of $L(W)$ .

$W$ is called a word acceptor, and each $M_{x}$ is called a compare automaton for the
automatic structure. An automatic group is one that admits an automatic structure.

3. EXISTENCE OF $n$-TRACKS IN NON-HYPERBOLIC AUTOMATIC GROUPS

Let $G$ be an automatic group with automatic structure $(A, W, \{M_{x}\}_{x\in A\cup\{\epsilon\}})$ where $A$ is
the set of generators with $A^{-1}=A,$ $W$ the word acceptor and $M_{x}$ the compare automaton
for $x\in A\cup\{\epsilon\}$ . The following is the key concept in this talk.

Definition 3.1. Let $T=\{t_{1}, t_{2}, . . . , t_{n}\}$ be a set of mutually disjoint $n$ paths of length $n$

in $\Gamma$ . We call $Tn$-tracks of length $n$ if there exist $2n$ words $w_{1},$ $w_{1}’,$ $w_{2},$ $w_{2}’$ , . . . , $w_{n},$ $w_{n}’$ of
$L(W)$ and a positive integer $r$ such that $(w_{i}’, w_{i+1})$ is accepted by some compare automaton

for $i=1$ , 2, . . . , $n-1$ , and that $t_{i}=w_{i}(r, r+n)=w_{i}’(r, r+n)$ for $i=1$ , 2, . . . , $n$ . See
Fig. 1.

We show the existence of tracks in every non-hyperbolic automatic groups with mild
conditions.

Theorem 3.2. Let $G$ be a weakly geodesically automatic group whose automatic structure
is prefix closed and has the uniqueness property. If $G$ is not hyperbolic, then it contains
$n$ -tracks of length $n$ for any $n>0.$

FIGURE 1. 4-track $T=\{t_{1}, t_{2}, t_{3}, t_{4}\}$ and its related paths

4. CAT $($ O $)$ CUBE COMPLEXES

Does the existence of $n$-track of length $n$ for any $n$ imply the existence of $\mathbb{Z}+\mathbb{Z}$ subgroup?
We do not have the complete answer. But, as an application of the theorem in the previous
section, we give a partial answer to this question for the groups acting on CAT(O) cube
complexes.

4.1. Definitions. In this subsection, we briefly review the notion of CAT(O) cube complex.
An $n$-cube is a copy of $[$-1, $1]^{n}$ . A cube complex is obtained from a collection of cubes of

various dimensions by identifying certain subcubes. A flag complex is a simplicial complex
with the property that every finite set of pairwise adjacent vertices spans a simplex. Let
$X$ be a cube complex. The link of a vertex $v$ in $X$ is a complex built from simplices
corresponding to the corners of cubes adjacent to $v.$

12



Definition 4.1. A cube complex $X$ is nonpositively curved if, for each vertex $v$ in $X,$

link$(v)$ is a flag complex.

Gromov showed that a cube complex is CAT(O) if and only if it is simply connected and
nonpositively curved. Many groups studied in combinatorial group theory act properly
and cocompactly on CAT(O) cube complexes.

Let us recall the definition of hyperplane for cube complex. A midplane in a cube
$[$-1, $1]^{n}$ is the subspace obtained by restricting exactly one coordinate to O. Given an edge
in a cube, there is a unique midplane which cuts the edge transversely. A hyperplane $H$ of
a cube complex $X$ is obtained by developing the midplanes in $X$ , i.e., identifying common
subcubes of midplanes which cuts the same edge. These edges are said to be dual to $H.$

Let $X$ be a CAT(O) cube complex, and $V(X)$ its vertex set. Let $G$ be a group acting
freely, cellularly, properly discontinuously and cocompactly on $X$ . Let $G\backslash X$ denote the
quotient of the complex $X$ by the action of $G$ . The fundamental groupoid $\pi(G\backslash X)$ is the
groupoid whose objects are the points of $G\backslash X$ and morphisms between points $v,$

$v’$ are
homotopy classes of paths in $G\backslash X$ beginning at $v$ and ending at $v’$ . The multiplication in
$\pi(G\backslash X)$ is induced by composition of paths.

A directed cube is a cube with two ordered diagonally opposite vertices specified. Let
$A$ be the set of homotopy classes of the diagonal of all directed cubes in $G\backslash X$ . The
correspondence between $A$ and directed cubes in $G\backslash X$ is one to one. The directed cubes
in $X$ can be labelled equivariantly by (the lifts of) $A$ , so each cube-path in X defines a
word in $A^{*}$ . Let $\mathcal{L}$ be the subset of $A^{*}$ which corresponds to normal cube-paths.

Lemma 4.2. Let $A$ and $\mathcal{L}$ be as above. Then we have:
(1) There exists an isometry between $\pi(G\backslash X)$ with the word metric given by $A$ and

$V(X)$ with the metric given by normal cube paths. (Lemma 4.1 in [6])
(2) $\mathcal{L}$ is regular over A. (Proposition 5.1 in [6])
(3) $\mathcal{L}$ satisfies 1-fellow travel property. (Proposition 5.2 in [6])

In particular, $(A, L)$ induces an automatic structure for $\pi(G\backslash X)$ . (See Theorem 5.3 in
[6]) This structure is prefix closed, weakly geodesically automatic with uniqueness property.

The set of states of (non-deterministic) finite-state automaton for $\mathcal{L}$ is A. (Proposition
5.1 in [6]) Thus, There is a natural map from the set of states of the word acceptor of
$\pi(G\backslash X)$ to $G\backslash X$ by taking the tail of directed cubes.

Let $v$ be a vertex in $G\backslash X$ : The group $G$ is realized as a subgroupoid $\pi(G\backslash X, \{v\})$ whose
object is $v$ only, and whose morphisms are all the morphisms of $\pi(G\backslash X)$ between $v$ . It
is easy to construct an automatic structure for the group $G=\pi(G\backslash X, \{v\})$ from the
automatic structure for the groupoid $\pi(G\backslash X)$ .

4.2. Groups acting on CAT(O) cube complexes. Let $G$ be a group acting freely,
cellularly, properly discontinuously and cocompactly on a CAT(O) cube complex $X.$

Let $\mathcal{M}$ be the standard automaton for the automatic structure of the groupoid $\pi(G\backslash X)$

given in 4.1.
We use the same symbols as in the previous subsection. Let $(s, t, g)$ be a state in $\mathcal{M}.$

Since $\mathcal{L}$ (the set of words corresponding to normal cube-paths) satisfies 1-fellow travel
property, $g$ is in $A$ (the set of generators). Recall that $A$ consists of directed cubes in $G\backslash X.$

We define the dimension the the state $(s, t, g)$ , denoted by $\dim(\mathcal{S}, t, g)$ , as the dimension of
$g$ as $a$ (directed) cube. We also define dim(failure state $F$) $=+\infty.$
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Let us introduce some notation. (See [3] for more details.) Let $\vec{a},$

$\vec{b}$ be oriented edges

having a common initial (or terminal) vertex $v$ . Oriented edges $\vec{a}$ and $\vec{b}$ are said to directly
osculate at $v$ if they are not adjacent in link(v). Let $a,$

$b$ be (unoriented) edges having a
common end point $v$ . Edges $a$ and $b$ are said to osculate at $v$ if they are not adjacent in
link(v).
We consider hyperplanes in $G\backslash X$ . From now on, we assume that each hyperplane in

$G\backslash X$ is embedding.
A hyperplane $H$ is said to be 2-sided if its open cubical neighborhood is isomorphic to

the product $H\cross(-1,1)$ . If a hyperplane is not 2-sided, then it is said to be 1-sided. If
$H$ is 2-sided, one can orient dual edges in a consistent way. A2-sided hyperplane is said
to directly self-osculate if it is dual to distinct oriented edges that directly-osculate. We
say that 1-sided hyperplane self-osculates if it is dual to distinct (unoriented) edges that

osculate.
We introduce the following notion:

Definition 4.3. We say that a 2-sided hyperplane $H$ self-contacts if there are two vertices

$u,$ $v$ such that $d(u, v)=1$ and $H$ directly self-osculates at $u$ and $v$ . We say that $a$ 1-sided
hyperplane $H$ self-contacts if there are two vertices $u,$ $v$ such that $d(u, v)=1$ and $H$

self-osculates at $u$ and $v.$

Remark 4.4. By definition, if a cube complex is special in the sense of [3], then each
hyperplane embeds, and it has no hyperplane of self-contact,

This is our main theorem in this section.

Theorem 4.5. Let $G$ be a group acting freely, cellularly, properly discontinuously and

cocompactly on a CAT(O) cube complex X. If each hyperplane in $G\backslash X$ is embedding and
does not self-contact and $G$ is not word hyperbolic, then, $G$ contains $\mathbb{Z}+\mathbb{Z}$ subgroup.
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