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ABSTRACT. In this article, we focus on the definition of the Goldman Lie algebra of
an orbifold and its properties without fear of going off what is written in the title. The
Goldman Lie algebra is a Lie algebra structure on the free vector space which spanned by
the set of all free homotopy classes of oriented loops on a surface. In other words, the
vector space is spanned by the set ofall conjugacy classes of the fundamental group. We
extend the definition of the Goldman Lie algebra of a surface to an orbifold. We consider
the surface obtained by removing all singular points from an orbifold and define an ideal
of the Goldman Lie algebra of this surface. The Goldman Lie algebra of the orbifold is
quotient Lie algebra modulo the ideal. The Goldman Lie algebra of a orbifold is naturally
linear isomorphic to the free vector space spanned by the set ofall conjugacy classes of the
orbifold fundamental group of it.

1. INTRODUCTION

Goldman introduced a Lie algebra, the Goldman Lie algebra, in his paper [3] on the
geometry ofa symplectic structure on the representation space of a surface group. The Lie
algebra is defined for any oriented surface and this Lie algebra structure only depends on
the homeomorphism type of the surface. The Goldman Lie algebra $\mathbb{Q}\hat{\pi}(S)$ is defined as
the following. Let $S$ be a connected oriented surface and $\hat{\pi}(S)$ the set ofall free homotopy
classes of oriented loops on S. $\mathbb{Q}\hat{\pi}(S)$ is the $\mathbb{Q}$-vector space on $\hat{\pi}(S)$ . Let $a$ and $b$ be
immersed loops on $S$ such that all intersection points of $a\cup b$ are transverse double points
(we call such immersed loops generic). Then we define the Goldman bracket ofthese loops
by

$[a, b]= \sum_{p\in a\cap b}\epsilon(p;a, b)|a_{p}b_{p}|\in \mathbb{Q}\hat{\pi}(S)$
,

where $\epsilon(p;a, b)$ is the local intersection number of $a$ and $b$ at $p,$ $a_{p}$ and $b_{p}$ are closed paths
based at $p$ obtained from $a$ and $b$ respectively. We consider these paths as elements in
$\pi_{1}(S,p)$ . $|a_{p}b_{p}|$ is the free homotopy class of an oriented loop obtained by forgetting the
base point of $a_{p}b_{p}.$

Theorem 1.1 (Goldman [3]). The Goldman bracket $[,$ $]$ is well-defined on $\hat{\pi}(S)$ and the
linear extension ofthis bracket defines the Lie algebra structure on $\mathbb{Q}\hat{\pi}(S)$ .

Goldman also introduced a homological version of the Goldman Lie algebra. Let
$\mathbb{Q}H(S)$ be the $\mathbb{Q}$-vector space spanned by $H(S)=H_{1}(S, \mathbb{Z})$ . When we consider $X$

in $H(S)$ as an element of the basis of $\mathbb{Q}H(S)$ , we denote it by $\langle X\rangle$ . Then the bracket of
$\mathbb{Q}H(S)$ is defined by

$[\langle X\rangle, \langle Y\rangle]=\mu(X\cdot Y)\langle X+Y\rangle\in \mathbb{Q}H(S)$

for any $X$ and $Y$ in $H(S)$ where $\mu$ is the intersection form on $H(S)$ . The linear extension
of this bracket defines a Lie algebra structure on $\mathbb{Q}H(S)$ and we call it the homological
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Goldman Lie algebra of a surface $S$ . There is \‘a canonical surjective homomorphism from
the Goldman Lie algebra to the homological Goldman Lie algebra of the same surface.
This surjective Lie algebra homomorphism $Ab_{*}:\mathbb{Q}\hat{\pi}(S)arrow \mathbb{Q}H(S)$ is induced by the
abelianization Ab: $\pi_{1}(S)arrow H_{1}(S)$ .

In this article, We define the Goldman Lie algebra of a 2-orbifold by the quotient of the
Goldman Lie algebra of the surface obtained from removing all singular points in Seciton
2. We remark that Chas and Gadgil [2] give another definition ofthe Goldman bracket’for
$2$ -orbifolds by the use of orbifold homotopies and show the Jacobi identity by a method of
hyperbolic geometry. We also review its definition in this section. We will also show that
underlying vector space of our Lie algebra of an orbifold is linear isomorphic to the vector
space spanned by the all conjugacy classes of its orbifold fundamental group. In section
3, we describe a relationship between Goldman Lie algebras of finite Galois coverings.
More precisely, the action of the covering transformation group $\Gamma$ of a finite unbranched
Galois covering $\tilde{S}arrow S$ on the total space $\tilde{S}$ induces an action of $\Gamma$ on $\mathbb{Q}\hat{\pi}(\tilde{S})$ . Then

the $\Gamma$-invariant part $\mathbb{Q}\hat{\pi}(\tilde{S})^{\Gamma}$ is embedded in the Goldman Lie algebra $\mathbb{Q}\hat{\pi}(S)$ of the base
space. In Section 4, we give some observation of a property of Goldman Lie algebras of
finite branched Galois coverings.

2. GOLDMAN LIE ALGEBRA OF ORBIFOLD

A orbifold was defined by Satake[6] (under the name of $V$-manifold”) and Thurston[7].

We briefly review the definition of an orbifold based on Bonahon-Siebenmann[l] and
Matsumoto-Montesinos[5]. A $n$-dimensional orbifold is a paracompact Hausdorff space
$X$ with an orbifold atlas of folding charts $\{(\tilde{U}_{i}, G_{i}, \varphi_{i}, U_{i})\}_{i\in I}.\tilde{U}_{i}$ is a connected smooth
$n$-dimensional manifold, $G_{i}$ a finite group acting smoothly and effectively on $\tilde{U}_{i},$ $U_{i}a$

connected open set of $X$ such that $X= \bigcup_{i\in I}U_{i}$ , a folding map $\varphi_{i}:\tilde{U}_{i}arrow U_{i}$ a continuous
map which naturally induces a homeomorphism between $\tilde{U}_{i}/G_{i}$ and $U_{i}$ . Furthermore, the
folding charts satisfy the following compatibility condition.

$\bullet$ If $U_{i}\cap U_{j}\neq\emptyset$ and $\varphi_{i}(x)=\varphi_{j}(y)=p\in U_{i}\cap U_{j}$ , then there exists a diffeo-
morphism $\psi:\tilde{V}_{x}arrow\tilde{V}_{y}$ from an open neighborhood of $x\in\tilde{V}_{x}\subset\tilde{U}_{i}$ to an open
neighborhood of $y\in\tilde{V}_{y}\subset\tilde{U}_{j}$ such that $\varphi_{j}\psi=\varphi_{i}$ and $\psi(x)=y.$

For any folding chart $(\tilde{U}_{i}, G_{i}, \varphi_{i}, U_{i})$ and $x$ in $\tilde{U}$ , the stabilizer subgroup $(G_{i})_{x}$ of $x$ is the
set of all elements in $G_{i}$ which fixing $x$ . The isomorphism class of $(G_{i})_{x}$ depends only
on the point $p=\varphi_{i}(x)$ in $X$ . We call this isomorphism class the isotropy group of $p$ . We
define the singular set $\Sigma X$ of $X$ as the set ofall points in $X$ which have nontrivial isotropy
groups. A singular point of $X$ is an element in $\Sigma X.$

In this article, we only consider a 2-dimensional orbifold with the underlying space
$S$ which has $0$-dimensional isolated singular points. We take an orbifold atlas of $S$ as
the following. $S-\Sigma S$ is a connected oriented smooth surface which denoted by $S_{*}.$ $A$

singular point $p$ in $\Sigma S$ has a folding chart $(\mathbb{D}, C_{p}, \varphi_{p}, U_{p})$ . The folding map $\varphi_{p}$ : $\mathbb{D}arrow U_{p}$

is a continuous map with $\varphi_{p}(0)=p$ where $\mathbb{D}$ is the open unit disk in $\mathbb{C}$ and $U_{p}$ an open
neighborhood of $p$. The cyclic group $C_{p}$ of order $m_{p}$ acts on $\mathbb{D}$ by $2\pi/m_{p}$ -rotation. We
denote the orbifold by $(S, \Sigma S)$ for the sake of simplicity. If all isotropy groups are trivial,
that is $\Sigma S=\emptyset$ , then $S$ is an 2-dimensional manifold. Let $p_{0}$ be a base point in $S_{*}$ . Fix a
reference path $u_{p}$ from $p_{0}$ to $\varphi_{p}(1)$ for each $p$ in $P$ . Let $\xi$ be a closed path in $\mathbb{D}$ defined
by Figurel. We define a closed path $\xi_{p}=u_{p}(\varphi_{p}0\xi)\overline{u}_{p}$ by connecting the above paths
where $\overline{u}_{p}$ is the inverse path of $u_{p}$ . This path is $m_{p}$ -th power of a“meridian“ of $p$ in $\Sigma S.$

$\langle\xi\rangle_{S}$ denotes the normal subgroup generated by a subset $\{\xi_{p}|p\in\Sigma S\}$ of $\pi_{1}(S_{*},p_{0})$ and
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FIGURE 1. $\xi$

we call it the characteristic subgroup of $\pi_{1}(S_{*},p_{0})$ . The orbifold fundamental group of
$(S, \Sigma S)$ can be defined by $\pi_{1}(S_{*},p_{0})/\langle\xi\rangle_{S}$ and we denote it by $\pi_{1^{1b}}^{o}(S,p_{0})$ .

We define the Goldman Lie algebra of the above orbifold $(S, \Sigma S)$ as a quotient Lie
algebra of $\mathbb{Q}\hat{\pi}(S_{*})$ . $I(S, \Sigma S)$ denotes the vector subspace of $\mathbb{Q}\hat{\pi}(S_{*})$ generated by the set

$\{|\ell|-|\ell\xi_{p}||\ell\in\pi_{1}(S_{*},p_{0}),p\in\Sigma S\}$

as a vector space. We remark that the definition of $I(S, \Sigma S)$ is independent of choice of
reference paths. Because, Ifwe take a new reference path $v_{p}$ , then

$|l|-|\ell v_{p}(\varphi_{p}\circ\xi)\overline{v}_{p}|=|\ell|-|\ell(v_{p}\overline{u}_{p})u_{r}(\varphi_{p}\circ\xi)\overline{u}_{p}(u_{p}\overline{v}_{p})|$

$=|(u_{p}\overline{v}_{p})\ell(v_{p}\overline{u}_{p})|-|(u_{p}\overline{v}_{p})\ell(v_{p}\overline{u}_{p})u_{p}(\varphi_{p}\circ\xi)\overline{u}_{p}|$

$=|\ell’|-|\ell’u_{p}(\varphi_{p}\circ\xi)\overline{u}_{p}|$

where $\ell’$ is $(u_{p}\overline{v}_{p})\ell(v_{r}\overline{u}_{p})$ in $\pi_{1}(S_{*},p_{0})$ .

Lemma 2.1. $I(S, \Sigma S)$ is an ideal of$\mathbb{Q}\hat{\pi}(S_{*})$ .

Proof We show that $[|a|, |\ell|-|\ell\xi_{p}|]$ is an element in $I_{P}$ for any a in $\pi_{1}(S_{*})$ . We take a
representative of $|a|$ which intersects $\ell\xi_{p}$ transversally. If the representative intersects at
points on $\xi_{p}$ , then we replace it by a homotopy to keeping away from a neighborhood of
$U_{p}Uu_{p}$ . We denote the representative by $a’$ . We remark that the representative has no
intersection points with $\xi_{p}$ . Therefore we obtain the following equality.

$[|a|, |\ell|-|\ell\xi_{p}|]=[|a’|, |l|-|\ell\xi_{p}|]$

$= \sum_{q\in a’\cap\ell}\epsilon(q;a’, \ell)|a_{q}’\ell_{q}|-\sum_{q\in a\cap\ell\xi_{p}}\epsilon(q;a’, \ell\xi_{p})|a_{q}’(\ell\xi_{p})_{q}|$

$= \sum_{q\in a’\cap\ell}\epsilon(q;a’, \ell)(|a_{q}’\ell_{q}|-|a_{q}’(\ell\xi_{p})_{q}|)$

$= \sum_{q\in a’\cap l}\epsilon(q;a’,\ell)(|\ell_{p0q}a_{q}’\ell_{q}\overline{\ell}_{p0q}|-|(\ell_{p0q}a_{q}’\ell_{q}\overline{\ell}_{p\mathfrak{o}q})\xi_{p}|)\in I_{P}$

where $\ell_{poq}$ is the path from $p_{0}$ to $q$ obtained by restricting $\ell$ to $[0, \ell^{-1}(q)]$ and $\overline{\ell}_{roq}$ is its
inverse path. $\square$

Definition 2.2. The Goldman Lie algebra of $(S, \Sigma S)$ is defined by $\mathbb{Q}\hat{\pi}(S_{*})/I(S, \Sigma S)$ . We
denote it by $\mathbb{Q}\hat{\pi}(S, \Sigma S)$ .
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Remark 2.3. Let $S$ be a 2-dimensional manifold with a set ofspecifiedpoints $P\subset S$ . We

define $\xi_{p}$ as a meridian of$p$ in $P$ and the characteristic subgroup $\langle\zeta\rangle_{S}$ of $\pi_{1}(S-P)$ by
considering $p\in P$ as a “order 1 singularpoint”. Then $\mathbb{Q}\hat{\pi}(S, P)=\mathbb{Q}\hat{\pi}(S-P)/\langle\zeta\rangle s$ is
isomorphic to the Goldman Lie algebra of$S.$

Let $G$ be a group and $\hat{G}$ the set of conjugacy classes of G. $\hat{g}$ denote the conjugacy class
represented by $g$ in G. $\mathbb{Q}\hat{G}$ is the $\mathbb{Q}$-vector space spanned by $\hat{G}$ . The Goldman Lie algebra
of a surface $S$ can be considered as $\mathbb{Q}\hat{\pi_{1}}(S,p_{0})$ by a natural bijection between $\hat{\pi_{1}}(S,p_{0})$

and $\hat{\pi}(S)$ . The natural bijection is obtained by regarding $|a|$ as \^a for any $a$ in $\pi_{1}(S)$ .

Proposition 2.4. There is a natural isomorphism between $\mathbb{Q}\hat{\pi}(S, \Sigma S)$ and $\mathbb{Q}\hat{\pi_{1}^{orb}}(S,p_{0})$ .

Proof We denote $\pi_{1}^{orb}(S,p_{0})$ by $\Gamma$ . The natural quotient map $\Phi_{\#}:\pi_{1}(S_{*})arrow\Gamma$ induces

a linear map $\Phi_{*}:\mathbb{Q}\hat{\pi}(S_{*})arrow \mathbb{Q}\hat{\Gamma}$ . The kemel of $\Phi_{*}$ is generated by a subset $\{|a|-|b||$

$|\Phi_{\#}(a)|=|\Phi_{\#}(b)|$ and $a,$ $b\in\pi_{1}(S_{*})$ } of $\mathbb{Q}\hat{\pi}(S_{*})$ . The condition $|\Phi_{\#}(a)|=|\Phi_{\#}(b)|$

means that $\Phi_{\#}(a)$ is conjugate to $\Phi_{\#}(b)$ in $\Gamma$ . Therefore $a^{-1}gbg^{-1}$ is contained in $\langle\xi\rangle_{S}$

for some $g$ in $\pi_{1}(S_{*})$ . We can denote $a^{-1}gbg^{-1}$ by $\prod_{i=1}^{n}h_{i}\xi_{p_{i}}h_{i}^{-1}$ where $h_{i}$ is in $\pi_{1}(S_{*})$

and $p_{i}$ in $\Sigma S$ for each $i$ . Then the generator

$|a|-|b|=|a|-|a \prod_{i=1}^{n}h_{i}\xi_{p_{i}}h_{i}^{-1}|$

$=|a|-|ah_{1} \xi_{p_{1}}h_{1}^{-1}|+\sum_{i=1}^{n-1}(|a\prod_{j=1}^{i}h_{j}\xi_{p_{j}}h_{j}^{-1}|-|a\prod_{j=1}^{i+1}h_{j}\xi_{p_{j}}h_{j}^{-1}|)$

$= \sum_{i=1}^{n}|a_{i}|-|a_{i}\xi_{p_{i}}|$

where $a_{1}=h_{1}^{-1}ah_{1}$ and $a_{i}$ is defined inductively by $h_{i}^{-1}a_{i-1}h_{i}$ . Consequently, The ideal
$I(S, \Sigma S)$ includes the kemel of $\Phi_{*}$ . The reverse inclusion is clear. Therefore $\Phi_{*}$ induce
an isomorphism $\Phi:\mathbb{Q}\hat{\pi}(S, \Sigma S)arrow \mathbb{Q}\hat{\Gamma}.$ $\square$

Chas and Gadgi1[2] give a group-theoretic definition of the Goldman bracket for an
orbifold by using hyperbolic geometry. We will review this definition. Let $\Gamma$ be a discrete
subgroup of the orientation preserving isometric group of the upper halfplane $\mathbb{H}$ with the
hyperbolic metric and base point $\tilde{p}_{0}$ . For any $x$ and $y$ in $\Gamma,$ $I(x, y)$ denote the empty set if
$x$ or $y$ are non-hyperbolic elements, otherwise,

$I(x, y)=\{XgY\in X\backslash \Gamma/Y|Ax(x)\cap gAx(y)\neq\emptyset, 9\in\Gamma\}$

where $X$ and $Y$ are infinite cyclic subgroups generated by $x$ and $y$ respectively, $X\backslash \Gamma/Y$

is the set of double coset of $X$ and $Y$ in $\Gamma$ . The Goldman bracket $[,$ $]_{\Gamma}$ on $\mathbb{Q}\hat{\Gamma}$ is given by

$[ \hat{x}, \hat{y}]_{\Gamma}=\sum_{\}}\epsilon(x, 9yXgY\in I(xy)9^{-1})x\overline{gyg^{-1}}$

for any $x$ and $y$ in $\Gamma.$ $\epsilon(x, gyg^{-1})$ is the algebraic intersection number of $Ax(x)$ and
$g$ Ax(y). If $x$ is a hyperbolic element in $\Gamma$ , we can uniquely determine the geodesic line
$Ax(x)$ in $(\mathbb{H}_{0},\tilde{p}_{0})$ which fixed by the action ofx. We call the geodesic line $Ax(x)$ the axis
of $x$ . The orientation ofthe axis of a hyperbolic element is defined by the direction from
the repelling point to the attractive point.

We will observe a relationship between our bracket and the above bracket. The or-
bit space $S_{\Gamma}=\mathbb{H}/\Gamma$ gives an orbifold. We denote the projection by $\varpi:\mathbb{H}arrow S_{\Gamma}$ and
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$\mathbb{H}-\varpi^{-1}(\Sigma S_{\Gamma})$ by $\mathbb{H}_{0}$ . We take a base point $\tilde{p}_{0}$ in $\mathbb{H}_{0}$ and $p_{0}=\varpi(\tilde{p}_{0})$ . The orb-
ifold fundamental group $\pi_{1}^{oIb}(S_{\Gamma},p_{0})$ is isomorphic to $\Gamma$ . The characteristic subgroup of
$\pi_{1}((S_{\Gamma})_{*},p_{0})$ is equal to $\varpi\#(\pi_{1}(\mathbb{H}_{0},\tilde{p}_{0}))$ . (Refer to [4], [5], [7] etc.) Proposition2.4 gives
a linear isomorphism $\Phi:\mathbb{Q}\hat{\pi}(S_{\Gamma}, \Sigma S_{\Gamma})arrow \mathbb{Q}\hat{\Gamma}$ . Therefore $\mathbb{Q}\hat{\Gamma}$ has another Lie algebra
structure induced from $\mathbb{Q}\hat{\pi}(S_{\Gamma}, \Sigma S_{\Gamma})$ .

Question 2.5. Does $\Phi$ induce a Lie algebra isomorphism fiom $(\mathbb{Q}\hat{\pi}(S_{\Gamma}, \Sigma S_{\Gamma}), [, ])$ to
$(\mathbb{Q}\hat{\Gamma}, [, ]_{\Gamma})$ ?

0bservation ofQuestion2.5. Let $x$ be an element in $\Gamma$ and $\tilde{p}$ in $\mathbb{H}_{0}$ a starting point. We
take a path $\gamma_{x}^{\tilde{p}}$ from $\tilde{p}$ to $x\tilde{p}$ in $\mathbb{H}_{0}.$ $|\varpi\gamma_{x}^{\overline{p}}|$ defines a unique element independent ofa choice
of starting points in $\mathbb{H}_{0}$ . The inverse of $\Phi$ sends $\hat{x}$ to $|\varpi\gamma_{x}^{\tilde{p}}|$ . If $x$ be an elliptic or parabolic
element in $\Gamma$ , then $\varpi\gamma_{x}^{\tilde{p}}$ is freely homotopic to a neighborhood of a singular point or a
puncture of $S_{\Gamma}$ . These elements are contained in the center of $\mathbb{Q}\hat{\pi}(S_{\Gamma}, \Sigma S_{\Gamma})$ . Let $x$ and
$y$ be hyperbolic elements in $\Gamma$ and $\tilde{p}$ a point on $Ax(x)\cap \mathbb{H}_{0}$ outside of $\bigcup_{g\in\Gamma}g$ Ax(y). We

denote the geodesic half line from $\tilde{p}$ to $x\tilde{p}$ in $Ax(x)$ by $\gamma_{x}^{;\tilde{p}}$ . ($\gamma_{x}^{;\tilde{p}}$ does not contain $xp$)

There is a bijection between the set of all intersection points (counting multiplicities) of
$\varpi\gamma_{x}^{\prime\tilde{p}}$ and $\varpi\gamma_{y}^{\prime\tilde{p}’}$ and $\gamma_{x}^{\prime\overline{r}}\cap(\bigcup_{g\in\Gamma}(gAx(y)))$ for some $\tilde{p}’$ on $Ax(y)$ . Furthermore, There is

a bijection between $\gamma_{x}^{\prime\tilde{p}}\cap(\bigcup_{g\in\Gamma}(gAx(y)))$ and $I(x, y)$ . (Refer to Chas and Gadgi1[2]) If
$XgY$ is in $I(x, y)$ , then $\gamma_{x}^{\prime\overline{p}}$ and $g$ Ax(y) have a unique intersection point $\tilde{q}$ in $\mathbb{H}$ . We can
obtain a piecewise geodesic path $\gamma_{x}^{\prime\tilde{q}}\gamma_{xgyg^{-1}x^{-1}}^{\prime x\overline{q}}$ from $\tilde{q}$ to $xgyg^{-1}\tilde{q}$ . We remark that $x\tilde{q}$ is

on $xg$ Ax(y) which is the axis of $xgyg^{-1}x^{-1}.$ $\varpi\gamma_{x}^{\prime\overline{q}}$ and $\varpi\gamma_{xgyg^{-1}x^{-1}}^{\prime x\tilde{q}}$ represent $\Phi^{-1}(x)$

and $\Phi^{-1}(y)$ respectively. These representatives intersect at $q=\varpi(\tilde{q})$ . The projection
$\varpi(\gamma_{x}^{\prime\overline{q}}\gamma_{xgygx}^{\prime x\tilde{q}}-1-1)$ is a product of based loops $(\varpi\gamma_{x}^{\prime\tilde{q}})_{q}$ and $(\varpi\gamma_{xgyg^{-1}x^{-1}}^{\prime x\tilde{q}})_{q}$ where $q=$

$\varpi(\tilde{q})$ . Therefore,

$\Phi^{-1}([\hat{x},\hat{y}]_{\Gamma})=\Phi^{-1}(\sum_{XgY\in I(x,y)}\epsilon(x, gyg^{-1})x\overline{gyg^{-1}})$

$= \sum_{\overline{p},\overline{q}\in\gamma_{x}’\cap(\bigcup_{9\in\Gamma(gAx(y)))}}\epsilon(q;\varpi\gamma_{x}^{\prime\tilde{q}}, \varpi\gamma_{xgyg^{-1}x^{-1}}^{\prime x\tilde{q}})|-1$

$= \sum_{\overline{p}’,q\in\varpi\gamma_{x}^{\tilde{p}}\cap\varpi\gamma_{y}’} \prime\tilde{q} \prime x\tilde{q}$

$\epsilon(q;\varpi\gamma_{x}, \varpi\gamma_{xgyg^{-1}x^{-1}})|(\varpi\gamma_{x}^{\prime\tilde{q}})_{q}(\varpi\gamma_{x}^{\prime x\tilde{q}_{yg^{-1}x^{-1}}}9)_{q}|$

$=[|\varpi\gamma_{x}^{\prime\overline{q}}|, |\varpi\gamma_{xgyg^{-1}x^{-1}}^{\prime x\tilde{q}}|]$

$=[\Phi^{-1}(\hat{x}) , \Phi^{-1}(xg\overline{yg^{-1}x}^{-1})]$

$=[\Phi^{-1}(\hat{x}), \Phi^{-1}(\hat{y})]$

ifall intersection points are not contained in $\Sigma S_{\Gamma}$ . I cannot confirm yet when $q$ is contained
in $\Sigma S_{\Gamma}.$ $\square$

Remark 2.6. Our definition ofthe bracket is applicable to
$t$

‘bad” orbifolds. (A bad orb-

ifold cannot be covered by a manifold [71)

We will define the homological Goldman Lie algebra of an orbifold. The first homol-
ogy group of an orbifold $(S, \Sigma S)$ with coefficient in $\mathbb{Z}$ is the abelianization of the orbifold
fundamental group. We denote it by $H(S, \Sigma S)$ . We remark that there exists a unique ho-
momorphism from $H_{1}(S_{*}, \mathbb{Z})$ to $H(S, \Sigma S)$ by the universal property ofabelianization. Let
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FIGURE 2. generators of $\pi_{1}((S_{g,b}))_{*}$

$(S_{g,b}, \Sigma S_{g,b})$ be an orbifold where $S_{g_{\rangle}b}$ is a compact connected oriented smooth surface of
genus $g$ with $b$ boundary components. Denote $\Sigma S_{g,b}$ by $Q=\{q_{1}, q_{2}, . . . , q_{n}\}$ and the or-
der of the isotropy group of $q_{k}$ by $m_{k}$ for each $k=1$ , 2, . . . , $n$ . We take a generating set of
$\pi_{1}((S_{g_{)}b})_{*},p_{0})by\{a_{i}, b_{i}, d_{j}, e_{k}|i=1, 2, . . . , g, j=1, 2, . . . , b, k=1, 2, . . . , n\}$ . (See
figure2) We denote generators of $H_{1}((S_{g,b})_{*}, \mathbb{Z})$ by $A_{i},$ $B_{i},$ $D_{j}$ and $E_{k}$ which correspond
to $a_{i},$

$b_{i},$ $d_{j}$ and $e_{k}$ respectively. Then the first homology group of $H(S, Q)$ is described by

$H(S, Q) \cong\bigoplus_{i=1}^{g}(\mathbb{Z}A_{i}\oplus \mathbb{Z}B_{i})\bigoplus_{j=1}^{b}\mathbb{Z}D_{j}\bigoplus_{k=1}^{n}\mathbb{Z}_{rn_{k}}E_{k}/\langle\sum_{j=1}^{b}D_{j}+\sum_{k=1}^{n}E_{k}\rangle.$

The intersection form $\mu:H((S_{g,b})_{*})\cross H((S_{g,b})_{*})arrow \mathbb{Z}$ induces $\mu^{orb}:H((S_{g,b}), Q)\cross$

$H(S_{g,b}, Q)arrow \mathbb{Z}$ because $\mu$ is trivial on $D_{j}$ and $E_{k}$ . We can define a bracket on $\mathbb{Q}H(S_{g,b}, Q)$

by
$[\langle X\rangle, \langle Y\rangle]=\mu^{orb}(X, Y)\langle X+Y\rangle$

for any $X$ and $Y$ in $H(S_{g,b}, Q)$ .

Definition 2.7. The homological Goldman Lie algebra ofan orbifold $(S_{g_{\}}b}, Q)$ is the $\mathbb{Q}-$

vector space $\mathbb{Q}H(S_{g,b}, Q)$ equipped with the above bracket.

Consequently, we obtain the following commutative diagram of Lie algebras.

$\mathbb{Q}\hat{\pi}((S_{9^{b}},)_{*})arrow^{Ab_{*}.}\mathbb{Q}H((S_{g,b})_{*})$

$\downarrow$ $\downarrow$

$\mathbb{Q}\hat{\pi}(S_{g,b}, Q)\underline{Ab}_{*arrow}\mathbb{Q}H(S_{9^{b}},, Q)$ .

3. GOLDMAN LIE ALGEBRA OF FINITE GALOIS COVERING

Let $\tilde{S}$ and $S$ be connected oriented smooth surfaces. An orientation preserving self-
diffeomorphism $\gamma$ of $\tilde{S}$ induces a bijective map from $a\cap b$ to $\gamma a\cap\gamma b$ where $a$ and $b$ are
generic immersed loops on $\tilde{S}$ . The local intersection number of $a$ and $b$ at $p$ agrees with
that of $\gamma a$ and $\gamma b$ at $\gamma(p)$ because $\gamma$ preserves orientation of $\tilde{S}$ . Therefore we can obtain an
automorphism $\gamma_{*}$ ofthe Goldman Lie algebra $\mathbb{Q}\hat{\pi}(\tilde{S})$ given by $\gamma_{*}(|x|)=|\gamma x|$ for any $x$ in
$\pi_{1}(\tilde{S})$ .
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Let $f:\tilde{S}arrow S$ be a finite Galois covering with no branched points and $\Gamma$ the covering
transformation group of it. We know that $\Gamma$ acts on $\mathbb{Q}\hat{\pi}(\tilde{S})$ from the previous discussion.

Let $\mathbb{Q}\hat{\pi}(\tilde{S})^{\Gamma}$ denote the $\Gamma$-invariant part of $\mathbb{Q}\hat{\pi}(\tilde{S})$ .

Lemma 3.1. $\mathbb{Q}\hat{\pi}(\tilde{S})^{\Gamma}$ is a Lie subalgebra of$\mathbb{Q}\hat{\pi}(\tilde{S})$ .

Proof. $\gamma_{*}[v, w]=[\gamma_{*}v, \gamma_{*}w]=[v, w]$ for any $v$ and $w$ in $\mathbb{Q}\hat{\pi}(\tilde{S})^{\Gamma}$ and 7 in $\Gamma$ . Therefore
$\mathbb{Q}\hat{\pi}(\tilde{S})^{\Gamma}$ is a Lie subalgebra of $\mathbb{Q}\hat{\pi}(\tilde{S})$ . $\square$

We remark that the Lie subalgebra $\mathbb{Q}\hat{\pi}(\tilde{S})^{\Gamma}$ is generated by the set $\Gamma\hat{\pi}(\tilde{S})=\{\Gamma(a)|a\in\pi_{1}(\tilde{S})\}$

where $\Gamma(a)$ denotes $\sum_{\gamma\in\Gamma}|\gamma a|$ . We denote the vector subspace by $\mathbb{Q}\Gamma\hat{\pi}(\tilde{S})$ . If $u=$

$\sum_{a\in\pi_{1}(\overline{S})}r_{a}|a|$ is an element in $\mathbb{Q}\hat{\pi}(\tilde{S})^{\Gamma}$ , then $u= \sum_{a\in\pi_{1}(\overline{S})}(r_{a}/\#\Gamma)\Gamma(a)$ where $\#\Gamma$

is the number of elements in $\Gamma$ . Therefore the vector subspace generated by $\Gamma\hat{\pi}(\tilde{S})$ in-

cludes $\mathbb{Q}\hat{\pi}(\tilde{S})^{\Gamma}$ . The reverse inclusion is obvious. Consequently, $\mathbb{Q}\hat{\pi}(\tilde{S})^{\Gamma}$ is isomorphic to
$\mathbb{Q}\Gamma\hat{\pi}(\tilde{S})$ . Ifwe take the coefficient ofthe Goldman Lie algebra in $\mathbb{Z}$ , then we cannot show
the isomorphism.

We define alinear map $\hat{f}:\mathbb{Q}\hat{\pi}(\tilde{S})^{\Gamma}arrow \mathbb{Q}\hat{\pi}(S)$ by $\hat{f}(\Gamma(a))=|f_{\#}(a)|$ where $f_{\#}:\pi_{1}(\tilde{S})arrow$

$\pi_{1}(S)$ is the injective homomorphism induced by $f.$

Lemma 3.2. $\mathbb{Q}\hat{\pi}(\tilde{S})^{\Gamma}$ is theffee vector space on $\Gamma\hat{\pi}(\tilde{S})$ .

Proof If $\hat{f}(\Gamma(a))=j(\Gamma(b))$ , that is $|f_{\#}(a)|=|f_{\#}(b)|$ , hold for any $a$ and $b$ in $\pi_{1}(\tilde{S})$ ,

then there exist $\gamma$ in $\Gamma$ which satisfies $|a|=|\gamma b|$ . We obtain $\Gamma(a)=\Gamma(b)$ . This implies
that $|f_{\#}(a)|$ is not freely homotopic to $|f_{\#}(b)|$ if $\Gamma(a)\neq\Gamma(b)$ . Let $s_{1}\Gamma(a_{1})+s_{2}\Gamma(a_{2})+$

. . . $+s_{k}\Gamma(a_{k})=0$ for all $\mathcal{S}_{1}$ , . . . , $s_{k}\in \mathbb{Q}$ where $\Gamma(a_{1})$ , . . . , $\Gamma(a_{k})$ are distinct elements in
$\Gamma\hat{\pi}(\tilde{S})$ . Then $\mathcal{S}_{1}|f_{\#}(a_{1})|+\cdots+s_{k}|f_{\#}(a_{k})|=0$ holds in $\mathbb{Q}\hat{\pi}(S)$ . Therefore $s_{1}=\cdots=$

$s_{k}=0$ $\square$

Proposition 3.3. $\hat{f}:\mathbb{Q}\hat{\pi}(\tilde{S})^{\Gamma}arrow \mathbb{Q}\hat{\pi}(S)$ is an injective Lie algebra homomorphism.

Proof We can see that $\hat{f}$ : $\Gamma\hat{\pi}(\tilde{S})arrow\hat{\pi}(S)$ is injective because of the proof of Lemma 3.2.
We show that $\hat{f}$ is a Lie algebra homomorphism. For any $a$ and $b$ in $\pi_{1}(\tilde{S})$ ,

$[ \Gamma(a), \Gamma(b)]=\sum_{\gamma,\gamma’\in\Gamma}[|\gamma’a|, |\gamma b|]=\sum_{\gamma,\gamma’\in\Gamma}\gamma_{*}’[|a|,$ $| \gamma^{\prime-1}\gamma b|]=\sum_{\gamma_{\}}\gamma’\in\Gamma}\gamma_{*}’[|a|, |\gamma b|].$

Therefore we obtain that

$\hat{f}([\Gamma(a), \Gamma(b)])=\sum_{\gamma\in\Gamma}f_{*}([|a|, |\gamma b|])$

where $f_{*}:\mathbb{Q}\hat{\pi}(\tilde{S})arrow \mathbb{Q}\hat{\pi}(S)$ is the induced linear map obtained from $f$ . We take generic
immersed loops $|a|$ and $|b|$ as representatives of $a$ and $b$ respectively. Let $H$ : $(S^{1}uS^{1})\cross$

$[0, 1]arrow S$ be a homotopy such that

$H(\cdot, 0)=f\circ|a|\sqcup f\circ|b|, H(\cdot, 1)=a’\sqcup b’$

where $a’ub’$ is generic immersion. We remark that $|a|\sqcup\gamma 0|b|$ is a lift of $fo|a|\sqcup fo|b|$

for each $\gamma\in\Gamma$ . We can obtain alift of $H$ such that

$\tilde{H}_{\gamma}(\cdot, 0)=|a|\sqcup\gamma\circ|b|, \tilde{H}_{\gamma}(\cdot,1)=\tilde{a}’\sqcup\tilde{b}_{\gamma}’$
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because ofthe homotopy lifting property. $a’\sqcup b’$ intersects tangentially if $\tilde{a}’\sqcup\tilde{b}_{\gamma}’$ intersects

tangentially. $a’\sqcup b’$ has triple points if $\tilde{a}’\sqcup\tilde{b}_{\gamma}’$ has triple points. Therefore $\tilde{a}’\sqcup\tilde{b}_{\gamma}’$ is generic
immersion. Next, we observe a correspondence between intersection points of $a’ub’$ and
$\tilde{a}’u\tilde{b}_{\gamma}’$ . We show that there uniquely exists a lift of intersection point $p$ of $a’$ and $b’$ on
$\tilde{a}’\cap\tilde{b}_{\gamma}’$ . We take a lift $\tilde{p}$ on $\tilde{a}’$ for each intersection point $p$ of $a’$ and $b’$ . There is $\gamma$ in $\Gamma$

such that $\tilde{p}$ is on $\tilde{b}_{\gamma}’$ because the action of $\Gamma$ is transitive. If there is another lift on $\tilde{a}’$ , then
$p$ is a triple (or more multiple) point. Therefore the lift $\tilde{p}$ is uniquely determined. There
is no another lift of $b’$ such that $\tilde{p}$ is on it for the same reason. Accordingly, we obtain a
bijective map between $\bigcup_{\gamma\in\Gamma}\tilde{a}’\cap\tilde{b}_{\gamma}’$ and $a’\cap b’$ by restricting $f$ . The following equality
holds because $f$ is an orientation preserving local diffeomorphism.

$f\circ(\tilde{a}_{\tilde{p}}’\tilde{b}_{\gamma\tilde{p}}’)=a_{p}’b_{p}’, \epsilon(\tilde{p};\tilde{a}’,\tilde{b}_{\gamma}’)=\epsilon(p;a’, b$

Therefore

$\hat{f}[\Gamma(a), \Gamma(b)]=\sum_{\gamma\in\Gamma}f_{*}([|a|, |\gamma b|])$

$= \sum_{\gamma\in\Gamma}f_{*}([|\tilde{a}’|, |\tilde{b}_{\gamma}’|])$

$= \sum_{\gamma\in\Gamma}f_{*}(\sum_{\tilde{p}\in\tilde{a}’\cap\overline{b}_{\gamma}’}\epsilon(\tilde{p};\tilde{a}’,\tilde{b}_{\gamma}’)|\tilde{a}_{\overline{p}}’\tilde{b}_{\gamma\tilde{p}}’|)$

$= \sum_{\tilde{p}\in\bigcup_{\gamma\in\Gamma}\tilde{a}’\cap\tilde{b}_{\gamma}’},\epsilon(\tilde{p};\tilde{a}’,\tilde{b}_{\gamma}’)|f\circ(\tilde{a}_{\tilde{p}}’\tilde{b}_{\gamma\tilde{p}}’)|$

$= \sum_{p\in a’\cap b’}\epsilon(p;a’, b’)|a_{p}’b_{p}’|$

$=[a’, b’]=[|f_{\#}(a)|, |f_{\#}(b)|]=[\hat{f}(\Gamma(a)), \hat{f}(\Gamma(b))].$

From the above, $\hat{f}:\mathbb{Q}\hat{\pi}(\tilde{S})^{\Gamma}arrow \mathbb{Q}\hat{\pi}(S)$ is a homomorphism. $\square$

4. GOLDMAN LIE ALGEBRA OF FINITE BRANCHED GALOIS COVERING

In this section, We consider a case that $f:\tilde{S}arrow S$ is a finite Galois covering with
branched points. Let $(S, \Sigma S)$ be an orbifold, $\tilde{S}$ and $S_{*}$ comected oriented smooth surfaces,
$f:\tilde{S}arrow S$ a continuous surjective map such that the restriction $f_{0}:\tilde{S}_{0}arrow S_{*}$ is a finite
Galois covering with the covering transformation group $\Gamma$ where $\tilde{S}_{0}=\tilde{S}-f^{-1}(\Sigma S)$ . We
denote $f^{-1}(\Sigma S)$ by $\tilde{P}.$

$f$ gives a finite uniformization of $(S, \Sigma S)$ , that is an orbifold atlas
is given by $\{(\tilde{U}_{p}, C_{p}, f|_{U_{p}}-, U_{p})\}_{p\in S}$ where $U_{p}$ is a open neighborhood of $p$ and $\tilde{U}_{p}$ is a

connected component of $f^{-1}(U_{p})$ . Fix base points $\tilde{p}_{0}$ in $\tilde{S}_{0}$ and $p_{0}=f(\tilde{p}_{0})$ in $S$ . Take a
$m_{p}$ -th power of meridian $\xi_{p}$ of $p\in\Sigma S$ by the same way as Sect.2 for each $p$ in $\Sigma S$ . We

also define a meridian $\zeta_{\overline{p}}$ for each $\tilde{p}\in\tilde{P}$ . (See Remark2.3) The ideal $I(\tilde{S},\tilde{P})$ is $\Gamma$-invariant
subspace of $\mathbb{Q}\hat{\pi}(\tilde{S}_{0})$ . We can show the following theorem.
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Theorem 4 There exists the injec $ive$ homomorphism $\hat{f}:\mathbb{Q}\hat{\pi}(\tilde{S}_{0})^{\Gamma}/I(\tilde{S},\tilde{P})^{\Gamma}arrow \mathbb{Q}\hat{\pi}(S, P)$

satisfying thefollowing commu ative diagram.

$0-I(\tilde{S},\tilde{P})^{\Gamma}-\mathbb{Q}\hat{\pi}(\tilde{S}_{0})^{\Gamma}-\mathbb{Q}\hat{\pi}(\tilde{S}_{0})^{\Gamma}/I(\tilde{S},\tilde{P})^{\Gamma}arrow0$

$\hat{f}_{0}|_{I(\overline{S},P^{-})^{\Gamma}}\downarrow \hat{f}0\downarrow \hat{f}\downarrow$

$0-I(S, \Sigma S)arrow \mathbb{Q}\hat{\pi}(S_{*})$ $arrow$ $\mathbb{Q}\hat{\pi}(S, \Sigma S)$ –0.

Sketch ofproof The horizontal sequences are exact and $\hat{f}_{0}$ an injective Lie algebra homo-
morphism by Proposition3.3. We can prove the Theorem by carefully chase the commuta-
tive diagram. $\square$

Remark 4.2. $\mathbb{Q}\hat{\pi}(\tilde{S}_{0})^{\Gamma}/I(\tilde{S},\tilde{P})^{\Gamma}$ is included in $\mathbb{Q}\hat{\pi}(\tilde{S})^{\Gamma}$

Finally, We only give a definition ofthe hyperelliptic Goldman Lie algebra of a surface.
We denote a closed surface of genus $g$ by $S_{g}$ and fix a hyperelliptic involution $\iota$ of $S_{g}.$ $\iota$

gives a degree 2 uniformization of $h:S_{g}arrow(S, \Sigma S^{2})$ where $S^{2}$ is the 2-sphere and all of
these singular points have order 2 isotropy groups. We call the $\iota$-invariant part of $\mathbb{Q}\hat{\pi}(S_{9})$

as the hyperelliptic Goldman Lie algebra of $S_{g}.$
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