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1 Introduction

A new dynamical approach to analyze the asymptotic behavior of the root
system associating a Coxeter group has been introduced by Hohlweg, Labb\’e
and Ripoll in [10]. This approach implicate a study of infinite Coxeter groups
from a dynamical viewpoint. For the case where the associated matrices have
signature $(n-1,1)$ , Coxeter groups also act on hyperbolic space in the sense of
Gromov.

Let $(X, d_{X})$ and $(Y,d_{Y})$ be metric spaces equipped with an action of a count-
able group $G$ respectively. A map $f$ : $Xarrow Y$ is called $G$-equivariant if $f$

satisfies
$gof(x)=fog(x)$

holds for all $x\in X$ and for all $g\in G.$

In general, a continuous equivariant between boundaries of a discrete group
and their limit set is called a Cannon-Thurston map. In this article we shall
consider whether the Cannon-Thurston map for the Coxeter groups exists.

Theorem 1.1. Let $W$ be a rank $n$ Coxeter groups whose associating $bi$-linear
form $B$ has the signature $(n-1,1)$ . Let $\partial_{G}W$ be the Gromov boundarw of $W$

and let $\Lambda(W)$ be the limit set of W. There exists a $W$ -equivariant, continuous
$sur\dot{y}$ection F $:\partial_{G}Warrow\Lambda(W)$ .

We remark that the Gromov boundary is ordinary defined on a hyperbolic
metric space. We extend the definition to arbitrary metric space by taking
transitive closure due to Buckley and Kokkendorff ([3]). The limit set of a
Coxeter subgroup $W’$ generated by a subset $S’$ of $S$ are located on $\partial D$ . In fact
the set of basis $\Delta’$ corresponding to $W’$ is a subset of $\Delta$ and the limit set of $W’$

is distributed on convex hull of $\triangle’$ . This fact leads the following corollary:

Corollary 1.2. Let $(W, S)$ be a Coxeter system of rank $n$ whose associated
$bi$-linear form has the signature $(n-1,1)$ . For a special subgroup $W’$ whose
associated $bi$-linear form has the signature $(n-1,1)$ , if the normalized action
(see \S 2) of $W’$ is cocompact, then the limit set $\Lambda(W’)$ of $W’$ is canonically
embedded into the limit set of $\Lambda(W)$ .
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2 The Coxeter systems and geometric represen-
tation

2.1 The Coxeter systems

A Coxeter group $W$ of rank $n$ is generated by the set $S=\{s_{1}, . . . , s_{n}\}$ with the
relations $(S_{i}\mathcal{S}_{j})^{m_{ij}}=1$ , where $m_{ij}\in \mathbb{Z}>1\cup\{\infty\}$ for $1\leq i<j\leq n$ and $m_{ii}=1$

for $1\leq i\leq n$ . More precisely, we say that the pair $(W, S)$ is a Coxeter $sy_{\mathcal{S}}tem.$

For a Coxeter system $(W, S)$ of rank $n$ , let $V$ be a real vector space with its
orthonormal basis $\Delta=\{\alpha_{8}|s\in S\}$ with respect to the Euclidean inner product.
Note that by identifying $V$ with $\mathbb{R}^{n}$ , we treat $V$ as a Euclidean space. We define
a symmetric bilinear form on $V$ by setting

$B(\alpha_{i}, \alpha_{j})\{\begin{array}{ll}=-\cos(\frac{\pi}{m_{ij}}) if m_{ij}<\infty,\leq-1 if m_{ij}=\infty\end{array}$

for $1\leq i\leq j\leq n$ , where $\alpha_{s_{i}}=\alpha_{i}$ , and call the associated matrix $B$ the Coxeter
matrix. Classically, $B(\alpha_{i}, \alpha_{j})=-1$ if $m_{ij}=\infty$ , but throughout this thesis, we
allow its value to be any real number less than or equal to $-1$ . This definition
derives from [10]. Given $\alpha\in V$ such that $B(\alpha, \alpha)\neq 0,$ $s_{\alpha}$ denotes the map
$s_{\alpha}:Varrow V$ by

$s_{\alpha}(v)=v-2 \frac{B(\alpha,v)}{B(\alpha,\alpha)}\alpha$ for any $v\in V,$

which is said to be a $B$ -reflection. Then $\triangle$ is called a simple system and its
elements are simple roots of $W$ . The Coxeter group $W$ acts on $V$ associated
with its generating set $S$ as compositions of $B$-reflections $\{s_{\alpha}|\alpha\in\triangle\}$ generated
by simple roots. The root system $\Phi$ of $W$ is defined to be the orbit of $\triangle$ under
the action of $W$ and its elements are called its roots. Let

$V^{+}:= \{v\in V|v=\sum_{i=1}^{n}v_{i}\alpha_{i},$ $v_{i}>0\},$ $V^{-}:= \{v\in V|v=\sum_{i=1}^{n}v_{i}\alpha_{i},$ $v_{i}<0\}$

Assumption 2.1. In this paper, we always assume the following.

$\bullet$ The bilinear form $B$ has the signature $(n-1,1)$ . We call such a group a
Coxeter group of type $(n-1,1)$ .

$\bullet$ The Coxeter matrixB is not block-diagonal up to permutation of the basis.
In that case, the matrix $B$ is said to be irreducible.

It turns out that we only need to work on the case where $B$ is irreducible.
If the matrix $B$ is reducible, then we can divide $\triangle$ into $l$ subsets $\triangle=\sqcup_{i=1}^{l}\triangle_{i}$

so that each corresponding matrix $B_{i}=\{B(\alpha, \beta)\}_{\alpha,\beta\in\Delta_{i}}$ is irreducible and $B$

is block diagonal $B=(B_{1}, \ldots, B_{l})$ . Then for any distinct $i,$ $j$ , if $\alpha\in\triangle_{i}$ and
$\beta\in\triangle_{j},$ $s_{\alpha}$ and $s_{\beta}$ commute. In this case we see that $W$ is direct product

$W=W_{1}\cross W_{2}\cross\cdots\cross W_{l},$
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where $W_{i}$ is the Coxeter group corresponding to $\Delta_{i}$ . Rom this, the action of
$W$ can be regarded as a direct product of the actions of each $W_{i}$ . Moreover if
$B$ has the signature $(n-1,1)$ , there exists a unique $B_{k}$ which has the signature
$(n_{k}-1,1)$ and others are positive definite. Since if the Coxeter matricis positive
definite then the corresponding Coxeter group $W’$ is finite, and hence the limit
set $\Lambda(W’)=\emptyset$ (for the definition of the limit set, see Section 3.3). This ensures
that $\Lambda(W)$ is distributed on conv $(\hat{\Delta_{k}})$ , where conv $(\hat{\Delta_{k}})$ is the convex hull of $\hat{\Delta_{k}}.$

Thus $\Lambda(W)=\Lambda(W_{k})$ . Accordingly, if there exists the Cannon-Thurston map
for $W_{k}$ then we also have the Cannon-Thurston map for the whole group $W.$

This follows from the fact that the direct product $G_{1}\cross G_{2}$ of a finite generated
infinite group $G_{1}$ and a finite group $G_{2}$ has the same Gromov boundary as that
of $G_{1}.$

Lemma 2.2. Let $0$ be an eigenvector for the negative eigenvalue of B. Then
all coordinates of $0$ have the same sign.

This follows from Perron-Fhrobenius theorem for irreducible non-negative ma-
trices. In fact, letting $I$ be the identity matrix of rank $n$ , we apply Perron-
FYobenius theorem to an $-B+I$ irreducible and non-negative. Then the result
easily follows.

We fix $0\in V$ to be the eigenvector corresponding to the negative eigenvalue
of $B$ whose euclidean norm equals to 1 and all coordinates are positive. Hence
if we write $0$ in a linear combination $0= \sum_{i=1}^{n}0_{i}\alpha_{i}$ of $\Delta$ then $0_{i}>$ O. Given
$v\in V$ , we define $|v|_{1}$ by $\sum_{i=1}^{n}o_{i}v_{i}$ if $v= \sum_{i=1}^{n}v_{i}\alpha_{i}$ . Note that a function

$|_{1}$ : $Varrow \mathbb{R}$ is actually a norm in the set of vectors having nonnegative
coefficients. It is obvious that $|v|_{1}>0$ for $v\in V^{+}$ and $|v|_{1}<0$ for $v\in V^{-}$

Let $V_{i}=\{v\in V||v|_{1}=i\}$ , where $i=0$ , 1. For $v\in V\backslash V_{0}$ , we write $\hat{v}$ for
the “normalized” vector $\frac{v}{|v|_{1}}\in V_{1}$ . We also call $o$ the normalized eigenvector

(corresponding to the negative eigenvalue of $B$). Also for a set $A\subset V\backslash V_{0}$ , we
write $\hat{A}$ for the set of all $\hat{a}$ with $a\in A$ . We notice that $B(x, \alpha)=|\alpha|_{1}B(x,\hat{\alpha})$

hence the sign of $B(x, \alpha)$ equals to the sign of $B(x, \alpha)$ for any $x\in V$ and $\alpha\in\triangle.$

We denote $q(v)=B(v, v)$ for $v\in$ V. Let $Q=\{v\in V|q(v)=0\},$
$Q_{-}=\{v\in V|q(v)<0\}$ then we have

$\hat{Q}=V_{1}\cap Q, \overline{Q_{-}}=V_{1}\cap Q_{-}.$

Since $B$ is of type $(n-1,1)$ , $\hat{Q}$ is an ellipsoid. The cone $Q$-has two components
the “positive side” $Q_{-}^{+}$ , that is the component including $0$ , and the “negative
side”’ $Q_{-}^{-}=-Q_{-}^{+}$ . Similarly we divide $Q$ into two components $Q^{+}$ and $Q^{-}$ so
that $Q^{+}=\partial Q_{-}^{+}$ and $Q^{-}=\partial Q$

Remark 2.3. We have
$W(V_{0})\cap Q=\{0\},$

where $0$ is the origin of $\mathbb{R}^{n}$ . To see this we only need to verify that $V_{0}\cap Q=\{O\}$

since $Q$ is invariant under $B$-reflections. We notice that $V_{0}=\{v\in V|B(v, 0)=$

$0\}$ . For $i=1$ , . . . , $n-1$ , let $p_{i}$ be an eigenvector of $B$ corresponding to a
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positive eigenvalue $\lambda_{i}$ . For any $v\in V_{0}$ , we can express $v$ in a linear combination
$v= \sum_{i}^{n-1}v_{i}p_{i}$ since $B(v, 0)=0$ . Then we have $B(v, v)= \sum_{i}^{n-1}\lambda_{i}v_{i}^{2}\Vert p_{i}\Vert^{2}\geq 0$

where $\Vert*\Vert$ denotes the euclidean norm. Since $\lambda_{i}>0$ for $i=1$ , . . . , $n-1$ , we
have $B(v, v)=0$ if and only if $v=0.$

2.2 The word metric

Let $G$ be a finitely generated group. Fixing a finite generating set $S$ of $G,$

all elements in $G$ can be represented by a product of elements in $S\cup S^{-1}$

where $S^{-1}=\{s^{-1}|s\in S\}$ . We say such a representation to be a word.
Letting $\langle S\rangle$ be the set of words. For a word $w\in\langle S\rangle$ we define the word length
$\ell_{S}(w)$ as the number of generators $s\in S$ in $w$ . Now, we naturally have a map
$\iota$ : $\langle S\ranglearrow W$ . For a given $g\in G$ , we define the minimal word length $|g|_{S}$ of
$g$ by $\min\{\ell_{S}(w)|w\in\iota^{-1}(g)\}$ . An expression of $g$ realizing $|g|s$ is called the
reduced expression or the geodesic word. Using the word length, we can define
so-called the word metric with respect to $S$ on $G$ , i.e. for $g,$ $h\in G$ , their distance
is $|g^{-1}h|s.$

3 The Hilbert metric

3.1 The cross ratio and the Hilbert metric

For four vectors $a,$ $b,$ $c,$ $d\in V$ with $c-d,$ $b-a\neq 0$ , we define the cross ratio
$[a, b, c, d]$ with respect to $B$ by

$[a, b, c, d]:= \frac{||y-a||||x-b||}{||y-b||||x-a\Vert},$

where $\Vert*\Vert$ denotes the Euclidean norm. Using this we obtain a distance $d$ on
$D$ as follows. For any $x,$ $y\in D$ , take $a,$

$b\in\partial D$ so that the points $a,$ $x,$ $y,$
$b$ lie on

the segment connecting $a,$
$b$ in this order. Then $y-b,$ $x-a\neq$ O. We define a

function $d$ as follows.
$d(x, y):=\log[a, x, y, b],$

This is actually a metric on $D$ and called the Hilbert metric on $D.$

3.2 Some properties of the Hilbert metric

In this section we correct known geometric properties of a space with the Hilbert
metric.

Proposition 3.1. $(D, d_{D})$ is

(i) a proper ($i.e$ . any closed ball is compact) complete metric space and,

(ii) a uniquely geodesic space.
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Let $(X, d)$ be a geodesic space. For $x,$ $y,p\in X$ , we define the Gromov product
$(x|y)_{p}$ of $x$ and $y$ with respect to $p$ by the equality

$(x|y)_{p}= \frac{1}{2}(d(x,p)+d(y,p)-d(x, y))$ .

Using this, the hyperbolicity in the sense of Gromov is defined as follows. For
$\delta\geq 0$ the space $X$ is $\delta$ -hyperbolic if

$(x|z)_{p} \geq\min\{(x|y)_{p}, (y|z)_{p}\}-\delta$

for all $x,$ $y,$ $z,p\in X$ . We say the space is simply Gromov hyperbolic if $X$ is
$\delta$-hyperbolic for some $\delta\geq 0.$

A metric space $(D, d_{D})$ with the Hilbert metric is a CAT(O) and Gromov
hyperbolic space since the region $D$ is an ellipsoid. The former derived from a
result given in [6] by Egloff.

Theorem 3.2 (Egloff). Let $H\subset \mathbb{R}^{n}$ be a convex open set with the Hilbert
metric $d_{H}$ . Then $(H, d_{H})$ is a CAT(O) space if and only if $H$ is an ellipsoid.

The latter owe to a result of Karlsson Noskov $[$?$].$

Theorem 3.3 (Karlsson-Noskov). Let $H\subset \mathbb{R}^{n}$ be a convex open set with the
Hilbert metr\’ic $d_{H}$ . If $H$ is an ellipsoid, then $(H, d_{H})$ is a Gromov hyperbolic.

The point of our definition of the Hilbert metric can be seen in the proof of
the following proposition.

Proposition 3.4. Let $W$ be a Coxeter group with signature $(n-1,1)$ . The
normalized action of any $w\in W$ is an isometry on $(D, d_{D})$ .

4 The properness of the normalized action

We verify that the normalized action on $(D, d_{D})$ is proper. If $X$ is locally
compact and there exists a fundamental region $R$ then the action is proper.

We define two open sets (with respect to the subspace topology of $V_{1}$ )

$K:=\{v\in D|\forall\alpha\in\Delta, B(\alpha,v)<0\}$ and $K’:=K\cap D’.$

For a $\in\Delta$ we set $P_{\alpha}=$ {$v\in V_{1}|$ $\alpha$-th coordinate of $v$ is $0$ } and $H_{\alpha}^{\backslash }=\{v\in$

$V_{1}|B(v, \alpha)=0\}$ . We define

$\mathcal{P}=\{v\in V_{1}|\forall\alpha\in\Delta, B(\alpha, v)<0\}$ and $\mathcal{P}’=\mathcal{P}\cap int(conv(\hat{\Delta}))$ .

Then clearly $K=\mathcal{P}\cap D$ . Moreover, we will see that $K’=\mathcal{P}’\cap D$ (Lemma??).
Since $\mathcal{P}$ (resp. $\mathcal{P}’$ ) is bounded by finitely many $n-1$ dimensional subspaces
$\{H_{\alpha}|\alpha\in\Delta\}$ (resp. $\{H_{\alpha}|\alpha\in\Delta\}$ and $\{P_{\alpha}|\alpha\in\Delta$ actually $\overline{\mathcal{P}}$ (resp. $\overline{\mathcal{P}’}$) is
a polyhedron. In general, $\mathcal{P}$ is not a simplex. The following example of $W$ such
that $\mathcal{P}$ is not a simplex is given by Yohei Komori.

$W=\langle s_{1}$ , . . . , $s_{5}|s_{i}^{2},$ $(s_{i-1}s_{i})^{4}\rangle,$

where $i=1$ , . . . , 5 and $s_{0}=s_{5}.$

110



Definition 4.1. We assume that a group $G$ acts on a metric space $X$ isomet-
rically. We denote the action by $g.x$ for $g\in G$ and $x\in X$ . Then an open set
$A\subset X$ is a fundamental region if $\overline{G.A}=X$ and $g.A\cap A=\emptyset$ for any $g\in G$

where G.A is the topological closure of $G.A.$

Proposition 4.2. $K$ is a fundamental region for the normalized action.

Definition 4.3. Let $(W, S)$ be a Coxeter system.

$\bullet$ We call a sequence $\{w_{k}\}_{k}$ in $W$ a short sequence if for each $n\in \mathbb{N}$ there
exists $s\in S$ such that $w_{k+1}=sw_{k}$ and $|w_{k}|=k.$

$\bullet$ For a sequence $\{w_{k}\}_{k}$ in $W$ , a path in $V_{1}$ is a sequence path for $\{w_{k}\}_{k}$ if
the path is given by connecting Euclidean segments $[w_{k}\cdot 0, w_{k+1}\cdot 0]$ for all
$k\in \mathbb{N}.$

The following is a key of our argument.

Proposition 4.4. Suppose that $W$ acts on $D$ cocompactly. For any $\xi\in\Lambda(W)$

there exists a short sequence $\{w_{k}\}_{k}$ so that $w_{k}\cdot 0$ converges to $\xi$ . Furthermore
the sequence path for $\{w_{k}\}_{k}$ lies in $c$ -neighborhood of a segment $[0, \xi]$ connecting
$o$ and $\xi$ for some $c>0$ with respect to the Hilbert metric.

4.1 Three cases

We consider the normalized action by dividing it into the following three $cases_{\backslash }$

cocompact, convex cocompact, with cusps. We recall that conv $(\triangle)\wedge$ is a simplex.
It can happen three distinct situations due to the bilinear form $B$ ;

(i) the region $D\cup\partial D$ is included in int $(conv(\triangle));\wedge$

(ii) there exist some $n’(<n)$ dimensional faces of conv $(\triangle)\wedge$ which are tangent
to the boundary $\partial D$ ;

(iii) $DU\partial D\not\subset int(conv(\hat{\Delta}))$ and no faces of conv $(\hat{\Delta})$ tangent to $\partial D.$

We argue the cases (i) and (iii) simultaneously. For the case (ii), we can not
apply the same argument as (i) and (iii). The most general case will be discussed
in Section 4.2.

Remark 4.5. By [8, Corollary 2.2], we see that a Coxeter subsystem $(W’, S’)$

satisfying $S’\subset S$ is either of type $(|S’|-1,1)$ or $(|S’|-1,0)$ or positive definite.
Let $B’$ be the bilinear form corresponding to $(W’,$ $S$ If $B’$ has the signature
$(|S’|-1,1)$ (resp. $(|S’|-1,0$ then by the same argument as Lemma 2.2, we
have an eigenvector $0’\in$ span(A’) of the negative eigenvector (resp. $0$ eigen-
value) such that all coordinates of $0’$ for $\Delta’$ are positive where span $(\triangle’)$ denotes
the subspace spanned by $\triangle’$ . This shows that $Q’=\{v\in span(\triangle^{J})|B’(v, v)=0\}$

should intersect with conv $(\hat{\triangle^{J}})$ . Since the Coxeter matrix of $B’$ is a principal

submatrix of the Coxeter matrixof $B$ , we see that $\partial D\cap conv(\triangle’)\wedge=Q’\cap conv(\hat{\triangle^{l}})$ .
Thus we have the followings:
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(1) $B’$ has the signature $(|S’|-1,1)$ if and only if $D\cap$ conv $(\Delta’)\neq\emptyset$ ;

(2) $B’$ has the signature $(|S’|-1,0)$ if and only if $\partial D\cap conv(\Delta’)=Q’\cap$

conv $(\hat{\Delta’})$ , which is a singleton;

(3) $B’$ is positive definite if and only if $(D\cup\partial D)\cap conv(\hat{\Delta’})=\emptyset.$

If $B’$ has the signature $(|S’|-1,1)$ then $H_{\alpha}$ for $\alpha\in\Delta’$ intersects with $D\cap$

conv(A’). In fact if not, then $D\cap conv(\hat{\Delta’})$ is not preserved by $s_{\alpha}$ for $\alpha\in\Delta’.$

Moreover, by the compactness of $Q,$ $Q’\cap V_{0}=0$ for any Coxeter subsystem
$(W’,$ $S$

We say a Coxeter system of rank $n$ is affine if its associating bi-linear form
$B$ has the signature $(n-1,0)$ . Fixing a generating set $S$ we simply say Coxeter
group $W$ is affine if the Coxeter system $(W, S)$ is affine. An affine Coxeter group
is of infinite order and its limit set is a singleton ([10, Corollary 2.15]).

By a simple argument using the linearity of the original action of Coxeter
groups, we can rephrase these cases as follows.

Proposition 4.6. For each case, we have the followings:
(a) The case (i) $\Leftrightarrow$ $\overline{K’}=\overline{K}\subset D,$

$\Leftrightarrow$ every Coxeter subgroup of $W$ of rank $n-1$ gener-
ated by a subset of $S$ is finite:

(b) The case (ii) $\Leftrightarrow$
$\overline{K}$ or $\overline{K’}$ has some vertices $in\cdot\partial D,$

$\Leftrightarrow$ $W$ includes at least one afine special subgroup:
(c) The case (iii) $\Leftrightarrow$ all the vertices of $\overline{K}$ are not always in $\partial D$ and at

least one of them is not in $D,$

$\Leftrightarrow$ every special subgroup of $W$ of rank $n’(<n)$ is of
type $(n’-1,1)$ or $(n’, 0)$ .

From Proposition 4.6 we deduce that the fundamental region $K$ (resp.K’) is
bounded if the case (i) (resp. the case (ii)) occurs. If $\overline{K’}$ is not compact, then
$\partial D$ must be tangent to some faces of conv $(\hat{\Delta})$ . In this case $K’$ has some cusps
at points of tangency of $\partial D$ . This happens if and only if (ii). Because of this
we call each cases as follows: The normalized action of $W$ on $D$ is

$\bullet$ cocompact if the case (i) happens;

$\bullet$ with cusps if the case (ii) happens;

$\bullet$ convex cocompact if the case (iii) happens.

In the case (ii) the rank of cusp $v$ is the minimal rank of the afine Coxeter
subgroup generated by a subset of $S$ which fixes $v.$

Note that we can find easily that there exist Coxeter groups corresponding
to each cases (i), (ii) and (iii). Thus all the possibilities may happen.

Example 4.7. We see that classical hyperbolic Coxeter groups are in the case
(i). For the case (iii) one of the simplest example is a triangle group $W=$
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$\langle \mathcal{S}_{1},$

$s_{2},$ $s_{3}|s_{i}^{2}(i=1,2,3)\rangle$ with bi-linear form satisfying $B(\alpha_{i}, \alpha_{j})<-1$ for $i\neq$

$j$ . At last it is in the case (ii) that $W=\langle s_{1},$ $s_{2},$ $s_{3},$
$s_{4}|s_{i}^{2},$ $(s_{1}s_{2})^{6},$ $(s_{1}s_{3})^{3},$ $(s_{j}s_{k})^{2}(j\neq$

$k\in\{2$ , 3, 4 with the matrix $(B(\alpha_{i}, \alpha_{j}))_{i,j}$ equals to

$[- \frac{1\sqrt{3}}{\tau^{\frac{\not\in}{2}}}- -\frac{\sqrt{3}}{001^{2}} -\frac{1}{2}001 T100]$

where $T<-1$ . In fact $W$ is with signature $(3, 1)$ although a subgroup generated
by $\{s_{1}, s_{2}, s_{3}\}$ is with signature $(2, 0)$ .

Definition 4.8 (The limit set). For a Coxeter system $(W, S)$ of type $(n-1,1)$ ,
let $0$ be the normalized eigenvector corresponding to the negative eigenvalue of
the corresponding Coxeter matrix. The limitset $\Lambda_{B}(W)$ of $W$ with respect to
$B$ is the set of accumulation points of the orbit of $0$ by the normalized action
of $W$ on $D$ in the Euclidean topology. The limit set depends on the Coxeter
matrixB. If $B$ is understood, then we simply denote the limit set by $\Lambda(W)$ .

5 Two boundaries of spaces

5.1 The Gromov boundaries

The Gromov boundary of a hyperbolic space is one of the most studied boundary
at infinity. In this section we define it for an arbitrary metric space due to [3].

Let $(X, d, 0)$ be a metric space with a base point $0$ . We denote simply $(*|*)$

as the Gromov product with respect to the base point $0$ . A sequence $x=\{x_{i}\}_{i}$

in $X$ is a Gromov sequece if $(x_{i}|x_{j})_{z}arrow\infty$ as $i,$ $jarrow\infty$ for any base point
$z\in X$ . Note that if $(x_{i}|x_{j})_{z}arrow\infty(i,jarrow\infty)$ for some $z\in X$ then for any
$z’\in X$ we have $(x_{i}|x_{j})_{z’}arrow\infty(i,jarrow\infty)$ .

We define a binary relation $\sim c$ on the set of Gromov sequences as follows.
For two Gromov sequences $x=\{x_{i}\}_{i},$ $y=\{y_{i}\}_{i},$ $x\sim cy$ if $\lim\inf_{i,jarrow\infty}(x_{i}|y_{j})=$

$\infty$ . Then we say that two Gromov sequences $x$ and $y$ are equivalent $x\sim y$ if
there exist a finite sequence $\{x=x_{0}, . . . , x_{k}=y\}$ such that

$x_{i-1}\sim G^{X}i$ for $i=1$ , . . . , $k.$

It is easy to see that the relation $\sim$ is an equivalence relation on the set of
Gromov sequences. The Gromov boundary $\partial_{G}X$ is the set of all equivalence
classes $[x]$ of Gromov sequences $x$ . If the space $X$ is a finitely generated group
$G$ then the Gromov boundary of $G$ depends on the choice of the generating set
in general. In this thesis we always define the Gromov boundary of a Coxeter
group $W$ using the generating set of the Coxeter system $(W, S)$ . We shall use
without comment the fact that every Gromov sequence is equivalent to each of
its subsequences. To simplify the statement of the following definition, we denote
a point $x\in X$ by the singleton equivalence class $[x]=[\{x_{i}\}_{i}]$ where $x_{i}=x$ for all
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$i$ . We extend the Gromov product with base point $0$ to $(X\cup\partial_{G}X)\cross(X\cup\partial_{G}X)$

via the equations

$(a|b)=\{\begin{array}{l}\inf\{\lim\inf_{i,jarrow\infty}(x_{i}|y_{j})|[x]=a, [y]=b\}, if a\neq b,\infty, if a=b.\end{array}$

We set
$U(x, r) :=\{y\in\partial_{G}X|(x|y)>r\}$

for $x\in\partial_{G}X$ and $r>0$ and define $\mathcal{U}=\{U(x, r)|x\in\partial_{G}X, r>0\}$ . The Gromov
boundary $\partial_{G}X$ can be regarded as a topological space with a subbasis $\mathcal{U}.$

If the space $X$ is $\delta$-hyperbolic in the sense of Gromov, then this topology is
equivalent to a topology defined by the following metric. For $\epsilon>0$ satisfying
$\epsilon\delta\leq 1/5$ , we define $d_{\epsilon}$ as follows:

$d_{\epsilon}(a, b)=e^{-\epsilon(a|b)} (a, b\in\partial_{G}X)$ .

Then it is known that $d_{\epsilon}$ is actually a metric. In this thesis, we always take $\epsilon$ so
that $\epsilon\delta\leq 1/5$ for all $\delta$ hyperbolic spaces $X$ and assume that $\partial_{G}X$ is equipped
with $d_{\epsilon}$-topology.

5.2 The CAT(O) boundaries

The map we want is given via the CAT(O) boundary $\partial_{I}D$ $($or $\partial_{I}D’)$ with the
cone topology of $D$ (or $D$ That is a space of geodesic rays emanating from a
base point. Consult with [2] for the precise definition.

Since the region $D’$ and $D$ are both complete CAT(O) space, CAT(O) bound-
aries for each space are well defined. We use the eigenvector $0$ for the negative
eigenvalue as the base point in the definition of CAT(O) boundary and the cone
topology. Furthermore since $D’$ is a subspace of $D$ , its CAT(O) boundary $\partial_{I}(D’)$

is a subspace of $\partial_{I}D.$

$\partial_{I}D$ (resp. $\partial_{I}D’$ ) is homeomorphic to $\partial D$ $($ resp. $\partial D’\backslash D)$ .

Remark 5.1. If the case space $X$ is a complete proper hyperbolic CAT(0) space
then $\partial_{G}X\simeq\partial_{I}X$ $([3,$ Theorem $2.2 (d)])$ . Because of this, if the case (i) (resp.
the case (iii)) happens then $\partial_{I}D\simeq\partial_{G}D$ (resp. $\partial_{I}D’\simeq\partial_{G}D$

Remark 5.2. If the case (iii) happens, then $\Lambda(W)$ is homeomorphic to $\partial D’\backslash D.$

Moreover we see that $\Lambda(W)=\partial D’\backslash D\simeq\partial_{I}D’\simeq\partial_{G}D’.$

6 The Cannon-Thurston maps

In this section, we give a proof of Theorem 1.1. Throughout this section, a vector
$o$ denotes the normalized (with respect to $|*|_{1}$ ) eigenvector corresponding to
the negative eigenvalue of $B.$
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6.1 The case of $W$ acting without cusps

We consider when $W$ acts cocompactly or convex cocompactly. In this case
$W$ is hyperbolic in the sense of Gromov. For simplicity, we mean $\tilde{D}$ for $D$ or
$D’$ . Our purpose in this section is actually to construct a homeomorphism from
$\partial_{G}(W, S)$ to $\partial\tilde{D}$ . We define the map $f$ : $Warrow\tilde{D}$ by $w\mapsto w\cdot 0$ where $0$ is the
eigenvector of the negative eigenvalue. This map is a quasi-isometry.

It is well known that $f$ extends to a homeomorphism between $\partial_{G}(W, S)\cup W$

and $\partial_{G}\tilde{D}\cup\tilde{D}$ . Let $\overline{f}$ be the restriction of the homeomorphism above to $\partial_{G}W.$

Now we recall following two maps. By the result of Buckley and Kokkendorff
[3], we know that there exists a homeomorphism $g:\partial_{G}\tilde{D}arrow\partial_{I}\tilde{D}$ . Moreover,

for a Gromov sequence $\xi\in\partial_{G}\tilde{D}$ any unbounded sequence given as a subset of
a geodesic ray $g(\xi)$ is equivalent to $\xi$ . On the other hand we have a homeomor-
phism $h:\partial_{I}\tilde{D}arrow\partial\tilde{D}.$

We compose these homeomorphisms. Let $F=h\circ g\circ\overline{f}$ . Then we have a
homeomorphism from $\partial_{G}(W, S)$ to $\partial\tilde{D}$ . We verify that $F$ sends $\omega\in\partial_{G}(W, S)$

to the limit point defined by $\{w_{k}\cdot 0\}_{k}$ for $\{w_{k}\}_{k}\in\omega$ . If this is true, then we see
that $F$ is $W$-equivariant by the construction. To see this, we inspect the details
of the maps $g$ and $h$ . For our situation, the proof in. [3] says that for a Gromov
sequence $\{w_{k}\cdot 0\}_{k}\in F([\{w_{k}\}_{k}])$ in $W$ , there exists a $\xi$ such that a sequence
$\{u_{i}\cdot 0\}_{i}$ constructed by the same way as in the proof of Proposition 4.4 is a
short sequence included in a bounded neighborhood of $\xi$ . The image of $\xi$ by $h$

is equivalent to $\{u_{i}\cdot 0\}_{i}$ in the sense of Gromov. Adding to this, Buckley and
Kokkendorff showed that $\{u_{i}\cdot 0\}_{i}$ equivalent to the original sequence $\{w_{k}\cdot 0\}_{k}$

and hence they converge to the same point in $\partial_{G}\tilde{D}\backslash D$ . By Remark 5.2 $F$ is
the map we want.

6.2 The case of $W$ acting with cusps

We know that there exist some Coxeter groups acting on $D$ with cusps. By
Proposition 4.6, this happens when $\partial D$ is tangent to some faces of conv(A).
We divide this case into following three cases;

(i) there exists at least one pair of simple roots $\alpha,$
$\beta\in\triangle$ so that $B(\alpha, \beta)=-1,$

(ii) there exists at least one subset $\triangle’\subset\triangle$ whose cardinality is more than 3
so that the corresponding matrix $B’$ is positive semidefinite (not positive
definite) where $B’$ is the matrix obtained by restricting $B$ to $\Delta’,$

(iii) or (i) and (ii) happen simultaneously.

The case (i).
We deal with the case (i) first. In this case, the dihedral subgroup of $W$

generated by $s_{\alpha}$ and $\mathcal{S}_{\beta}$ is infinite and its limit set is one point. This means
that $D$ is tangent to the segment connecting $\alpha$ and $\beta$ . Hence the fundamental
region of $W$ is unbounded.

For the cases (ii) and (iii), we have to see other geometric aspects of the
Coxeter groups.
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Recall that the number $n$ is the rank of $W$ and hence equals to the dimension
of $V$ . Let $\{A_{m}\}_{m}$ be a sequence of $n\cross n$ matrices which are defined as follows.
For each $m\in \mathbb{N}$ , we define $A_{rn}$ so that

$A_{m}(\alpha, \beta)=\{\begin{array}{ll}1/m, if B(\alpha, \beta)=-1,0, if otherwise,\end{array}$

for each $\alpha,$ $\beta\in\Delta$ . We denote the bilinear form with respect to each $A_{m}$ by
$A_{m}(v, v’)$ for $v,$ $v’\in V$ . Then let $B_{m}=B-A_{m}.$

If $B$ has the signature $(n-1,1)$ , then $B_{m}$ also has the signature $(n-1,1)$

for sufficiently large $m\in \mathbb{N}$ . Therefore for sufficiently large $m$ , our definitions
of $Q,D,$ $D’,$ $L,$ $K$ can be extended to the bilinear form defined by $B_{m}$ . We
define $Q_{m},$ $D_{m},$ $D_{m}’,$ $L_{m},$ $K_{m}$ each of them by using $B_{m}$ instead of $B$ in their
definitions. Clearly $B_{m}$ converges to $B$ as $m$ tends to $\infty.$

Let $v_{1}$ , . . . , $v_{n}$ be eigenvectors of $B$ normalized with respect to the Euclidean
norm so that the matrix $(v_{1}, \ldots, v_{n})$ diagonalize $B$ . Then since each $P_{m,i}(v_{i})$

converges to $v_{i}$ , the matrix diagonalizing $B_{m}$ also converges to $(v_{1}, \ldots, v_{n})$ . This
fact shows that the sequence $\{D_{m}\}_{m}$ converges to $D.$

We can consider the $B_{m}$-reflection of $W$ on $V$ with respect to $B_{m}$ . We denote
this action by $\rho_{m}$ . For example, the $B_{m}$-reflection of $\alpha\in\Delta$ can be calculated
as

$\rho_{m}(s_{\alpha})(x)=x-2B_{m}(x, \alpha)\alpha, (x\in V)$ .

The normalized action with respect to $B_{m}$ is defined in the same way as $B.$

We denote this also by $\rho_{m}$ . Furthermore if $B_{m}$ has the signature $(n-1,1)$ ,
then all our lemmas and propositions can be proved by using the normalized
eigenvector $0_{m}$ corresponding to the negative eigenvalue of $B_{m}$ instead of $0.$

Therefore if the normalized action $\rho_{m}$ is (convex) cocompact, then there exists
a map $F_{m}$ from the Gromov boundary $\partial_{G}(W, S)$ of $W$ to the limit set $\Lambda_{B_{n}}(W)$

which is homeomorphic. In fact we have a $W$-equivariant homeomorphism $F_{m}$ :
$\partial_{G}(W, S)arrow\Lambda_{B_{m}}(W)$ for each $m$ since the case (iii) happens. Note that for
sufficiently large $m$ , we have $V_{0}\cap Q_{m}=\{0\}$ . Hence we can define the Hilbert
metric on $V_{1}\cap Q_{m-}$ where $Q_{m-}=\{v\in V|B_{m}(v, v)<0\}$ . Consider the
correspondence between $x\in D_{m}$ and $y=\mathbb{R}x\cap V_{1}\cap Q_{m-}$ . Then we see that
this is an isometry between $D_{m}$ and $V_{1}\cap Q_{m-}$ and $W$ equivariant. Thus we
can regard the normalized action $\rho_{m}$ as an action of $W$ on $V_{1}\cap Q_{m-}.$

We remark that for any $\alpha\in\triangle$ and $m\in \mathbb{N}$ , we have $B_{m}(0, \alpha)=B(0, \alpha)-$

$A_{m}(0, \alpha)<0$ since $B(0, \alpha)<0$ and all coordinates of $0$ are positive. Hence $0$ is
in $K_{m}$ for any $m\in \mathbb{N}.$

Proposition 6.1. Assume that the normalized action of $W$ includes rank 2
cusps. There exists a continuous $W$-equivariant surjection $\iota$ : $\Lambda(\rho_{1}(W))arrow$

$\Lambda(W)$ .

Considering the composition $F’=\iota oF_{1}$ , we have the map which is surjective,
continuous and $W$-equivariant.

If $B(\alpha, \beta)=-1$ for some $\alpha,$
$\beta\in\Delta$ then the Coxeter subgroup $W’$ generated

by $\{s_{\alpha}, \mathcal{S}_{\beta}\}$ is affine. Since an affine Coxeter group has only one limit point,
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$\{(s_{\alpha}s_{\beta})^{k}\cdot 0\}_{k}$ and $\{(s_{\beta}\mathcal{S}_{\alpha})^{k}\cdot 0\}_{k}$ converges to the same limit point. However
in the Gromov boundary of $(W, S)$ , $\{(s_{\alpha}s_{\beta})^{k}\}_{k}$ and $\{(S_{\beta}\mathcal{S}_{\alpha})^{k}\}_{k}$ lie in distinct
equivalence classes. In fact, considering another action of $(W, S)$ defined by
another bi-linear form $B’$ such that $B’(\alpha, \beta)<-1$ , then the limit set $\Lambda_{B’}(W’)\subset$

$\Lambda_{B’}(W)$ consists of two points. In this case the limit points of $\{(s_{\alpha}s_{\beta})^{k}\cdot 0\}_{k}$ and
$\{(s_{\beta}s_{\alpha})^{k}\cdot 0\}_{k}$ are distinct. On the other hand the map $\partial_{G}(W, S)arrow\Lambda_{B’}(W)$

is well defined hence $F’$ cannot be an injection.

The cases (ii) and (iii).

It is known that a tangent point $p\in conv(\triangle’)\wedge\cap\partial D$ in the Case (ii) for some
$\triangle’\subset\Delta$ can be expressed as the intersection of $\{H_{\alpha}|\alpha\in\triangle$ We define a set
$PF$ of such points:

$PF= \{p\in\partial D|\exists\triangle’\subset\Delta s.t. \{p\}=(\bigcap_{\alpha\in\Delta’}H_{\alpha})\cap(\bigcap_{\delta\in\Delta\backslash \Delta’}P_{\delta})\}.$

Here $H_{\alpha}$ denotes a hyperplane $\{v\in V_{1}|B(v, \alpha)=0\}$ . Then we notice that $PF$

is the set of vertices of $K’$ which are on $\partial D$ by Proposition 4.6 (b).

Definition 6.2. Let (X, d) be a CAT(O) space. Fix a point $0\in X$ and take
$k\in \mathbb{R}$ . For $\xi\in\partial X$ , we take a geodesic $c$ from $x$ to $\xi.$ A horoball at $\xi$ with $k$

(based at o) is a set

$O_{\xi,k}= \{x\in X|\lim_{tarrow\infty}d(c(t), x)-t<k\}.$

The boundary of a horoball $\partial O_{\xi,k}$ is called a horosphere, that is,

$\partial O_{\xi,k}=\{x\in X|\lim_{tarrow\infty}d(c(t), x)-t=k\}.$

The function $b_{c}(x)$ $:= \lim_{tarrow\infty}d(c(t), x)-t$ defining the horoball is said to
be a Busemann function associated with $c$ . It is known that Busemann functions
are well defined, convex and 1-Lipschitz. We remark that $O_{\xi,k}\subset O_{\xi,k’}$ for $k<k’$

and $O_{p,k}$ tends to $p$ for $karrow-\infty$ . In this paper, we always take the normalized
eigenvector for the negative eigenvalue of $B$ as the base point $0.$

Lemma 6.3. There exists $k\in \mathbb{R}$ such that for any $p,p’\in PF$ and $w\in W$ , if
$O_{p,k}\neq w\cdot O_{p’,k}$ then

$O_{p,k}.\cap w\cdot O_{p’,k}=\emptyset.$

Fix a constant $k$ which is smaller than the constant in the claim of Lemma
6.3. Let $0\in D$ be the eigenvector corresponding to the negative eigenvalue of
$B$ as a basepoint. Then $0\in K’$ by [13, Lemma 5]. For each $p\in PF$ , we take
a horoball at $p$ with $k$ (based at o) and denote it by $O_{p}$ . By Proposition 4.6
we have an affine special subgroup corresponding to each $p\in PF$ uniquely. If
$W’\subset W$ is an affne subgroup corresponding to $p\in PF$ then $w\cdot O_{p}=O_{w\cdot p}=O_{p}$

for any $w\in W’$ since $p$ is fixed by $W’$ . We set $O:=\{O_{p}\}_{p\in PF}.$

We remove the orbits of $O$ from $D$ and denote it by $D$

$D”=D’\backslash W\cdot O.$
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Note that $D”$ is closed in $D$ because $O$ and $R=D\backslash conv(\hat{\Delta})$ are open. The
following is obvious.

Lemma 6.4. The set $D”$ is invariant under the normalized action of $W.$

We define $K”:=K\cap D$ Then we can assume that $0\in K"$ by taking
sufficiently small $k$ . Recall that $O$ contains all horoballs at the vertices of $\overline{K}$

which lie on $\partial D$ . This indicates that $\overline{K"}$ is bounded closed set hence compact
since $D$ is proper. Since $K$ is a fundamental region of the normalized action,
Lemma 6.4 says that $K”$ is a fundamental region of the normalized action on
$D$ Define a metric $d’$ on $D”$ by letting $d’(x, y)$ be the minimum length of a
path in $D”$ connecting $x$ and $y$ . Now we assume that $k$ is small enough so that
the geodesic arc between $0$ and $\mathcal{S}\cdot O$ is in $D”$ for each $s\in S.$

Proposition 6.5. $W$ acts on $(D”, d’)$ geometrically.

We need the hyperbolic geometry to see how the metric $d’$ differs from the
metric $d$ . By diagonalizing $B$ we can show that $(D, d)$ is isometric to the hyper-
bolic space $(\mathbb{H}^{n}, d_{\mathbb{H}})$ of the upper half plane model. In $(\mathbb{H}^{n}, d_{\mathbb{H}})$ we can compare
the hyperbolic distance of two points on a horosphere and the length of a path
on that horosphere. For $x,$ $y$ on horosphere in $(\mathbb{H}^{n}, d_{\mathbb{H}})$ we denote $c$ as an arc
on horosphere joining $x$ and $y$ . Then we have

the hyperbolic length of $c \leq\exp(\frac{d_{\mathbb{H}}(x,y)}{2})$ ,

and hence
$2 (\log d’(x, y))\leq d(x, y)$ . (1)

Lemma 6.6. For a Coxeter group $W$ of type $(n-1,1)$ , there exists a constant
$C>0$ so that

$2(\log l(w))-C\leq d(0, w\cdot 0)$

for all $w\in W.$

Let $F:Warrow D”$ be the quasi isometry defined by $F(w)=w\cdot 0$ for every
$w\in W$ and if $w=w’\mathcal{S}$ for some $s\in S$ then $F$ maps the edge joining the vertices
$w,$ $w’\in W$ to the geodesic $[w\cdot 0, w’\cdot 0].$

We remind the following fact. Let $(X, d)$ be a $\delta$-hyperbolic space. For any
$x,$ $y,$ $0\in X$ , let $z$ be an arbitrary point on a geodesic connecting $x,$ $y$ . In a
$\delta$-hyperbolic space, by the definition, $\delta\geq\min\{d(z,$ $[0,$ $x$ $d(z,$ $[0,$ $y$ Hence we
have $d(0, z)\geq(x|y)_{0}$ . If $z$ is the nearest point of a geodesic $[x, y]$ from $0$ , then
we obtain $(x|y)_{0}\geq d(0, z)-\delta$ . Thus

$d(0, z)\geq(x|y)_{0}\geq d(0, z)-\delta$

for such a point. This estimate is the key to prove the following.

Proposition 6.7. Assume that $W$ includes rank $m>2$ cusps. Let $F:Warrow$

$D”$ be the quasi isometry defined by $F(w)=w\cdot 0$ for every $w\in W.$ Then $F$

extends to $\tilde{F}:\partial_{G}(W, S)arrow\Lambda(W)$ continuously. Moreover $\tilde{F}$ is surjective and
$W$ -equivariant.
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This ensures the existence of the Cannon-Thurston maps for the case (ii)
and (iii). $\square$

Corollary 1.2 follows immediately from the fact that any geodesic of a special
subgroup of a Coxeter group is also a geodesic of the whole group.
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