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The braid group $B_{n}$ is a group defined by the presentation

$B_{n}=\langle\sigma_{1}$ , . . . , $\sigma_{n-1}|_{\sigma_{i}\sigma_{j}=\sigma_{j}\sigma_{i}}^{\sigma_{i}\sigma_{j}\sigma_{i}=\sigma_{j}\sigma_{i}\sigma_{j}},$ $|i-j|>1|i-j|=1\rangle\cdot$

The generators $\sigma_{1}$ , . . . , $\sigma_{n-1}$ are often called the Artin generators.
A left ordering of a group $G$ is a total ordering $<G$ of $G$ that satisfies $\gamma\alpha<c\gamma\beta$ for

any $\alpha,$
$\beta,$ $\gamma\in G$ satisfying $\alpha<c\beta$ . A group having at least one left-ordering is called

left-orderable.
The Dehornoy ordering $<D$ is a left ordering of the braid group $B_{n}$ discovered by

Dehornoy [Deh], motivated from mathematical logic and set-theory. It turns out that
the Dehornoy ordering is a natural but quite stimulating structure of the braid group
that reflects several prospects of the braid groups. Nowadays there are more than seven
equivalent definitions of the Dehonroy ordering. Each definition reflects and explains
how naturally the Dehornoy ordering appears in various points of view. The discovery of
the Dehornoy ordering inspired new directions of research including topology, geometry,
dynamics, algebra and combinatorics. Moreover, one can use Dehornoy ordering to solve
problems in topology.

In this note we give a brief explanation why the Dehornoy ordering is so interesting by
giving several seemingly unexpected connections and presenting a new application of the
Dehornoy ordering to knot theory.

1 Definitions of the Dehornoy orderings

Among many equivalent definitions of the Dehornoy ordering, we just give two definitions
-it is surprising that they yield the same left-ordering of $B_{n}$ . A standard reference for
the Dehornoy ordering is [DDRW], where one can find and learn more diverse aspects.

Definition 1.1 (Dehornoy ordering–algebraic and combinatorial definition). A word $w$

on the Atrin generators $\{\sigma_{1}^{\pm 1}, . . . , \sigma_{n-1}^{\pm 1}\}$ is $\sigma$ -positive if there exists $i\in\{1, . . . , n-1\}$ that
satisfies the following two conditions:

1. $w$ contains at least one letter $\sigma_{i}.$

2. $w$ does not contain any letters in $\{\sigma_{1}^{\pm 1}, . . . , \sigma_{i-1}^{\pm 1}, \sigma_{i}^{-1}\}.$
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For example, $\sigma_{2}\sigma_{3}^{-1}$ is $\sigma$-positive $(i=2, in$ this case) .
We define Dehornoy ordering $<D$ as follows: For two braids $\alpha$ and $\beta$ , we define $\alpha<D\beta$

if $\alpha^{-1}\beta$ is represented by a a-positive word.
The assertion that $<D$ is a left-ordering is highly non-trivial. This particularly says

that for any non-trivial braid $\beta$ , either $\beta$ or $\beta^{-1}$ is represented by a a-positive word.
To understand the non-triviality of the Dehornoy ordering, the reader is encouraged to
compare two braids, for example, $\alpha=\sigma_{1}^{-4}\sigma_{2}^{3}\sigma_{1}\sigma_{2}^{-5}\sigma_{1}^{2}$ and $\beta=\sigma_{1}^{2}\sigma_{2}^{5}\sigma_{1}^{2}\sigma_{2}^{-5}$ according to
the definition. This will convince the readers that the fact the Dehornoy ordering reflects
subtle combinatorics of words.

Definition 1.2 (Dehornoy ordering–topological and geometrical definition). Next we
give a geometric definition of the Dehornoy ordering, following [SW]. Here we $identi\dot{\mathfrak{h}}r$

the braid $\underline{gro}upB_{n}$ with the mapping class group of $n$-punctured disc $D_{n}.$

Let $\pi$ : $D_{n}arrow D_{n}$ be the universal covering. By equipping an hyperbolic metric on $D_{n},$

$D_{n}$ can be $isometrically\underline{e}$mbedded into the hyperbolic plane $\mathbb{H}^{2}$ . By attaching points at
infinity, we compactify $D_{n}$ as a topological disk $\overline{D_{n}}$ . Take a basepoint $*\in\partial D_{n}$ and its
$1ift*\sim\in\pi^{-1}(*)$ . Then we may identify $\partial\overline{D}$ with the real line $\mathbb{R}.$

For a braid $\alpha\in B_{n}$ , let $\phi$ be an homeomorphism of $D_{n}$ that represents $\alpha$ . Take a
lift $\tilde{\phi}$ of $\phi$ so that $\tilde{\phi}(\sim*)=\sim*.\tilde{\phi}$ extends to the homeomorphism of $\overline{D_{n}}$ . By considering
the restriction of $\tilde{\phi}$ on $\partial\overline{D_{n}}-\sim*\cong \mathbb{R}$ , we get an orientation-preserving homeomophism
$\Theta(\phi)$ : $\mathbb{R}arrow \mathbb{R}$ . Basic hyperbolic geometry shows that $\Theta(\phi)$ does not depend on a choice
of representative homomorphism $\phi$ , so we get an homeomoprhism

$\Theta:B_{n}arrow Homeo^{+}(\mathbb{R})$

which is often called the Nielsen-Thurston action.
Using the Nielsen-Thurston action, one obtains a left-ordering of $B_{n}$ in a following

manner. Take a point $x\in \mathbb{R}=\partial\overline{D_{n}}-\sim*$ . For braids $\alpha$ and $\beta$ , we define $\alpha<_{x}\beta$ if
$[\Theta(\alpha)](x)<[\Theta(\beta)](x)$ . By taking $x$ appropriately, the resulting ordering $<_{x}$ coincides
with the Dehornoy ordering $<D$ defined above.

2 Research inspired by the Dehornoy ordering

As another reason why the Dehornoy ordering is so fascinating, we point out that the
discovery and studies of the Dehornoy ordering inspired several new research directions.
Here we only give two examples which recently gather much attentions.

$\bullet$ Space of left orderings and isolated orderings

For a group $G$ , let $LO(G)$ be the set of all left-ordering (possibly empty) on $G$ . For
$g\in G$ , let $U_{g}$ be the set of left-orderings of $G$ such that $g$ is greater than 1. We
equip a topology on $LO(G)$ so that $\{U_{g}\}_{g\in G}$ forms a sub-basis of a topology, and call
$LO(G)$ the space of left orderings of $G$ . This space $LO(G)$ plays a fundamental role
in a theory of left-orderable groups.
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For a countable group $G,$ $LO(G)$ is a totally disconnected, compact, and metrizable.
Thus $LO(G)$ is close to Cantor set. One crucial difference is that $LO(G)$ may have
isolated points, so it is an important problem to find an example of isolated orderings,
isolated points in $LO(G)$ . However, constructing an isolated ordering is often very
hard.

By modifying Dehornoy ordering, one gets another interesting ordering called the
Dubrovina-Dubovin ordering [DD]. This ordering is remarkable since it is an isolated
ordering. It is interesting to note that the Dehornoy ordering itself is not isolated.
This explains why the Dehornoy ordering is interesting–it provides a surprising
phenomenon that non-isolated points yield isolated points!

$\bullet$ Orderablity of 3-manifold groups

The braid group is one of the most important group in low-dimensional topology.
Inspired by the left-orderability of the braid groups, a natural question emerged:
Which 3-manifolds have the left-orderable fundamental groups? Surprisingly, there
is a fantastic conjecture on the left-orderability of 3-manifold groups, which predicts
unexpected relationships between Gauge theory.

Conjecture. [BGW] The fundamental group of an irreducible 3-manifold $M$ is non-
left-orderable if and only if $M$ is an $L$-space.

Here $L$-space is a rational homology sphere whose Heegaard Floer homology group
is the simplest. The $L$-space plays an important role in a theory of Heegaard Floer
homology, and have various applications in topology and geometry of 3-manifolds.

3 A new application to knot theory

As the author showed in [Itol, Ito2], the Dehornoy ordering also can be applied to study
knots in $S^{3}$ –this gives still another explanation why the Dehornoy ordering is so inter-
esting. Here we report a new application of the Dehornoy ordering to knot theory, which
seems to be hard to reach by standard techniques in the knot theory. Details can be found
in [Ito3].

Theorem 3.1. [Big, Conjecture 3.2] Let $N$ be a non-trivial normal subgroup of $B_{n}$ . Then
there exists $\beta\in N$ such that the closure of $\beta(\sigma_{1}\cdots\sigma_{n-1})$ is a non-trivial knot. (Actually,
we have more: for any $M>0$ , there exists $\beta\in N$ such that the closure of $\beta(\sigma_{1}\cdots\sigma_{n-1})$

is an hyperbolic knot whose genus is greater than $M.$

This theorem, although it sounds quite reasonable, would be hard to prove by standard
techniques in knot theory. Usually showing a knot to be non-trivial is done by calculating
certain knot invariants. However, calculating knot invariants for general case (for example,
assume that $\beta$ requires 100000 crossings!) is often hard. It is also hard to know, a given
knot is indeed hyperbolic though in certain sense, (generic” knots are hyperbolic knots.
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Theorem 3.1 is a consequence of the following two theorems. Surprisingly, the first
theorem is a purely algebraic statement that concerns the Dehornoy ordering.

Theorem 3.2. A non-trivial normal subgroup $N$ of $B_{n}$ is unbounded with respect to the
Dehornoy ordering $<D$ : that is, for any $\alpha\in B_{n}$ , there exists $\beta\in K$ such that $\alpha<D\beta.$

Moreover, we can always choose $\beta$ so that it is pseudo-Anosov.

We remark that this property is specific for the Dehornoy ordering. There is a left-
ordering $<onB_{n}$ which admits a bounded (convex) normal subgroup. For example, the
group extension

$1arrow[B_{n}, B_{n}]arrow B_{n}arrow \mathbb{Z}arrow 1$

can be used to construct a left-ordering $<$ of $B_{n}$ such that for any $\beta\in[B_{n}, B_{n}],$ $\sigma_{1}^{-1}<$

$\beta<\sigma_{1}$ holds.
The second theorem states relationships between the Dehornoy ordering and knots.

Theorem 3.3. [ltol, Ito2] Let $K$ be an oriented knot represented as a closure of an
$n$ -braid $\beta.$

1. If $(\sigma_{1}\sigma_{2}\cdots\sigma_{n-1})^{nM}<D\beta$ then $g(K)>M.$

2. If $(\sigma_{1}\sigma_{2}\cdots\sigma_{n-1})^{2n}<D\beta$ and $\beta$ is pseudo-Anosov, then $K$ is an hyperbolic knot.

As a consequence, we prove another naturally sounding, but unsolved problem in knot
theory. For a complex semi-simple Lie algebra $\mathfrak{g}$ , one has a quantum group (quantum
enveloping algebra) $U_{q}(\mathfrak{g})$ and for each $U_{q}(\mathfrak{g})$-module $V$ we have a linear representation

$\rho_{V}:B_{n}arrow GL(V^{\otimes n})$

called a quantum representation.
For a knot $K$ represented as a closure of an $n$-braid $\beta$ , By taking a variant of trace,

called a quantum trace, of $\rho_{V}(\beta)$ , we get an invariant $Q^{V}(K)$ of $K$ , called a quantum
$V$ -invariant.

Jones polynomial is a typical and the most fundamental example of a quantum invari-
ant: This corresponds to the standard 2-dimensional representation of $U_{q}(\mathfrak{s}\mathfrak{l}_{2})$ . Whether
Jones polynomial (or, various other quantum invariants like HOMFLY or Kauffinan poly-
nomials) detects the unknot or not is one of the most important open problem in knot
theory.

By a construction of quantum invariants, it is natural to expect that the quantum V-
invariant $Q_{V}$ fails to detect the unknot if the quantum representation $\rho_{V}$ is not faithful.
Namely, there is a non-trivial knot whose quantum $V$-invariant agrees with that of the
unknot. Theorem 3.2 shows that this is indeed the case.

Theorem 3.4. Let $\rho_{V}$ : $B_{n}arrow GL(V^{\otimes n})$ be a quantum representation. If $\rho_{n}$ is not faithful
then there exists a non trivial knot $K$ such that the quantum $V$ -invariant of $K$ and the
unknot are equal. That is, quantum $V$ -invariant fails to detect the unknot. Moreover, one
may choose such $K$ so that it is a hyperbolic knot with arbitrary large genus.

46



Proof. If $\rho_{V}$ is non-faithful, Theorem 3.1 says that there exists $\beta\in Ker\rho_{V}$ such that a
closure of $\beta(\sigma_{1}\cdots\sigma_{n-1})$ is a non-trivial knot (with arbitrary large genus and hyperbolic),
say $K$ . Then $K$ and the unknot, the closure of a braid $(\sigma_{1}\cdots\sigma_{n-1})$ , has the same quantum
$V$-invariants since they have the same image under $\rho_{V}.$

$\square$

Thus, beyond the theory of braid groups, the Dehornoy ordering is also interesting and
provides useful techniques to study knots and links.
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